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ABSTRACT

Incorporating Neural Network Traffic Prediction into Freeway Incident Detection

Master’s Thesis

Benjamin T. Taggart

The efficient operation of an incident management system depend

Neural network models have been applied to traffic prediction frequently and even

repeatedly because of its superior capability in emulating nonlinear systems.  However,

these traffic prediction models have not been utilized for incident detection.  On the other

hand, it is expected that the performance of an incident detection algorithm can be

improved if an advanced prediction model is incorporated into.  Therefore, this study

developed several traffic prediction models that were then integrated into incident

detection algorithms.  The traffic prediction models were developed based on three

different choices of independent variables, while the incident detection algorithms

employed different decision functions.  The results show that a good prediction model

can improve the performance of an incident detection algorithm only when the decision

function of the algorithm is appropriately chosen.
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Chapter 1

Introduction

The capacity of a freeway is determined by the number of lanes and the environment in

which it operates. Incidents inhibit the efficiency at which a freeway operates. The Federal

Highway Administration (FHWA) defines an incident as any non-recurring event, which causes

reduction of capacity or abnormal increases in demand. According to the FHWA (1), incidents

cause more than 60% of all delays on urban freeways, and cost society an estimated 34 billion

dollars in lost revenues every year. The FHWA also found that there are approximately 10-25

incidents per million-vehicle miles (1). For every one minute of incident there will be four

minutes of congestion after the incident is cleared.

The traditional method of increasing capacity is to add more lanes. This method is costly,

and in many places impossible because of a lack of resources. An operational approach to

managing traffic is needed. As a result, incident management systems have been developed to

efficiently manage traffic, minimize the reduction of capacity upstream from the incident, as well

as minimize the duration of the incident.

1.1 Incident Management Systems

Incident management systems consist of four basic components: detection, verification,

response, and recovery. The first step, detection, determines that an incident has occurred and

conveys this message to a central dispatcher. The next step, verification, determines the precise

location and nature of the incident. After the incident is verified the next step, response,

organizes and sends the appropriate resources to the scene of the incident. The final step,

recovery, clears up the incident and returns the freeway to normal traffic conditions.
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The benefits that incident management systems can provide to the freeway system

include decreased incident duration and a reduction in the number of secondary incidents as well

as improved overall safety of the freeway. Incident management systems can significantly

decrease the duration of an incident by providing quick, precise reactions to problems that may

arise on the freeway. These systems can also help reduce the number of secondary incidents.

Secondary incidents (20% of all incidents) typically occur upstream from the incident and are

usually the result of overheating, running out of fuel, and minor braking accidents (1). By

managing the traffic around incidents and minimizing the duration, the frequency of secondary

incidents will be lowered. Improved safety will be obtained by shortening the response time for

emergency vehicles to arrive at the scene of an accident.

1.2 Incident Detection

Incident detection is the most crucial step in an incident management system because it

initiates the process. Therefore, rapid detection is necessary to minimize the duration in which

capacity is reduced.

 There are many types of incidents, such as vehicle breakdowns, multi-car accidents, road

construction, and special events. However, all incidents can be classified into two groups,

predictable and unpredictable. Predictable incidents are a result of maintenance and construction

activities or special events such as sporting events or parades. Unpredictable incidents occur

from things such as accidents, break downs, weather, and other acts of nature. The magnitude of

accidents can also be broken down into two types, major and minor. Major incidents last thirty

minutes or longer and block at least one lane of traffic. Minor incidents have a duration of less

than thirty minutes and block only the shoulder (1).
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There are many different methods for detecting incidents. These methods include

motorists using CB radios and cellular phones, patrol vehicles, aerial surveillance, closed circuit

television, and use of electronic sensors. All of these techniques have certain advantages and

disadvantages. This study will focus mainly on using electronic sensors, such as loop detectors,

which are beneficial because they provide automatic detection. Loop detectors can provide

automatic detection because they are continuously collecting real-time data such as speed,

volume and occupancy. The raw data are then sent back to a computer that can detect changes in

traffic conditions and detect incidents using a detection algorithm. Electronic sensors are also

very consistent in collecting data, and work well in any weather condition. Other benefits of

electronic sensors include the ability to detect incidents independently without the aid of

conducting regular patrols of the area or relying on motorists to report the incident.

Automatic incident detection is a complex problem because of the diverse characteristics

related to non-recurring congestion. Although an average number of incidents can be expected to

occur, the exact time, type, and duration of each incident is random and unpredictable. These

events are non-recurring and non-linear in nature.  The events also require the classification of

data. The most important classification the algorithm has to make is whether traffic is in free

flow or incident condition. This can be challenging during the beginning and ending of peak

traffic flow conditions.

1.3 Detection Algorithms

The purpose of a detection algorithm is to evaluate the variances in traffic

conditions to determine if an incident has occurred. There are two major parts of a detection

algorithm, the decision function and the threshold. The decision function operates by comparing

current traffic conditions to a predicted value of the conditions that the algorithm forecasts. The
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difference between the actual conditions and the predicted conditions is then compared to the

threshold.

The threshold is a set value at which the decision function must be greater than to set off

an incident alarm. If the threshold is “low” the detection rate will be “high,” and the algorithm

could generate many of false alarms. If the threshold is “high,” the false alarm rate will be

relatively “low,” but the algorithm will not detect as many incidents. To improve the algorithm

performance, a precise decision function must be created to extract the best performance of the

threshold value.

1.4 Problem Statement

Incident detection algorithms have deficiencies that, if improved, can enhance the overall

performance. The goal in developing a good incident detection algorithm is to optimize the

detection rate while keeping the false alarm rate as low as possible. As stated earlier in this

chapter, the relationship between the detection rate and the false alarm rate is that if one value is

high the other one will be high as well. To improve the detection rate without increasing the false

alarm rate, weaknesses that cause false alarms must be strengthened. One particular weakness

occurs when traffic patterns change between peak and off peak periods. Most detection

algorithms have a traffic prediction model that forecasts traffic conditions and updates the

decision function in the detection algorithm. These functions are based primarily on historical

data or moving averages of real time data. Recent research in traffic prediction has applied neural

networks in order to build more accurate forecasting models. These models have been very

accurate and have been able to work from real time data.

Although neural networks have been successfully applied to both traffic prediction and

incident detection, they have yet to be applied as a traffic prediction model to an incident
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detection algorithm. Neural network traffic prediction (NNTP) models have also never used time

as an input to construct a time series model. Since the possibilities of these methods have not

been explored (although they have been successfully applied independently), the development is

worthy of study.

