2,069 research outputs found
A Weighted Least Squares Consideration for IR-UWB Radar based Device-Free Object Positioning Estimation for Indoor Environment
Impulse Radio Ultra-Wideband (IR-UWB) radar is a type of radar functioning based on UWB transmission technology that uses an exceedingly wide bandwidth low power impulse signal to continuously transmitting and receiving the impulse signal for object detection within a range. To date, most of the proposed Ultra-Wideband (UWB) transmission technology-based object positioning estimation systems for indoor environment depends on objects to be attached with an active UWB devices. In certain circumstances, it is ideal to track objects in passive manner without the requirement of any attached tracking devices or device-free object positioning estimation. IRUWB radar has shown promising utilization in realizing device-free object positioning estimation for indoor environment. With this motivation, in this paper a work on weighted least squares consideration for IR-UWB radar-based device-free object positioning estimation for indoor environment is presented
Medium Access Control for Wireless Sensor Networks based on Impulse Radio Ultra Wideband
This paper describes a detailed performance evaluation of distributed Medium
Access Control (MAC) protocols for Wireless Sensor Networks based on Impulse
Radio Ultra Wideband (IR-UWB) Physical layer (PHY). Two main classes of Medium
Access Control protocol have been considered: Slotted and UnSlotted with
reliability. The reliability is based on Automatic Repeat ReQuest (ARQ). The
performance evaluation is performed using a complete Wireless Sensor Networks
(WSN) simulator built on the Global Mobile Information System Simulator
(GloMoSim). The optimal operating parameters are first discussed for IR-UWB in
terms of slot size, retransmission delay and the number of retransmission, then
a comparison between IR-UWB and other transmission techniques in terms of
reliability latency and power efficiency
Ultra Wideband Impulse Radio Systems with Multiple Pulse Types
In an ultra wideband (UWB) impulse radio (IR) system, a number of pulses,
each transmitted in an interval called a "frame", is employed to represent one
information symbol. Conventionally, a single type of UWB pulse is used in all
frames of all users. In this paper, IR systems with multiple types of UWB
pulses are considered, where different types of pulses can be used in different
frames by different users. Both stored-reference (SR) and transmitted-reference
(TR) systems are considered. First, the spectral properties of a multi-pulse IR
system with polarity randomization is investigated. It is shown that the
average power spectral density is the average of the spectral contents of
different pulse shapes. Then, approximate closed-form expressions for the bit
error probability of a multi-pulse SR-IR system are derived for RAKE receivers
in asynchronous multiuser environments. The effects of both inter-frame
interference (IFI) and multiple-access interference (MAI) are analyzed. The
theoretical and simulation results indicate that SR-IR systems that are more
robust against IFI and MAI than a "conventional" SR-IR system can be designed
with multiple types of ultra-wideband pulses. Finally, extensions to
multi-pulse TR-IR systems are briefly described.Comment: To appear in the IEEE Journal on Selected Areas in Communications -
Special Issue on Ultrawideband Wireless Communications: Theory and
Application
Impulse Radio Systems with Multiple Types of Ultra-Wideband Pulses
Spectral properties and performance of multi-pulse impulse radio
ultra-wideband systems with pulse-based polarity randomization are analyzed.
Instead of a single type of pulse transmitted in each frame, multiple types of
pulses are considered, which is shown to reduce the effects of multiple-access
interference. First, the spectral properties of a multi-pulse impulse radio
system is investigated. It is shown that the power spectral density is the
average of spectral contents of different pulse shapes. Then, approximate
closed-form expressions for bit error probability of a multi-pulse impulse
radio system are derived for RAKE receivers in asynchronous multiuser
environments. The theoretical and simulation results indicate that impulse
radio systems that are more robust against multiple-access interference than a
"classical" impulse radio system can be designed with multiple types of
ultra-wideband pulses.Comment: To be presented at the 2005 Conference on Information Sciences and
System
Multi Detector Fusion of Dynamic TOA Estimation using Kalman Filter
In this paper, we propose fusion of dynamic TOA (time of arrival) from
multiple non-coherent detectors like energy detectors operating at sub-Nyquist
rate through Kalman filtering. We also show that by using multiple of these
energy detectors, we can achieve the performance of a digital matched filter
implementation in the AWGN (additive white Gaussian noise) setting. We derive
analytical expression for number of energy detectors needed to achieve the
matched filter performance. We demonstrate in simulation the validity of our
analytical approach. Results indicate that number of energy detectors needed
will be high at low SNRs and converge to a constant number as the SNR
increases. We also study the performance of the strategy proposed using IEEE
802.15.4a CM1 channel model and show in simulation that two sub-Nyquist
detectors are sufficient to match the performance of digital matched filter
An IR-UWB photonic distribution system
Experimental results are presented for a novel distribution system for an impulse radio ultra-wideband (UWB) radio signals employing a gain-switched laser. The pulse position modulated short optical pulses with a bit rate of 1.25 Gb/s are transmitted over fiber to a remote antenna unit, where the signal is converted to the electrical domain and undergoes spectral shaping to remove unwanted components according to UWB requirements. An experimental radio terminal has also been constructed to enable bit-error-rate measurements to be carried out. These experiments show that the optical distribution system will be capable of supporting the radio part of the system
Comparison of Bit Error Rate and Power Spectral Density on the Ultra Wideband Impulse Radio Systems
Ultra-Wideband (UWB) is defined as a wireless transmission scheme that occupies a bandwidth of more than 25% of its center frequency. UWB Impulse Radio (UWB-IR) is a popular implementation of the UWB technology. In UWB-IR, information is encoded in baseband without any carrier modulation. Pulse shaping and baseband modulation scheme are two of the determinants on the performance of the UWB-IR.
In this thesis, both temporal and spectral characteristics of the UWB-IR are examined because all radio signals exist in both the time and frequency domains. Firstly, the bit error rate (BER) performance of the UWB-IR is investigated via simulation using three modulation schemes: Pulse position modulation (PPM), on-off shift keying (OOK), and binary phase shift keying (BPSK). The results are verified for three different pulse shaping named Gaussian first derivative, Gaussian second derivative, and return-to-zero (RZ) Manchester. Secondly, the effects of the UWB-IR parameters on the power spectral density (PSD) are investigated because PSD provides information on how the power is distributed over the radio frequency (RF) spectrum and determines the interference of UWB-IR and the existing systems to each other in the spectrum. The investigated UWB-IR parameters include pulse duration, pulse repetition rate, modulation scheme, and pseudorandom codes
- âŠ