191 research outputs found

    Clinical Trials in High-Risk Medulloblastoma: Evolution of the SIOP-Europe HR-MB Trial

    Get PDF
    Simple SummaryPatients with medulloblastoma receive treatment according to a risk stratification, which is a combination of clinical and biological factors. To date there have been a limited number of trials for high-risk disease in children older than 3 years, with a wide range of treatment philosophies that usually involve higher doses of radiotherapy delivered either conventionally or in hyper-fractionated/accelerated regimens. Similarly, both standard and high-dose chemotherapies were assessed. However, to date, trials in high-risk medulloblastoma have commonly been institutional or national, based on modest cohort sizes, and have not evaluated the relative performance of different strategies in a randomised fashion. We describe the concepts and design of the SIOP-E high-risk medulloblastoma clinical trial (SIOP-HR-MB), the first international, biomarker-driven, randomised clinical trial for high-risk medulloblastoma. SIOP-HR-MB is programmed to recruit >800 patients in 16 countries across Europe; its primary objectives are to assess the relative efficacies of the alternative established regimens.AbstractMedulloblastoma patients receive adapted therapies stratified according to their risk-profile. Favourable, standard, and high disease-risk groups are each defined by the status of clinical and pathological risk factors, alongside an evolving repertoire of diagnostic and prognostic biomarkers. Medulloblastoma clinical trials in Europe are coordinated by the International Society for Paediatric Oncology (SIOP-Europe) brain tumour group. Favourable and standard-risk patients are eligible for the SIOP-PNET5-MB clinical trial protocol. In contrast, therapies for high-risk disease worldwide have, to date, encompassed a range of different treatment philosophies, with no clear consensus on approach. Higher radiotherapy doses are typically deployed, delivered either conventionally or in hyper-fractionated/accelerated regimens. Similarly, both standard and high-dose chemotherapies were assessed. However, trials to date in high-risk medulloblastoma have commonly been institutional or national, based on modest cohort sizes, and have not evaluated the relative performance of different strategies in a randomised fashion. We describe the concepts and design of the SIOP-E high-risk medulloblastoma clinical trial (SIOP-HR-MB), the first international biomarker-driven, randomised, clinical trial for high-risk medulloblastoma. SIOP-HR-MB is programmed to recruit >800 patients in 16 countries across Europe; its primary objectives are to assess the relative efficacies of the alternative established regimens. The HR-MB patient population is molecularly and clinically defined, and upfront assessments incorporate a standardised central review of molecular pathology, radiology, and radiotherapy quality assurance. Secondary objectives include the assessment of (i) novel therapies within an upfront ‘window’ and (ii) therapy-associated neuropsychology, toxicity, and late effects, alongside (iii) the collection of materials for comprehensive integrated studies of biological determinants within the SIOP-HR-MB cohort

    Proteomic profiling of high risk medulloblastoma reveals functional biology

    Get PDF
    Genomic characterization of medulloblastoma has improved molecular risk classification but struggles to define functional biological processes, particularly for the most aggressive subgroups. We present here a novel proteomic approach to this problem using a reference library of stable isotope labeled medulloblastoma-specific proteins as a spike-in standard for accurate quantification of the tumor proteome. Utilizing high-resolution mass spectrometry, we quantified the tumor proteome of group 3 medulloblastoma cells and demonstrate that high-risk MYC amplified tumors can be segregated based on protein expression patterns. We cross-validated the differentially expressed protein candidates using an independent transcriptomic data set and further confirmed them in a separate cohort of medulloblastoma tissue samples to identify the most robust proteogenomic differences. Interestingly, highly expressed proteins associated with MYC-amplified tumors were significantly related to glycolytic metabolic pathways via alternative splicing of pyruvate kinase (PKM) by heterogeneous ribonucleoproteins (HNRNPs). Furthermore, when maintained under hypoxic conditions, these MYC-amplified tumors demonstrated increased viability compared to non-amplified tumors within the same subgroup. Taken together, these findings highlight the power of proteomics as an integrative platform to help prioritize genetic and molecular drivers of cancer biology and behavior

    Proteomic profiling of high risk medulloblastoma reveals functional biology

    Get PDF
    Genomic characterization of medulloblastoma has improved molecular risk classification but struggles to define functional biological processes, particularly for the most aggressive subgroups. We present here a novel proteomic approach to this problem using a reference library of stable isotope labeled medulloblastoma-specific proteins as a spike-in standard for accurate quantification of the tumor proteome. Utilizing high-resolution mass spectrometry, we quantified the tumor proteome of group 3 medulloblastoma cells and demonstrate that high-risk MYC amplified tumors can be segregated based on protein expression patterns. We cross-validated the differentially expressed protein candidates using an independent transcriptomic data set and further confirmed them in a separate cohort of medulloblastoma tissue samples to identify the most robust proteogenomic differences. Interestingly, highly expressed proteins associated with MYC-amplified tumors were significantly related to glycolytic metabolic pathways via alternative splicing of pyruvate kinase (PKM) by heterogeneous ribonucleoproteins (HNRNPs). Furthermore, when maintained under hypoxic conditions, these MYC-amplified tumors demonstrated increased viability compared to non-amplified tumors within the same subgroup. Taken together, these findings highlight the power of proteomics as an integrative platform to help prioritize genetic and molecular drivers of cancer biology and behavior

    High-dose chemotherapy with reduced-dose craniospinal radiotherapy in children with newly diagnosed high-risk brain tumor

    Get PDF

    Questions and answers in the management of children with medulloblastoma over the time. How did we get here? A systematic review.