The expected benefits from integrating a neural network traffic prediction model into an

incident detection algorithm will be to improve the overall performance of the incident detection

algorithm by increasing the detection rate without substantially raising the false alarm rate. The

possible increased performance would occur as a result of outputting a more accurate traffic

variable into the incident detection algorithm decision function. The potential improvements in

the decision function will stem from the possible improvement in prediction accuracy that is

provided by the NNTP model. The NNTP forecasted values such as occupancy should be closer

to actual traffic conditions than those determined previously by historical data and moving

averages. This increase in accuracy should carry over and improve the precision of the decision

function, which in turn will maximize the efficient range of the threshold. These improvements

should translate into higher detection rates and lower false alarm rates for the incident detection

algorithm.

1.5 Objectives

To investigate the applications of integrating a neural network traffic prediction model

(NNTP) into an incident detection algorithm, the following tasks were developed:

1. To obtain highway traffic data that contains incidents.

• Evaluate the traffic data to identify patterns and to determine the variance of the

data between segments.

• Determine the time and locations of the incidents in the data.
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• Separate the data that has incidents from the days that do not.

2. To create an accurate NNTP.

• Determine the inputs and outputs of the NNTP models.

• Determine the most efficient structure of the NNTP models.

• Create incident free data training data sets.

• Train and test the NNTP models.

3. To integrate the NNTP model into an incident detection algorithm.

• Create data sets that include incidents.

• Select a detection algorithm for evaluation.

• Incorporate the output of the NNTP into the decision function of the NNTP.

• Test the modified and original detection algorithms using the incident data sets.

• Evaluate the performance of the detection algorithms.

4. To develop conclusions and recommendations of the work conducted in this project.

1.6 Overview

This study will investigate the prospects of incorporating a time series based neural

network traffic prediction model into an incident detection algorithm. Chapter Two presents a

thorough literature review to examine previous research in the areas of traffic prediction and

incident detection. From this literature review, a solid knowledge base will be developed to

encompass the successes and deficiencies of previous research. Chapter Three defines the

methodology of how this research is conducted. Included are data collection, the training and

construction of the traffic prediction model, as well as the selection and the process of integrating

the NNTP into the incident detection algorithm. Chapter Four discusses the results of the NNTP
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and the incident detection algorithm. Finally, Chapter Five discusses the results and makes

conclusions and recommendations for further research.
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Chapter 2

Literature Review

A literature review was conducted to explore the published research that has been

conducted on traffic prediction and incident detection. The goals of this review were to assess

current incident detection algorithms and traffic prediction models, and to see how neural

networks have been applied to both traffic prediction and incident detection.

2.1 Traffic Prediction

Traffic prediction is an essential function of any traffic management system. Over the

years, four types of prediction models have been developed; data based algorithms, time series

models, simulations, and neural networks.

Data based algorithms are based on the premise that traffic patterns are typical, and a

function of historical data. The historical data from a segment of freeway is collected over a

period of time, and then compiled to provide the basis for prediction. The problem that arises

from using historical data is that there is no way to monitor the current traffic situation for any

events or incidents that may cause irregularities. The original Urban Traffic Control System

(UTCS) functions off of historical data. The second UTCS (2) model (UTCS-2) was developed

to incorporate real time data to make corrections for deviations from the “average historical

pattern.” UTCS-3 (3) utilizes real time data only to predict traffic conditions.  However this

model has problem because of time lag. The weakness of data based algorithms is that they

assume the projection ratio is constant which creates large errors.

The time series model uses real time data to statistically estimate traffic in the next

interval. The most noted time series model has been the Box and Jenkins method. It has been

shown (4) to yield accurate results in many different applications. The auto regressive integrated
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moving average (ARIMA) method is the most refined version of Box Jenkins that has been

applied to traffic applications. ARIMA models are linear estimators regressed on past values of

the modeled time series. (4) The ARIMA model requires little computational time which makes

it favorable for traffic applications. However, Stephanedes (5) found that in trying to apply

ARIMA to UTCS that it generated high errors. Other statistical models include the exponential

smoothing method, the double exponential smoothing method, and the Kalman filter method.

A variety of simulation models have been developed to represent how traffic systems

operate under different conditions. These models are extremely useful for traffic engineers

because of the ability to change different traffic variables to learn how a system will function in

different scenarios. On-line simulation provides the ability to project future traffic patterns while

considering any previously implemented strategies in real time (6). Unfortunately there is no way

to incorporate real time data which renders them useless for applications in the field.

Although data-based algorithms, time series models and simulation models all serve a

purpose in traffic management, there is still a need for an accurate real time traffic prediction

model. Traffic prediction is a complex problem, and involves the classification of data, which

tends to be non-linear, and have a high degree of uncertainty. Neural network models are

excellent in solving these types of problems, and have been applied to traffic prediction.

2.2 Introduction to Neural Networks

Neural networks were developed based on the objective of emulating the human brain for

computation.  As introduced in Lawrence (7), the human brain is a complex biological network

of hundreds of billions of special cells called neurons.  These neurons send information back and

forth to each other through connections; the result is an intelligent system capable of learning,
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analysis, prediction, and recognition.  Artificial neural networks are formed a series of simulated

neurons that are connected in a manner similar to the brain's neurons and are thus able to learn in

a manner similar to people.

 In Lawrence (7), neural network models are first classified based on their network

architecture: some networks contain feedback, and some do not.  Next, neural network models

are further categorized by their neuron transfer function, i.e., linear and nonlinear models.  In

addition, neural networks can be classified again by their learning algorithm, which is usually

either supervised or unsupervised. A supervised network has its output compared to known good

answers during training.  In neural network traffic prediction (NNTP) and neural network

incident detection (NNID) models, the most widely applied neural networks are back

propagation networks (BPN), which belong to the class of supervised nonlinear feed forward

network. Other applied neural networks are probabilistic neural networks and its close relative,

the radial basis function, which are new unsupervised feed forward models, and the adaptive

resonance theory network, which is a feedback network.

Basically, back propagation is a supervised learning scheme by which a layered feed

forward network with continuously valued neurons is trained to become a pattern-matching

machine.  The network learns by making corrections to the connections, based on the error at the

output.  Correction signals propagate back through the network during training.  As training

progresses, the amount of error is minimized (7).  Figure 2.1 presents a BP neural network with a

structure of three layers.  The input layer consists of m neurons and a neuron for bias; the hidden

layer includes r neurons and one neuron for bias; and the output layer has n neurons.  For the

connection between neurons on different layers, weights are assigned and changed during

training.  At the beginning, the weights are initialized to small random numbers:
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2.3 Neural Network Traffic Prediction Models

Neural networks have been applied to traffic prediction models and been able to

accurately forecast traffic. The NNTP models have been used for traffic signal controls, freeway

volume prediction, and ramp volume prediction. Most of the current NNTP models have been

used to forecast traffic volumes.

