300,043 research outputs found

    Quantum data hiding in the presence of noise

    Get PDF
    When classical or quantum information is broadcast to separate receivers, there exist codes that encrypt the encoded data such that the receivers cannot recover it when performing local operations and classical communication, but they can decode reliably if they bring their systems together and perform a collective measurement. This phenomenon is known as quantum data hiding and hitherto has been studied under the assumption that noise does not affect the encoded systems. With the aim of applying the quantum data hiding effect in practical scenarios, here we define the data-hiding capacity for hiding classical information using a quantum channel. Using this notion, we establish a regularized upper bound on the data hiding capacity of any quantum broadcast channel, and we prove that coherent-state encodings have a strong limitation on their data hiding rates. We then prove a lower bound on the data hiding capacity of channels that map the maximally mixed state to the maximally mixed state (we call these channels "mictodiactic"---they can be seen as a generalization of unital channels when the input and output spaces are not necessarily isomorphic) and argue how to extend this bound to generic channels and to more than two receivers.Comment: 12 pages, accepted for publication in IEEE Transactions on Information Theor

    Load Hiding of Household's Power Demand

    Full text link
    With the development and introduction of smart metering, the energy information for costumers will change from infrequent manual meter readings to fine-grained energy consumption data. On the one hand these fine-grained measurements will lead to an improvement in costumers' energy habits, but on the other hand the fined-grained data produces information about a household and also households' inhabitants, which are the basis for many future privacy issues. To ensure household privacy and smart meter information owned by the household inhabitants, load hiding techniques were introduced to obfuscate the load demand visible at the household energy meter. In this work, a state-of-the-art battery-based load hiding (BLH) technique, which uses a controllable battery to disguise the power consumption and a novel load hiding technique called load-based load hiding (LLH) are presented. An LLH system uses an controllable household appliance to obfuscate the household's power demand. We evaluate and compare both load hiding techniques on real household data and show that both techniques can strengthen household privacy but only LLH can increase appliance level privacy

    Anonymity and Information Hiding in Multiagent Systems

    Full text link
    We provide a framework for reasoning about information-hiding requirements in multiagent systems and for reasoning about anonymity in particular. Our framework employs the modal logic of knowledge within the context of the runs and systems framework, much in the spirit of our earlier work on secrecy [Halpern and O'Neill 2002]. We give several definitions of anonymity with respect to agents, actions, and observers in multiagent systems, and we relate our definitions of anonymity to other definitions of information hiding, such as secrecy. We also give probabilistic definitions of anonymity that are able to quantify an observer s uncertainty about the state of the system. Finally, we relate our definitions of anonymity to other formalizations of anonymity and information hiding, including definitions of anonymity in the process algebra CSP and definitions of information hiding using function views.Comment: Replacement. 36 pages. Full version of CSFW '03 paper, submitted to JCS. Made substantial changes to Section 6; added references throughou

    Novel Framework for Hidden Data in the Image Page within Executable File Using Computation between Advanced Encryption Standard and Distortion Techniques

    Full text link
    The hurried development of multimedia and internet allows for wide distribution of digital media data. It becomes much easier to edit, modify and duplicate digital information. In additional, digital document is also easy to copy and distribute, therefore it may face many threats. It became necessary to find an appropriate protection due to the significance, accuracy and sensitivity of the information. Furthermore, there is no formal method to be followed to discover a hidden data. In this paper, a new information hiding framework is presented.The proposed framework aim is implementation of framework computation between advance encryption standard (AES) and distortion technique (DT) which embeds information in image page within executable file (EXE file) to find a secure solution to cover file without change the size of cover file. The framework includes two main functions; first is the hiding of the information in the image page of EXE file, through the execution of four process (specify the cover file, specify the information file, encryption of the information, and hiding the information) and the second function is the extraction of the hiding information through three process (specify the stego file, extract the information, and decryption of the information).Comment: 6 Pages IEEE Format, International Journal of Computer Science and Information Security, IJCSIS 2009, ISSN 1947 5500, Impact Factor 0.42

    Steganographically Encoded Data

    Get PDF
    Steganography is the art of hiding information in ways that prevent its detection. Though steganography is an ancient craft, the onset of computer technology has given it new life. Computer-based steganographic techniques introduce changes to digital covers to embed information foreign to the native covers. Such information may be communicated in the form of text, binary files, or provide additional information about the cover and its owner such as digital watermarks or fingerprints. This paper explains steganography, provides a brief history and describes how steganography is applied in hiding information in images.Steganography, information hiding, digital image, digital watermarking

    Quantum Data Hiding

    Full text link
    We expand on our work on Quantum Data Hiding -- hiding classical data among parties who are restricted to performing only local quantum operations and classical communication (LOCC). We review our scheme that hides one bit between two parties using Bell states, and we derive upper and lower bounds on the secrecy of the hiding scheme. We provide an explicit bound showing that multiple bits can be hidden bitwise with our scheme. We give a preparation of the hiding states as an efficient quantum computation that uses at most one ebit of entanglement. A candidate data hiding scheme that does not use entanglement is presented. We show how our scheme for quantum data hiding can be used in a conditionally secure quantum bit commitment scheme.Comment: 19 pages, IEEE style, 8 figures, submitted to IEEE Transactions on Information Theor

    Unified Description for Network Information Hiding Methods

    Full text link
    Until now hiding methods in network steganography have been described in arbitrary ways, making them difficult to compare. For instance, some publications describe classical channel characteristics, such as robustness and bandwidth, while others describe the embedding of hidden information. We introduce the first unified description of hiding methods in network steganography. Our description method is based on a comprehensive analysis of the existing publications in the domain. When our description method is applied by the research community, future publications will be easier to categorize, compare and extend. Our method can also serve as a basis to evaluate the novelty of hiding methods proposed in the future.Comment: 24 pages, 7 figures, 1 table; currently under revie
    corecore