3,156 research outputs found

    The use of simulation in the design of a road transport incident detection algorithm

    No full text
    Automatic incident detection is becoming one of the core tools of urban traffic management, enabling more rapid identification and response to traffic incidents and congestion. Existing traffic detection infrastructure within urban areas (often installed for traffic signal optimization) provides urban traffic control systems with a near continuous stream of data on the state of traffic within the network. The creation of a simulation to replicate such a data stream therefore provides a facility for the development of accurate congestion detection and warning algorithms. This paper describes firstly the augmentation of a commercial traffic model to provide an urban traffic control simulation platform and secondly the development of a new incident detection system (RAID-Remote Automatic Incident Detection), with the facility to use the simulation platform as an integral part of the design and calibration process. A brief description of a practical implementation of RAID is included along with summary evaluation results

    Incident detection using data from social media

    Get PDF
    This is an accepted manuscript of an article published by IEEE in 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC) on 15/03/2018, available online: https://ieeexplore.ieee.org/document/8317967/citations#citations The accepted version of the publication may differ from the final published version.Š 2017 IEEE. Due to the rapid growth of population in the last 20 years, an increased number of instances of heavy recurrent traffic congestion has been observed in cities around the world. This rise in traffic has led to greater numbers of traffic incidents and subsequent growth of non-recurrent congestion. Existing incident detection techniques are limited to the use of sensors in the transportation network. In this paper, we analyze the potential of Twitter for supporting real-time incident detection in the United Kingdom (UK). We present a methodology for retrieving, processing, and classifying public tweets by combining Natural Language Processing (NLP) techniques with a Support Vector Machine algorithm (SVM) for text classification. Our approach can detect traffic related tweets with an accuracy of 88.27%.Published versio

    An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection

    Full text link
    Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised.Comment: The 15th IEEE International Conference on Intelligent Transportation Systems (ITSC 2012

    Incorporating neural network traffic prediction into freeway incident detection

    Get PDF
    The efficient operation of an incident management system depend Neural network models have been applied to traffic prediction frequently and even repeatedly because of its superior capability in emulating nonlinear systems. However, these traffic prediction models have not been utilized for incident detection. On the other hand, it is expected that the performance of an incident detection algorithm can be improved if an advanced prediction model is incorporated into. Therefore, this study developed several traffic prediction models that were then integrated into incident detection algorithms. The traffic prediction models were developed based on three different choices of independent variables, while the incident detection algorithms employed different decision functions. The results show that a good prediction model can improve the performance of an incident detection algorithm only when the decision function of the algorithm is appropriately chosen

    Traffic Incident Detection using Cameras

    Get PDF
    The number of road incidents have increased tremendously over past decade. The current methods to detect any incident are good but not efficient enough to detect the incidents on time which leads to higher travel times and inefficient use of transportation network. The aim of this project is to develop a robust and fast incident detection on a road. In the method explored, live images and videos are captured from the traffic cameras situated on various roads and highways. The images are used to detect congestion on the road and the videos are used to detect any stalled vehicle at the side of the road. The software also captures the time the incident started as well as the time it ended. A copy of the images and videos of detected incidents is stored separately for further analysis

    Traffic incident detection using inrix data

    Get PDF
    Over the last decade, it is estimated that 25% of the congestion on the US roads is due to traffic incidents such as crash, overturned trucks or stalled vehicles. Currently available software based intelligent transportation systems does not provide comprehensive decision support to minimize the impact of traffic incidents and do not detect the incidents on time. The aim of the TIMELI project is to develop a robust and fast incident detection on the road. Lambda architecture is used to design the architecture of TIMELI project. Different technologies are explored to finalize the best design to accomodate the given functional and non-functional requirements. In this incident detection method, real time data of speed of each segment on the road is recorded every minute. This data is used to detect any congestion or incident anomalies and alert the TIM(Traffic Management Operator) immediately. Also, it can automatically close the incident. The algorithm also captures the start of the incident as well as time it ended. The incidents are stored for data analytics and incident validation and performance

    An incident detection method considering meteorological factor with fuzzy logic

    Get PDF
    To improve the performance of automatic incident detection algorithm under extreme weather conditions, this paper introduces an innovative method to quantify the relationship between multiple weather parameters and the occurrence of traffic incident as the meteorological influencing factor, and combines the factor with traffic parameters to improve the effect of detection. The new algorithm consists of two modules: meteorological influencing factor module and incident detection module. The meteorological influencing factor module based on fuzzy logic is designed to determine the factor. On the basis of learning vector quantization (LVQ) neural network, the new incident detection module uses the factor and traffic parameters to detect incidents. The algorithm is tested with data collected from a typical freeway in Chongqing, China. Also, the performance of the algorithm is evaluated by the common criteria of detection rate (DR), false alarm rate (FAR) and mean time to detection (MTTD). The experiments conducted on the field data study the influence of different algorithm architectures exerted on the detection performance. In addition, comparative experiments are performed. The experimental results have demonstrated that the proposed algorithm has higher DR, lower FAR than the contrast algorithms, and the proposed algorithm has better potential for the application of freeway automatic incident detection

    Detection of incidents and events in urban networks

    Get PDF
    Events and incidents are relatively rare, but they often have a negative impact on traffic. Reliable travel demand predictions during events and incident detection algorithms are thus essential. The authors study link flows that were collected throughout the Dutch city of Almelo. We show that reliable, event-related demand forecasting is possible, but predictions can be improved if exact start and end times of events are known, and demand variations are monitored conscientiously. For incident detection, we adopt a method that is based on the detection of outliers. Our algorithm detects most outliers, while the fraction of detections due to noisy data is only a few percent. Although our method is less suitable for automatic incident detection, it can be used in an urban warning system that alerts managers in case of a possible incident. It also enables us to study incidents off-line. In doing so, we find that a significant fraction of traffic changes route during an incident

    Wireless Networking for Vehicle to Infrastructure Communication and Automatic Incident Detection

    Get PDF
    Vehicular wireless communication has recently generated wide interest in the area of wireless network research. Automatic Incident Detection (AID), which is the recent focus of research direction in Intelligent Transportation System (ITS), aims to increase road safety. These advances in technology enable traffic systems to use data collected from vehicles on the road to detect incidents. We develop an automatic incident detection method that has a significant active road safety application for alerting drivers about incidents and congestion. Our method for detecting traffic incidents in a highway scenario is based on the use of distance and time for changing lanes along with the vehicle speed change over time. Numerical results obtained from simulating our automatic incident detection technique suggest that our incident detection rate is higher than that of other techniques such as integrated technique. probabilistic technique and California Algorithm. We also propose a technique to maximize the number of vehicles aware of Road Side Units (RSUs) in order to enhance the accuracy of our AID technique. In our proposed Method. IEEE 802.11 standard is used at RSUs with multiple antennas to assign each lane a specific channel. To validate our proposed approach. we present both analytical and simulation scenarios. The empirical values which are obtained from both analytical and simulation results have been compared to show their consistency. Results indicate that the IEEE 802.11 standard with its beaconing mechanism can be successfully used for Vehicle to Infrastructure (V2I) communications
    • …
    corecore