Dougherty, et al. (8) applied two approaches to neural networks to three different

problems, one of which is traffic flow prediction. The input consists of flow from the current and

two previous time intervals for one link in one approach and for two consecutive links in another

approach. This results of this research showed promise that neural networks could be used to

predict traffic.

Zhang, et al. (9) performed an exercise of emulating a nonlinear, dynamic relationship for

speed at the downstream end of a freeway segment for subsequent time intervals given speed and

density at both the upstream and downstream ends and the associated ramp entry rate in the

freeway segment in the current time interval.  This research concluded that neural networks were

able to accurately model traffic flow, and that the networks were computationally efficient

enough that the they could be implemented into real time.  Unfortunately, the data used to train

the neural network model was from a simulation model, thus reducing the reliability of the

conclusions.

Neural networks have been shown to outperform other types of prediction models. Smith

and Demetsky (10) conducted research using neural networks to predict volume. The input of the

training patterns consisted of the volume of both the current and one previous time interval,

historical volume, historical volume in the next time interval, average speed and wet pavement
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conditions in the current interval. They compared the NNTP model to the ARIMA model, and a

historical average. The results of this research, shown in Table 2.1, clearly shows that the NNTP

produced fewer errors than the other two models.

Table 2.1 Comparison of Prediction Models (Smith and Demetsky)

Model Root Square Mean Error Average Absolute Error
Historical Average 2730 146

ARIMA 3490 195
BPN 2620 144

Chang and Huarang (11)explored two methods to predict volume. The first model used

an average traffic volume over five lanes, while the second model used only the volume from the

fifth lane. Each model was constructed with two different structures. The first structure used the

volumes from the past three intervals, while the second structure used the volumes from the past

5 intervals.  The output of the NNTP was then processed through an error correction filter to

adjust the data. The study concluded that:

• NNTP could quickly model traffic patterns

• The NNTP was unable to capture demand patterns

• There was no difference or advantage in using 3 or 5 previous intervals.

The research also recommended that for future studies a large amount of data should be used and

the data should be collected from a freeway with heavily traffic.

Kwon and Stephanedes (12) developed a BPN to forecast traffic volumes on on-ramps.

The BPN used volumes from the previous intervals at the ramp in question, volumes from the

previous interval the previous day, volumes at upstream ramps as well as volumes from upstream

and downstream loops. The input and output variables used in this model can be seen in Table

2.2. The results of the BPN were compared against the UTCS-2 and an adaptive parameter
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predictor using a Kalman Filter. It was found that using the same amount of historical data, the

BPN requires less time and effort and provides comparable results to the adaptive parameter

predictor. The BPN was found to have a mean absolute error range  (MAE) between 3.7 to 9.1,

while the adaptive predictor had a MAE range of 3.0 to 11.4. Both of these models outperformed

the UTCS-2. (12) Kwon and Stephanedes (12) also found that the BPN is less adaptive to

demand fluctuations than the adaptive parameter predictor because the BPN is not reflected in

the prediction in the next interval unless the network is retrained with the new data.

Table 2.2 Input-Output Specifications for BPN Predictor (Kwon and Stephanedes)

Ramp in
question

Upstream
3 entrance ramps
3 exit ramps

Upstream
3 mainline
locations

Downstream
2 mainline
locations

Input Current Day Volume at t-1,
cumulative
volume at t,  t-1,
t-2

Volume at t-1,
cumulative
volume at t,  t-1,
t-2

Volume at t-1 Volume at t-1

Input Previous day Volume at t-1,
cumulative
volume at t,  t-1,
t-2

Volume at t-1,
cumulative
volume at t,  t-1,
t-2

Volume at t, t-1,
cumulative
volume at t

Volume at t, t-1,
cumulative
volume at t

Output Current Day Volume at t

Park, et al. (13) presented a study involving the application a radial basis function (RBF)

neural network to forecast short-term freeway traffic volumes. RBF requires less computational

time than back propagation network (BPN) model does.  For simplicity, only downstream traffic

volumes were used. For comparison with the RBF model, a Taylor series model, an exponential

smoothing model, a double exponential smoothing model, and two BPN models were developed.

Of the two BPN models, one utilized downstream station traffic volume data, while the other

processed both upstream and downstream traffic data. The RBF model trained in 20-30 minutes,

while the BPN took two to three hours. All of the traffic prediction models were evaluated using

the same data from two different sites. The results from the BPN model, including both upstream
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and downstream data, had the lowest mean absolute percentage error (MAPE) at Site 1, while the

RBF model had the lowest MAPE at Site 2.

 In summary, most of the NNTP models are for predicting traffic volume.  Usually, traffic

data for more than three previous time intervals are considered for input.  Some applications only

considered one location which was their concern, while others also combined data from locations

which are viewed as influential to prediction.

2.4 Detection Algorithms

Electronic sensors use a detection algorithm or decision-making algorithm to

distinguish between normal and incident conditions. There are two categories of incident

detection algorithms: single and double detector algorithms.

As defined in Ahmed and Cook (14), single detector algorithms (or smoothing

algorithms) are those which employ short-term forecasts of the state variables and a set of

calibrated thresholds to detect the sudden perturbations in traffic stream behavior generated by

incidents.  The state variables employed in these algorithms are usually obtained from a single

detector that is upstream with respect to possible occurring incidents.  The design of the

algorithms is based on the notion that recurrent congestion can take more time to accumulate

than non-recurrent congestion. Therefore, to capture the temporal trend of traffic variables,

prediction models such as time series models have been frequently employed.  Existing

algorithms of this category include Double Exponential Moving Average (DEMA) algorithm

(15), the Standard Normalized Deviation (SND) algorithm (16), the Autoregressive Integrated

Moving Average (ARIMA) algorithm (14), the McMaster algorithm (17), and the combined



17

fuzzy logic, artificial neural network (ANN) algorithm (18), and the Cumulative Sum (CUSUM)

algorithm (19).

The second category of algorithms is those which attempt to distinguish between incident

and incident-free conditions as measured by differences in upstream and downstream traffic

conditions. Thus, traffic variables are obtained from two consecutive detectors to capture

possible spatial differences. Typical algorithms belonging to this category are the California

algorithm, the low pass filtering algorithm (20), and the artificial neural network (ANN)

algorithm (21).  There are also some ANN algorithms such as Ritchie and Cheu (22), and

Stephanedes and Liu (23) which incorporate both temporal and spatial variables.

