4,013 research outputs found

    The C9 cluster: Structure and infrared frequencies

    Get PDF
    The high resolution infrared spectrum of the C9 cluster has been measured in direct absorption by infrared diode laser spectroscopy of a pulsed supersonic carbon cluster jet. Fifty-one rovibrational transitions have been assigned to the nu6 (sigmau ) antisymmetric stretch fundamental of the 1Sigma + 9 linear ground state of C9. The measured rotational constant [429.30(50) MHz] is in good agreement with ab initio calculations and indicates an effective bond length of 1.278 68(75) Å, consistent with cumulenic bonding in this cluster. Several perturbations are observed in the upper state, and the upper- and lower-state centrifugal distortion constants are observed to be anomolously large, evidencing a high degree of Coriolis mixing of the normal modes

    Optimal light harvesting structures at optical and infrared frequencies

    Get PDF
    One-dimensional light harvesting structures with a realistic geometry nano-patterned on an opaque metallic film are optimized to render high transmission efficiencies at optical and infrared frequencies. Simple design rules are developed for the particular case of a slit-groove array with a given number of grooves that are symmetrically distributed with respect to a central slit. These rules take advantage of the hybridization of Fabry-Perot modes in the slit and surface modes of the corrugated metal surface. Same design rules apply for optical and infrared frequencies. The parameter space of the groove array is also examined with a conjugate gradient optimization algorithm that used as a seed the geometries optimized following physical intuition. Both uniform and nonuniform groove arrays are considered. The largest transmission enhancement, with respect to a uniform array, is obtained for a chirped groove profile. Such enhancement is a function of the wavelength. It decreases from 39% in the optical part of the spectrum to 15% at the long wavelength infrared.Comment: 13 pages, 5 figure

    Sub-wavelength imaging at infrared frequencies using an array of metallic nanorods

    Full text link
    We demonstrate that an array of metallic nanorods enables sub-wavelength (near-field) imaging at infrared frequencies. Using an homogenization approach, it is theoretically proved that under certain conditions the incoming radiation can be transmitted by the array of nanorods over a significant distance with fairly low attenuation. The propagation mechanism does not involve a resonance of material parameters and thus the resolution is not strongly affected by material losses and has wide bandwidth. The sub-wavelength imaging with λ/10\lambda/10 resolution by silver rods at 30 THz is demonstrated numerically using full-wave electromagnetic simulator.Comment: 12 pages, 16 figures, submitted to PR

    Topological phase transition in wire medium enables high Purcell factor at infrared frequencies

    Full text link
    In this paper, we study topological phase transition in a wire medium operating at infrared frequencies. This transition occurs in the reciprocal space between the indefinite (open-surface) regime of the metamaterial to its dielectric (closed-surface) regime. Due to the spatial dispersion inherent to wire medium, a hybrid regime turns out to be possible at the transition frequency. Both such surfaces exist at the same frequency and touch one another. At this frequency, all values of the axial wavevector correspond to propagating spatial harmonics. The implication of this regime is the overwhelming radiation enhancement. We numerically investigated the gain in radiated power for a sub-wavelength dipole source submerged into such the medium. In contrast to all previous works, this gain (called the Purcell factor) turns out to be higher for an axial dipole than for a transversal one

    Zone center phonons of the orthorhombic RMnO3 (R = Pr, Eu, Tb, Dy, Ho) perovskites

    Get PDF
    A short range force constant model (SRFCM) has been applied for the first time to investigate the phonons in RMnO3 (R = Pr, Eu, Tb, Dy, Ho) perovskites in their orthorhombic phase. The calculations with 17 stretching and bending force constants provide good agreement for the observed Raman frequencies. The infrared frequencies have been assigned for the first time. PACS Codes: 36.20.Ng, 33.20.Fb, 34.20.CfComment: 8 pages, 1 figur

    Strong nonlinear optical response of graphene flakes measured by four-wave mixing

    Get PDF
    We present the first experimental investigation of nonlinear optical properties of graphene flakes. We find that at near infrared frequencies a graphene monolayer exhibits a remarkably high third-order optical nonlinearity which is practically independent of the wavelengths of incident light. The nonlinear optical response can be utilized for imaging purposes, with image contrasts of graphene which are orders of magnitude higher than those obtained using linear microscopy.Comment: 4 pages, 5 figure
    corecore