156 research outputs found

    Automated Mobile System for Accurate Outdoor Tree Crop Enumeration Using an Uncalibrated Camera.

    Get PDF
    This paper demonstrates an automated computer vision system for outdoor tree crop enumeration in a seedling nursery. The complete system incorporates both hardware components (including an embedded microcontroller, an odometry encoder, and an uncalibrated digital color camera) and software algorithms (including microcontroller algorithms and the proposed algorithm for tree crop enumeration) required to obtain robust performance in a natural outdoor environment. The enumeration system uses a three-step image analysis process based upon: (1) an orthographic plant projection method integrating a perspective transform with automatic parameter estimation; (2) a plant counting method based on projection histograms; and (3) a double-counting avoidance method based on a homography transform. Experimental results demonstrate the ability to count large numbers of plants automatically with no human effort. Results show that, for tree seedlings having a height up to 40 cm and a within-row tree spacing of approximately 10 cm, the algorithms successfully estimated the number of plants with an average accuracy of 95.2% for trees within a single image and 98% for counting of the whole plant population in a large sequence of images

    Computer Vision-Based Structural Displacement Measurement Robust to Light-Induced Image Degradation for In-Service Bridges

    Get PDF
    The displacement responses of a civil engineering structure can provide important information regarding structural behaviors that help in assessing safety and serviceability. A displacement measurement using conventional devices, such as the linear variable differential transformer (LVDT), is challenging owing to issues related to inconvenient sensor installation that often requires additional temporary structures. A promising alternative is offered by computer vision, which typically provides a low-cost and non-contact displacement measurement that converts the movement of an object, mostly an attached marker, in the captured images into structural displacement. However, there is limited research on addressing light-induced measurement error caused by the inevitable sunlight in field-testing conditions. This study presents a computer vision-based displacement measurement approach tailored to a field-testing environment with enhanced robustness to strong sunlight. An image-processing algorithm with an adaptive region-of-interest (ROI) is proposed to reliably determine a marker's location even when the marker is indistinct due to unfavorable light. The performance of the proposed system is experimentally validated in both laboratory-scale and field experiments

    Stress Estimation Using Digital Image Correlation with Compensation of Camera Motion-Induced Error

    Get PDF
    Measurement of stress levels from an in-service structure can provide important and useful information regarding the current state of a structure. The stress relaxation method (SRM) is the most conventional and practical method, which has been widely accepted for measuring residual stresses in metallic materials. The SRM showed strong potential for stress estimation of civil engineering structures, when combined with digital image correlation (DIC). However, the SRM/DIC methods studied thus far have practical issues regarding camera vibration during hole drilling. To minimize the error induced by the camera motion, the imaging system is installed at a distance from the specimen resulting in the low pixel density and the large extent of the inflicted damage. This study proposes an SRM/DIC-based stress estimation method that allows the camera to be removed during hole drilling and relocated to take the after-drilling image. Since the imaging system can be placed as close to the specimen as possible, a high pixel density can be achieved such that subtle displacement perturbation introduced by a small damage can be acquired by DIC. This study provides a detailed mathematical formulation for removing the camera relocation-induced false displacement field in the DIC result. The proposed method is validated numerically and experimentally

    Image Deblurring According to Facially Recognized Locations Within the Image

    Get PDF
    This publication describes techniques for image deblurring according to a facially recognized locations within the image. An algorithm may use facial detection and recognition to selectively sharpen aspects of faces within an image and the surrounding area associated with the facial detection. In one or more aspects, the selectivity of sharpening improves the computational load and other aspects of image provision to improve overall computer function, power consumption, and user experience. Individual faces within the image may be cropped or thumbnailed, providing portions of the image that include the faces. Counterpart images associated with the individual faces may be found within a database having a repository of sharp features associated with the counterpart images. As such, the features may be integrated with the blurred faces of the original image to sharpen an image output

    A Novel Laser and Video-Based Displacement Transducer to Monitor Bridge Deflections

    Get PDF
    The measurement of static vertical deflections on bridges continues to be a first-level technological challenge. These data are of great interest, especially for the case of long-term bridge monitoring; in fact, they are perhaps more valuable than any other measurable parameter. This is because material degradation processes and changes of the mechanical properties of the structure due to aging (for example creep and shrinkage in concrete bridges) have a direct impact on the exhibited static vertical deflections. This paper introduces and evaluates an approach to monitor displacements and rotations of structures using a novel laser and video-based displacement transducer (LVBDT). The proposed system combines the use of laser beams, LED lights, and a digital video camera, and was especially designed to capture static and slow-varying displacements. Contrary to other video-based approaches, the camera is located on the bridge, hence allowing to capture displacements at one location. Subsequently, the sensing approach and the procedure to estimate displacements and the rotations are described. Additionally, laboratory and in-service field testing carried out to validate the system are presented and discussed. The results demonstrate that the proposed sensing approach is robust, accurate, and reliable, and also inexpensive, which are essential for field implementation

    Implementation of Sensor on the Gun System Using Embedded Camera for Shooting Training

    Get PDF
    camera system applied for shooting training, where the sensor on the gun system is adopted. A CMUcam4 is attached on the gun to detect the laser spot emitted by the shooter. In addition, the camera is used to detect the coordinates of marker on the target, which are sent to a computer for calculating the homography transform. A simple color thressholding is employed on the camera for such detection. Experiment results show that the errors of marker and laser spot detection are 2.33% and 2.15% respectively. The computer system helps to calculate the homography transform properly. Therefore the shooting point could be determined accurately, regardless of the position and viewing angle of the camera. Keywords-shooting training; sensor on the gun; CMUcam4; homography
    corecore