It should be noted that there is no documented result to show, a priori, which category of

algorithms is better.  The underlying reason is that the traffic processes involved in incidents are

too complicated to be simply described by one or two experiencing rules used in detection

algorithms. Most researchers expect double detector algorithms to have better performance than

the single detector algorithms.  As usually assumed in double detector algorithms, upstream

occupancies should increase while downstream occupancies should decrease after occurrence of

an incident.  This assumption may not be true in some cases.  As pointed out in Cook and

Cleveland (15), there are some exceptions (7 out of 50 cases) where downstream volume

increases rather than decreases.  In these cases, the double detector algorithm will fail to detect

the incidents.

Detection algorithms function using three types of data; speed, volume, and occupancy.

Table 2.3 illustrates the data required for the various types of detection algorithms. The table

shows that the value of occupancy is heavily utilized for most detection algorithms.
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Table 2.3 Incident Detection Algorithm Data Requirements (Black )

Algorithm Occupancy Volume Speed
California Basic Required
California #8 Required
Standard Normal Deviate Required
Exponential Smoothing Required
Modified McMaster Required Required
Time Series ARIMA Required Required
Low Pass Filter Required
Neural Network Required Required Required

To gain an understanding of how an incident detection algorithm works, an overview of

the CUSUM algorithm (19) is provided. The decision function of this algorithm can be written

as:

[ ]k
0
2

2

1 0 1 0
2g  =  

m

2 $
- v- ( $ - $ ) + ( $ - $ )

σ
µ µ µ µ′ ′ , (1.1)

where  gk = the threshold,

m = the number of occupancies used,

v = the difference between the means of errors,

σ = the estimated standard deviation in normal conditions

µ = the occupancy.

The decision function is driven by statistically evaluating the difference in the occupancy values.

Once this difference is obtained, it is then compared against the threshold, gk. If the difference is

greater than the threshold, there is an incident. If the difference is smaller than the threshold,

traffic is in a free flow condition.

The common criteria used to evaluate algorithm performance are detection rate, false

alarm rate, and detection time. The false alarm rate conveys the percentage of time intervals that

were identified as incidents and those that were not. The detection rate refers to the percent of
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incidents that were detected. These deficiencies can be traced to the decision function and the

threshold value. Detection time is defined by the amount of time required for the algorithm to

detect that an incident has occurred.

The hardware for detecting incidents currently outperforms the available software. The

deficiencies associated with detection algorithms are low detection rates, high false alarm rates,

and long detection times. The California PATH Research program recently compiled an

evaluation of various detection algorithms (24). Unfortunately, the algorithms were not all

evaluated using the same data, therefore the results from this study can only provide a rough

estimate of the capability of each algorithm. A portion of the results of this evaluation can be

seen in Table 2.4.

Table 2.4 Estimated Performance Results of Different Detection Algorithms

(Source PATH)

Algorithm Detection Rate
(%)

False Alarm Rate
(%)

Avg Detection Time
(minutes)

Modified McMaster 68 0.01 2.2
SND 92 1.30 1.1

California Basic 82 1.73 0.85
California #8 68 0.18 3.04

ARIMA 100 1.50 0.40
Bayesian 100 0 3.9

Table 2.4 shows how the different algorithms perform. It can be seen that there does not

seem to be a perfect algorithm. For instance, the Bayesian algorithm has a 100% detection rate

and a false alarm rate of 0%, however, it takes almost four minutes to detect an incident. The

ARIMA algorithm also has a detection rate of 100% and a low detection time of only 0.4

minutes. Unfortunately, it has a high false alarm rate of 1.5%. It is clear from Table 2.4 that there

are definite tradeoffs involved when trying to optimize one specific criterion.
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The decision function is the part of the algorithm that evaluates the current traffic

conditions. It typically employs a traffic prediction model to forecast what the traffic conditions

will be in the next time interval. The forecasted values are generated by a prediction model that

can be based on historical data or a moving average of real time data.   These predicted values

are then compared to the actual conditions. The difference between the two values is statistically

evaluated (different statistical methods are used for each algorithm) and then compared to the

threshold.

The threshold is the value with which a current condition is compared to decide whether

or not there is an incident. If the threshold is “low,” the detection rate will be “high,” and the

algorithm could generate many of false alarms. If the threshold is “high,” the false alarm rate will

be relatively “low,” but the algorithm will not detect as many incidents. To improve the

algorithm performance, a precise decision function must be created to extract the best

performance of the threshold value.

The threshold is normally a fixed value based on the amount of variation that the decision

function may experience without being an incident. Improving the traffic prediction model to

reflect values that are closer to current conditions will decrease the amount of error generated in

the decision function. This will then improve the tolerance of the threshold. By accomplishing

these tasks, the overall performance of the algorithm could be improved.

An interesting observation of recent studies on models employed for traffic prediction

and incident detection is that neural networks have been applied frequently.  Neural networks are

extremely useful for solving problems that have complex relationships, are non-linear, have a

high degree of uncertainty, and require classification, all of which are characteristics of the

incident detection and traffic prediction problem.
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2.5 Neural Network Incident Detection Models

Chang (11) was one of the first to apply neural network models to freeway incident

detection.  Two approaches were employed.  In the first approach, a neural network model was

developed based on traffic volume from several detectors.  The second approach integrated two

neural network models, one of which filtered out abnormal information, and the other was for

incident detection.  Unfortunately, the details of the input and output pair for training these

neural network models were not provided.

Neural network models applied by Dougherty, et al. (8) classify congestion states, where

no distinction was made as to either recurrent or non-recurrent congestion.  The inputs consisted

of one, two, or all three of current congestion parameters from 20 neighboring detector sites:

vehicle flow, queue length, and occupancy.  The number of previous intervals was not specified

for the data. The output was a binary variable indicating whether the sub-region was congested

or uncongested.  The data sets used for model development were from a traffic control system.

Ritchie and Cheu (22) also developed their neural network model based on simulation

data.  The input pattern included upstream occupancy and volume at the current and the previous

two-time intervals and downstream occupancy and volume at current and previous four time

intervals.  Extending the work of Ritchie and Cheu (22), Cheu and Ritchie (25) again tried two

different neural network models: the self-organizing feature map and adaptive resonance theory.

While simulation data was again used for algorithm development, field data was used for testing.

In Hsiao, et al. (18), a neural network model was used in combination with fuzzy logic.

Through neural network training, the membership function for each traffic variable was

determined and the decision rule for incident detection was also derived in a form of a numerical
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matrix.  Three traffic variables are used: speed, flow, and occupancy only for the current time

interval from a single detector location.

Based on actual traffic data, Stephanedes and Liu (23) applied the back propagation

neural network model.  The inputs included volume and occupancy from upstream and

downstream detectors for the current and nine previous time intervals.

Dia and Rose (21) discussed a multi-layer feed-forward (MLF) neural network incident

detection model that was developed and evaluated using field data.  The input of training pattern

pairs consisted of speed, flow, and occupancy obtained at only the current interval for two

consecutive detectors.

In general, most of the NNID models utilize data from multiple locations, i.e., the

upstream and downstream detector stations. However, there are applications that only used data

from a single location. The predominant traffic variable used for incident detection algorithms is

occupancy, although volume and speed were also used in some applications. Some studies also

evaluated information from previous time intervals. The ultimate output from NNID algorithms

is an indicator of a predicted traffic state.  The direct output, however, is a real value, which must

be used by a threshold value to derive traffic states.

The literature review has shown that neural networks have been applied to traffic

prediction models and incident detection algorithms, and have enhanced the performance of both

systems. However, no research has been conducted that integrated a neural network traffic

prediction model into an incident detection algorithm. The existing neural network traffic

prediction models have not been constructed using the variable of time, although research

conducted by Williams (11) recommend that a time variable be incorporated. The objective of

this research will be to improve the overall performance of the incident detection algorithm.
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Chapter 3

Methodology

The purpose of this study is to investigate the effects of integrating a neural network

traffic prediction (NNTP) model into an incident detection algorithm. It is speculated that a

NNTP can improve the performance of an incident detection algorithm. This study will be

broken into three phases, data collection, construction of the NNTP, and integration of the

NNTP into the detection algorithm.

3.1 Traffic Data

This study requires a large quantity of freeway traffic data to train the NNTP models and

evaluate the detection algorithms. Although traffic data can be created by using a simulator

that generates any conditions the programmer inputs, real freeway data are more desirable.

Real traffic data are desirable because they are an accurate representation of what the system

would undergo in a real world application. They also lend more credibility to the research.

These real data will need to come from a freeway with a high average daily traffic (ADT).

The high ADT is desirable because heavier traffic increases the occurrence and frequency of

incidents. The high volume also makes an incident more pronounced and easier to detect.

Data collected from an outside source is sought  because:

• A freeway section with the high ADT needed does not exist in West Virginia

• The collection of such a large data base would require a tremendous amount of time

• The resources required to collect and filter the raw data are unavailable.

Once these data are obtained, they are filtered if necessary, and formatted for use by the

NNTP and the incident detection algorithm.
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The data used in this study was collected by the California PATH Program during the

Freeway Service Patrol (FSP) project (28). The FSP project was an incident management

program that was conducted on freeway I-880 in the city of Hayward, Alameda County,

California.  The data was collected in two periods: February 16 through March 19, 1993 and

September 27 through October 29, 1993.  The FSP project produced the largest, most

comprehensive, and up to date freeway operations database. This site has one of the highest

frequencies of incidents in the San Francisco Bay Area. The data are available on the Internet

for use by the research community and have been used for various studies (26, 18).

The freeway section is 9.2 miles long and varies from 3 to 5 lanes with an HOV lane

covering approximately 3.5 miles of the study section. Several of the sections lacked right-

hand shoulders and/or left-hand shoulders.  The ADT ranged between 160,000 to 200,000

vpd (24). The layout of the monitored section of I-880 can be seen in Figure 3.1.

Field observations and loop detectors are used for obtaining information about

freeway traffic conditions. The field observations were made by probe vehicles, California

Highway Patrol (CHP), tow-truck logbooks, call boxes, and motorists using
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Figure 3.1 Map of I-880 in Hayword, CA (Source Petty)

cellular phones. The loop detectors are placed in pairs on the main lanes, and located in

approximately 0.33-mi intervals. There are single detectors imbedded in the on and off

ramps. Loop detector data was collected for two peak periods: 5:00 to 10:00 AM and from

2:00 to 8:00 PM (28).

A total of 2,181 incidents were recorded during the study period. There were 1,210

incidents in the March study and 971 incidents in the September study. The estimated
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incident rate for this section of I-880 was 104 incidents per million vehicle-miles, which is

consistent with the national average incident rate. (27). As seen in Table 3.1, accidents

accounted for 10 percent of the total incidents while vehicle breakdowns accounted for

almost 89 percent.

TABLE 3.1 Incident Classification (Source Skabardonis 1997)

LOCATION
INCIDENT TYPE Median In-Lane Rt. Shoulder TOTAL %
Accident 29 35 103 167 10.3
Breakdown 60 24 1347 1431 88.6
Debris/Pedestrian 1 15 2 18 1
Total 90 74 1452 1616 100

This study utilizes the data that was well formatted by PATH for an international

transportation symposium incident detection contest held in July of 1998.  These data include

15 weekdays from March 1, 1993 to March 19, 1993.  In total, 197 incidents were identified

in the studied freeway area during the March time period.

This study uses three consecutive segments in each direction. The segments will be

between loop detectors #3 and #20. These segments are to eliminate interference from the

on/off ramps. Roadway geometry is believed to affect traffic patterns during incidents (29).

Since various detection algorithms process traffic patterns differently, it became important in

this study to select a homogeneous section of roadway. This allows the algorithm

development and evaluation to be based on a common set of traffic patterns.

The loop detectors provide speed, volume, and occupancy data at 30-second intervals.

In this study, however, only occupancy data is utilized, because it is the prevalent variable

used in incident detection algorithms.  It is understood that an incident would cause the

upstream occupancy to increase; therefore, only occupancies from the upstream detector
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station were used.  Specifically, only occupancy data from detectors #20, #7 and # 1 were

used for northbound traffic, and those from #3, #1 and # 7 for southbound traffic.

3.2 Neural Network Traffic Prediction

The NNTP models will be developed using the above mentioned data. Most of the

data will be used for training purposes; a small portion will be reserved for testing. The first

step of developing the NNTP will be to determine what the desired output should be. The

appropriate inputs will be configured to predict the desired output. Three different NNTP

models will be developed to evaluate different configurations of inputs to get the desired

output. Initially, test models will be constructed to evaluate different training configurations

such as network structure, learning rate, and training time. Once these factors are

“optimized,” the final training of the models will be done. The performance of these models

will then be evaluated on the root square mean error and the training curves.

The data from the FSP project was used to develop and train the NNTP.  The initial

decision in the development process of the NNTP was to determine the inputs and outputs of

the model. The literature review reveals that many detection algorithms employ occupancy.

This fact coupled with the ample supply of occupancy data from the FSP project determined

that the output from the NNTP should be occupancy. Occupancy will also be used as one of

the inputs. The literature review also reveals that none of the existing NNTP models

explicitly considered a time component. However, Williams (4) strongly recommends that

the cyclic pattern be modeled. A cyclic pattern shows that traffic patterns occur on a time

cycle. Obviously, prediction can be improved at places where a change in traffic variables

occurs when conditions change to and from normal and peak conditions by incorporating a

time component.  This change in flow conditions is an area where many of false alarms are
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generated. So, by improving the prediction model the detection model should improve as

well.

Three models are developed using time and/or occupancy to predict occupancy. The

first model uses time (t) as the only input. The second model uses only occupancy (o) for the

input. This model uses the occupancies from the previous three intervals to predict

occupancy in the next interval. The third model incorporates time and occupancy at the three

previous intervals as well as the time of the next interval to predict the next occupancy. Note

that only one location is considered here. Examples of how this data looks during training of

the three NNTP models (time only, occupancy only, and time and occupancy) can be seen in

Tables 3.2, 3.3, and 3.4. The first column(s) are the inputs for the training. The last column in

the tables contains the pattern values, which provide the model a comparison to see if the

model is outputting correct answers.

Table 3.2 Sample Data Sheet for time only method

Time (t) Occupancy (o)
5:00:30 1.6
5:01:00 1.4
5:01:30 2.1
5:02:00 0.8
5:02:30 1

Table 3.3 Sample Data Sheet for occupancy only method using occupancy from the past
three intervals

Occupancy
o-3 o-2 o-1 o
2.6 1.6 1.3 1
1.6 1.3 1 1.5
1.3 1 1.5 1.6
1 1.5 1.6 2.6

1.5 1.6 2.6 1.7
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Table 3.4 Sample Data Sheet for time and occupancy method using time and occupancy
from the past three intervals and time of next interval to predict the next occupancy

Time Occ Time Occ Time Occ Time Occ
t-3 o-3 t-2 o-2 t-1 o-1 t o

5:00:30 2.7 5:01:00 2.2 5:01:30 2.3 5:02:00 1.9
5:01:00 2.2 5:01:30 2.3 5:02:00 1.9 5:02:30 3.6
5:01:30 2.3 5:02:00 1.9 5:02:30 3.6 5:03:00 1
5:02:00 1.9 5:02:30 3.6 5:03:00 1 5:03:30 2.1
5:02:30 3.6 5:03:00 1 5:03:30 2.1 5:04:00 2.3

Training data sets, as shown in Tables 3.2, 3.3, and 3.4, were compiled and edited for

each occupancy prediction model given the specifications of input components.  While

compiling the combined training sets, traffic characteristics were first investigated for

southbound and northbound lanes respectively.  In the investigation, traffic data for each

location was filtered to exclude incident data.  Any days’ data that was not incident-free was

deleted. Each data set contained ten days worth of data.  The mean and the standard deviation

of the occupancies were calculated for each time interval of the ten-day incident free data

sets.  Figures 3.2 and 3.3 present the values of the mean and standard deviation respectively

for each direction.  The difference in means appear to begin at time 14:35, while the

difference in standard deviation begins at 14:20.  The standard deviation shows a particularly

dramatic change when the time is close to peak time.  With the existence of such a

difference, a decision was made to train the neural network model for these two directions

separately. The training data for each direction is from those three corresponding upstream

detector locations.  It is assumed here that the traffic patterns reflected in these three

locations are similar because there are no ramps involved in these three freeway segments.



Figure 3.2 Mean of the Occupancy Data
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Figure 3.3 Standard Deviation of the Occupancy Data
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BrainMaker software was used to create the neural networks. BrainMaker is one of

the most popular neural network software packages and has been used in other traffic

prediction research (25,30). The first step in training the neural networks was to import the

training data from a spreadsheet into NetMaker, which is software that creates a BrainMaker

data file that can eventually be trained into a neural network. While in NetMaker, the inputs

and patterns are selected. The pattern provides the network with an example of what the

output of the network should look like. NetMaker takes 90 percent of the file for training the

network; the other ten percent is used for testing. The file is then ready to be placed into

BrainMaker.

Neural networks are created by learning the patterns and associations of the training

data. The network learns by processing a run of the training data and then propagates back

through the network to make corrections to the network structure. A run consists of the

network evaluating the training data once and comparing each output to the parameters. The

network keeps a running tab of correct and incorrect output and then computes a RMSE. The

network learns as it completes each run, and creates a weighted matrix, which gives the best

performance for varying structures. As the runs progress they eventually converge to lower

values of RMSE.

There are many different parameters that can affect how well the network is trained.

The three parameters that were altered in this study were; network size and structure,

learning rate, and amount of runs used to train the network.

The size and structure of a neural network are made up of inputs, hidden layers,

neurons per hidden layer, and outputs. The numbers of inputs and outputs have been

predetermined. However, the hidden layers, and neurons per hidden layer determine how
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many connections will be made. This is important because it determines how the network

will learn. If there are too few connections, the network may memorize the data. If there are

too many connections, the network will have difficulty identifying patterns and associations

and be unable to learn properly. Although as many as three hidden layers were tried, it was

found that one hidden layer provided the lowest RSMR. The number of neurons per hidden

layer varied between 2 and 20. Two neurons per layer provided the lowest RSME with the

time only method, while 20 neurons had the lowest RSME for the method with time and

occupancy. A diagram of the occupancy only NNTP model can be seen in Figure 3.4.

The learning rate determines the speed at which the network is trained. A high rate of

learning will train the network in a shorter time, but the network may converge prematurely,

leaving a network that generates a greater number of errors. If the learning rate is too slow,

the training time is elongated, and the network may never converge. Different learning rates

were tried at the beginning of the study, however the learning rate of one, provided the best

results and was used for all final training.

Eventually the networks converge to a point where no further progress in learning is

made.  At the beginning of this study, the networks were trained to 1500 runs. It was found

that the networks would converge at about 100 runs.  To build in a factor of safety and a

standard process, all of the networks were trained to 150 runs.
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3.3 Incident Detection Algorithm

After the NNTP models are built, they will then be ready to be integrated into the

incident detection algorithm. The first step in this process will be to select an appropriate

algorithm for testing. The ideal algorithm is one that has been adopted by a traffic

management center, in addition to being used in current research. These criteria are desirable

to show that this research could possibly have future real-world applications, as well as

staying consistent and up-to-date with the research community. Although these criteria are

desired, the primary criteria for the algorithm is to be “compatible” with the NNTP model.

Specifically, the output from the NNTP should be used as part of the decision making

function of the algorithm. Once the detection algorithm has been selected, each of the three

NNTP models will be integrated. This will be done by replacing the variable in the decision

function that currently is based on a source such as a historical database with a value from

the output of the NNTP. The chosen detection algorithm will be run with each of the three

NNTP models as well as in the original form. The original model of the algorithm will serve

as the control for this study. The results will be evaluated by looking at the detection and

false alarm rates.

Incident detection algorithms usually have a traffic prediction model incorporated

into the system. The purpose of the traffic prediction model, such as time series, historical

data based, or real time, is to estimate the current traffic conditions and provide a reference

for detection. The Standard Normal Deviate (SND) algorithm (16) is a time series based

detection algorithm that has been frequently employed (24) for actual traffic management

centers and other research. The most noted application of the SND algorithm is the

TransGuide Traffic Management Center in San Antonio (31), Texas.  The SND algorithm is
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versatile and can be configured to predict speed, energy, volume, and occupancy. Since the

SND algorithm has been widely used and can detect incidents based on occupancy, it was

chosen as the model to be retrofitted with the neural network traffic prediction models.

The TransGuide system in San Antonio is a state-of-the-art traffic management center

that started in 1993 to manage 26 miles of freeway around San Antonio. It is currently being

expanded to manage 191 miles of primary and secondary roads. The system generates a

traffic map that can be viewed on the Internet at http://www.transguide.dot.state.tx.us/map/.

An example of this map can be seen in Figure 3.5. The core of the incident detection part of

the TransGuide system is the

SND algorithm. The TransGuide system uses speed and occupancy to detect incidents. The

system sets major and minor alarm values for each variable. The threshold values for

occupancy are major and minor alarm values of 35 percent and 25 percent, respectively. The

thresholds can be updated every 15 minutes based on values derived from historical

data. This system boasts a 15-second detection time. Unfortunately, the false alarm and

detection rates are unavailable (32).
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where h is the threshold for decision making and yt  is the current occupancy value from the

detector.

The decision function of the SND algorithm takes the same form as Equation (3.2).

The original formula for calculating ŷt  in the SND algorithm is:

m

y  
 = ŷ

i

1t-

m -    t =  i
t

Σ
.         (3.3)

Integrating the NNTP into the detection was done using a similar decision function as

Equation (3.2), which can be written as:

h    
ˆ

ŷ  -  y

t

tt ≥
σ

(3.4)

where ŷt  and σ̂ t are estimated parameters.  ŷt  is obtained from the trained neural network

models given occupancies in previous time intervals.  The formula for calculating σ̂ t  is:
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t

Σ
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where m denotes the number of previous traffic occupancies used for prediction.

The decision function in Equation (3.4) is derived based on the assumption that the

mean of the errors is zero. Incident conditions alter the flow of traffic such that the mean of

the errors may not be zero anymore.  This may also change the variance of errors.  It can be

expected that the average value of errors following an incident would become positive

because the occupancies in incident conditions are usually greater than those in normal

conditions.  Therefore, to detect an incident it is necessary to detect whether there is an

increase in the mean of errors.
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CHAPTER 4

RESULTS

The results of this study are divided into two parts: performance of the NNTP models,

and performance of the SND algorithm with and without the NNTP models. Section one will

explore the outcome and performance of the three different NNTP models for traffic

prediction. These results will then be incorporated into the incident detection algorithm. The

results from the detection algorithms will be discussed in section two. The results of the

incident detection algorithm will discuss the evaluation criteria, as well as the performance of

the modified versions of the SND algorithm compared to the standard SND algorithm.

4.1 Neural Network Traffic Prediction Model Results

The NNTP models were trained using the formatted data from the FSP data using the neural

network software BrainMaker. As the networks are trained, BrainMaker

plots a learning curve, which consists of the Root Mean Squared  Error (RMSE) versus the

run number. The RMSE is calculated by the following equation:

Where O = the output

P = the pattern

N = the number of facts

( )
N

PO
RMSE ∑=

− 2
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A network with a high RMSE value, i.e. close to 1.0, represents a poorly trained

network. The goal is to obtain a NNTP with a RMSE that converges as close to zero as

possible.

Figures 4.1 and 4.2 show the respective training curves for the north and southbound

lanes. The time-and-occupancy model clearly outperforms the time-only and occupancy-

only models in the southbound lane. The time-and-occupancy model had the lowest

RMSE value of 0.0479.  The occupancy-only and the time only, respectively, had RMSE

values of 0.0502 and 0.0597. The results are not as clear in the northbound lane. In the

northbound lane, the occupancy-only model had the lowest RMSE value of 0.0279, it

was followed by the time-and-occupancy model with a RMSE of 0.0293, and the time-

only model with an RMSE of 0.0882. These results show that the occupancy only and

the time and occupancy models yield relatively equal performances, with the occupancy-

only model performing best. The time-only model had the highest RMSE in both cases.

This can be attributed to the dramatic variance in the occupancy in the northbound lane.

A sample of the accuracy of the different prediction models can be seen in Figure 4.3.

This figure shows a sample of 30 minutes of predicted occupancy values from the three

NNTP models compared to the actual occupancy data at 4p.m. in the southbound lane.

The occupancy-only model accurately predicts the valleys in the graph, while the time

and occupancy model seems to be better at predicting the peaks in the occupancy.

Overall, the time and occupancy method seems to be the most accurate.



Figure 4.1Training Curves for the Southbound NNTP Models
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Figure 4.2 Training Curves for the Northbound NNTP Models
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Figure 4.3 Comparison of Raw Occupancy Data Compared to the NNTP Model Output
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The results from the northbound lanes provide evidence to support the contention that

traffic prediction models which incorporate time components will not improve when

traffic patterns vary substantially. A possible solution to adjust for varying traffic

patterns may come from incorporating data from neighboring loop detectors. This

essentially would be applying the principles of dual loop detection to make a dual loop

predictor. The time component did make a significant improvement to the prediction

model when the traffic patterns do not vary excessively.

4.2 Incident Detection Algorithm Results

All three of the NNTP models are then integrated into the SND algorithm. The logic

behind this is that, although one NNTP model may outperform the others, as far as prediction

is concerned, there is no guarantee that this performance will carry over into the detection

algorithm. So by using all three NNTP models, a more thorough investigation can be

conducted to see what type of prediction model applies best for incident detection.

The performance of incident detection algorithms is typically evaluated on two basic

criteria, detection rate and false alarm rate. These values are then plotted and a graphical

depiction of the performance and trade-off can be seen. Once these results have been

graphed, conclusions about the system can be made as well as recommendations for future

studies.

The detection rate is defined as the ratio of the number of incident detected over the

actual number of incidents. The detection rate can be found by:

Incidents ofNumber  Total

Incidents Detected ofNumber 
 = DR .               (4.2)
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There are two definitions of false alarm rate, on-line and off-line. The on-line

definition of false alarm rate refers to the percentage of incident messages that were false

alarms. This definition is not widely used throughout the research community because it does

not accurately depict the amount of time consumed by the false alarms. The off line

definition is the ratio between the number of time periods when an incident decision has been

made under normal conditions versus the total number of time periods under normal

conditions. The off-line definition can be written as:

Conditions Normalin  Intervals Time ofNumber  Total

Incidents as Identified Conditions Normalin  Intervals Time ofNumber 
 = FAR . (4.3)

The off-line definition of false alarm rate will be used for this study to stay consistent with

current research practices.

The detection and false alarm rates are very closely related. A high false alarm

translates into lower sensitivity of the algorithm. This lowered sensitivity allows the

detection algorithm to detect more incidents because the algorithm becomes less selective.

Once the algorithm detects more incidents, the detection increases. The opposite occurs when

the false alarm rate is low. If the false alarm rate is low, the algorithm will become more

sensitive in distinguishing between free flow and incident traffic conditions. The detection

algorithm will then in turn detect fewer incidents, and may even miss a few incidents. A

conservative algorithm will have a low false alarm rate, but may not detect every incident. A

more liberal algorithm will have a high false alarm rate, which will detect more incidents, but

will require more time verifying whether there actually is an incident.

Once the performance criteria are selected, the testing of the incident detection

algorithm began. The testing was conducted by sequentially running the occupancy data

through the computer. The algorithm would stop and send out an alarm when the algorithm
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value was equal to or exceeded the threshold value. The algorithm would restart after

incident conditions were over. This occurred only on the incidents the algorithm actually

detected.

The data that were used to evaluate the detection algorithm had incidents in them, and

were not used for the training of the NNTP. When the testing of the detection algorithms was

conducted, the threshold values were set between 2 and 6. This range was set so that a wide

range of false alarm and detection rates could be generated. A threshold of two will have a

high false alarm rate, a quick detection time, and a high detection rate. While a threshold of

six will have a low false alarm rate, a slow detection time, and a low detection rate.

A master data sheet was compiled before running the tests. This master data sheet

contained the number of incidents as well as the time and duration of each incident. Once the

algorithm processed the data using the different configurations of the SND algorithm

mentioned in Chapter 3, the output was evaluated and compared to the master data. The

detection and false alarm rates were then calculated.

The performance results of the incident detection algorithms can be seen in Figure

4.4. This figure shows all three variations of the modified versions of the SND algorithm as

well as the unmodified version of the SND algorithm. It can easily be seen that all of the

modified versions of the SND algorithm outperform the original version. The next

observation is that the when the false alarm rate is less than 0.01, the time only NNTP

version of the SND algorithm works the best. When the false alarm rate is greater than or

equal to 0.01 the occupancy only NNTP version of the SND algorithm performs the best.

Surprisingly, the time and occupancy NNTP version of the SND performed the worst of the

three models. The time and occupancy NNTP version of the SND algorithm is actually
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outperformed by the original version of the SND algorithm when the false alarm rate is

greater than 0.03.

The observations from Figure 4.4 show that a good prediction model may not

necessarily have a good incident detection capability.  Figure 4.4 shows that the algorithm

performs differently with the prediction approaches for different false alarm rate ranges.

Although these three prediction approaches have different prediction accuracy, there are

many reasons behind this phenomenon.  One possible problem may result from the designed

incident detection, which transform the prediction results for detection decision making.  The

quality of this transformation is sometimes difficult to be quantified as for the complexity of

the detection decision function employed.  The other possible problem is the temporal

incident distribution, which may not be coincident with the time period when prediction has a

good performance.  In such a case, the advantage of a prediction model might not be realized.

Moreover, a tradeoff between improvement in false alarm rate and possible reduction

in detection rate due to good prediction performance should be recognized.  Again observing

Figure 4.3, the difference between the real occupancy and the predicted occupancy may be

small under incident free conditions for a good prediction model.  This may result in a

decrease in false alarm rate.  Under incident conditions, however, this good prediction model

may make the difference smaller than a bad prediction model.  Thus, according to the

decision function in the SND algorithm, a possible detection may be made by an algorithm

incorporated with a bad prediction model.  Then, detection rate may be increased for such an

algorithm, rather than the algorithm with a good prediction model.  As a whole, overall

performance of an incident detection algorithm in terms of detection rate versus false alarm

rate may not be improved for an algorithm integrated with a good prediction model.   The
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analytical evaluation of such a trade-off seems nearly impossible for the following reasons:

The complexity in traffic processes under both normal and incident conditions; the prediction

model and detection decision rules employed; the distribution of incidents. Thus, evaluation

of the algorithm based on a rich set of real data becomes necessary.



Figure 4.4 Incident Detection Performance Curves
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CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

The overall objective of this research is to evaluate the feasibility of integrating an

NNTP model into an incident detection algorithm. This integration is to be accomplished by

merging the output of the NNTP model into the decision function of the incident detection

algorithm. The expected result is that the output of the NNTP model would be more accurate

than the original variable in the decision function. By improving the accuracy of the decision

function, the overall performance of the algorithm should improve through increased

detection rates and lowered false alarm rates.

The secondary objective is to determine if a time factor could be introduced into the

NNTP to increase prediction accuracy. The theory behind this is that prediction accuracy

could be improved during the times when traffic conditions change between peak and normal

conditions. Accurate prediction during the changing of conditions would be beneficial,

because this is a place where false alarms are often generated. The goal is to create the most

accurate prediction model possible, the improvements in prediction would then translate into

improvements in the detection process.

It is expected that an incident detection model incorporated with advance prediction

models would yield better performance in all cases.  In a comparison between the SND

algorithm, which employs a simple prediction model, and one of the modified algorithms that

are combined with a neural network prediction, the modified SND performs better.  On the

other hand, there is also evidence showing that a good prediction model may not consistently

result in a good detection algorithm.  Due to the complexity of the elements influencing
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algorithm performance, incident detection algorithms should be evaluated using sufficient

real data.

The results of the NNTP testing have shown that a time component may only increase

the prediction accuracy when traffic profiles show a stable trend.  Considering a time

component when the traffic profile is not stable may not improve prediction substantially. A

possible solution to adjust for varying traffic patterns may come from incorporating data

from neighboring loop detectors to make a dual loop predictor.

There are several studies that could be conducted to further this research.  As

mentioned earlier, considering traffic as variable in the nearby detector stations may improve

prediction when traffic profiles are not clear. In addition to re-evaluating this research with

more data, may also be helpful to evaluate different detection algorithms. Detection

algorithms that could be investigated could include the McMaster and the DEMA algorithm

to further research on single detector algorithms. If the incorporation of multiple loops to

predict traffic is incorporated, it may be useful to examine dual detector algorithms such as

the California algorithms.

Since the SND algorithm is currently in use, there is potential for the possible

implementation of this research. However, before implementation could take place, a study

to evaluate the nature of traffic, and to determine traffic patterns would need to be conducted.

The NNTP model would then have to be calibrated to the specific site conditions. In addition

to the improved detection algorithm, an expert system could be developed to handle the

incident response operations.
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