    Get PDF
    Introduction: Treatment of children with medulloblastoma (MB) includes surgery, radiation therapy (RT) and chemotherapy (CT). Several treatment protocols and clinical trials have been developed over the time to maximize survival and minimize side effects. Methods: We performed a systematic literature search in May 2023 using PubMed. We selected all clinical trials articles and multicenter studies focusing on MB. We excluded studies focusing exclusively on infants, adults, supratentorial PNETs or refractory/relapsed tumors, studies involving different tumors or different types of PNETs without differentiating survival, studies including <10 cases of MB, solely retrospective studies and those without reference to outcome and/or side effects after a defined treatment. Results: 1. The main poor-prognosis factors are: metastatic disease, anaplasia, MYC amplification, age younger than 36 months and some molecular subgroups. The postoperative residual tumor size is controversial. 2. MB is a collection of diseases. 3. MB is a curable disease at diagnosis, but survival is scarce upon relapse. 4. Children should be treated by experienced neurosurgeons and in advanced centers. 5. RT is an essential treatment for MB. It should be administered craniospinal, early and without interruptions. 6. Craniospinal RT dose could be lowered in some low-risk patients, but these reductions should be done with caution to avoid relapses. 7. Irradiation of the tumor area instead of the entire posterior fossa is safe enough. 8. Hyperfractionated RT is not superior to conventional RT 9. Both photon and proton RT are effective. 10. CT increases survival, especially in high-risk patients. 11. There are multiple drugs effective in MB. The combination of different drugs is appropriate management. 12. CT should be administered after RT. 13. The specific benefit of concomitant CT to RT is unknown. 14. Intensified CT with stem cell rescue has no benefit compared to standard CT regimens. 15. The efficacy of intraventricular/intrathecal CT is controversial. 16. We should start to think about incorporating targeted therapies in front-line treatment. 17. Survivors of MB still have significant side effects. Conclusion: Survival rates of MB improved greatly from 1940-1970, but since then the improvement has been smaller. We should consider introducing targeted therapy as front-line therapy. 1 Introductionpost-print5468 K

    A MicroRNA-1280/JAG2 Network Comprises a Novel Biological Target in High-Risk Medulloblastoma

    Get PDF
    Over-expression of PDGF receptors (PDGFRs) has been previously implicated in high-risk medulloblastoma (MB) pathogenesis. However, the exact biological functions of PDGFRα and PDGFRβ signaling in MB biology remain poorly understood. Here, we report the subgroup specific expression of PDGFRα and PDGFRβ and their associated biological pathways in MB tumors. c-MYC, a downstream target of PDGFRβ but not PDGFRα, is involved in PDGFRβ signaling associated with cell proliferation, cell death, and invasion. Concurrent inhibition of PDGFRβ and c-MYC blocks MB cell proliferation and migration synergistically. Integrated analysis of miRNA and miRNA targets regulated by both PDGFRβ and c-MYC reveals that increased expression of JAG2, a target of miR-1280, is associated with high metastatic dissemination at diagnosis and a poor outcome in MB patients. Our study may resolve the controversy on the role of PDGFRs in MB and unveils JAG2 as a key downstream effector of a PDGFRβ-driven signaling cascade and a potential therapeutic target

    The clinical significance of sub-total surgical resection in childhood medulloblastoma: a multi-cohort analysis of 1100 patients

    Get PDF
    \ua9 2024 The Author(s)Background: Medulloblastoma patients with a sub-total surgical resection (STR; &gt;1.5 cm2 primary tumour residuum post-surgery) typically receive intensified treatment. However, the association of STR with poor outcomes has not been observed consistently, questioning the validity of STR as a high-risk disease feature. Methods: We collected extent of resection (EOR) data from 1110 patients (from UK CCLG centres (n = 416, collected between September 1990 and July 2014) and published (n = 694) cohorts), the largest cohort of molecularly and clinically annotated tumours assembled to specifically assess the significance of EOR. We performed association and univariable/multivariable survival analyses, assessing overall survival (OS) cohort-wide and with reference to the four consensus medulloblastoma molecular groups and clinical features. Findings: STR was reported in 20% (226/1110) of patients. Non-WNT (p = 0.047), children &lt;5 years at diagnosis (p = 0.021) and metastatic patients (p &lt; 0.0001) were significantly more likely to have a STR. In cohort-wide analysis, STR was associated with worse survival in univariable analysis (p &lt; 0.0001). Examination of specific disease contexts showed that STR was prognostic in univariate analysis for patients receiving cranio-spinal irradiation (CSI) and chemotherapy (p = 0.016) and for patients with Group 3 tumours receiving CSI (p = 0.039). STR was not independently prognostic in multivariable analyses; outcomes for patients who have STR as their only risk-feature are as per standard-risk disease. Specifically, STR was not prognostic in non-metastatic patients that received upfront CSI. Interpretation: In a cohort of 1100 molecularly characterised medulloblastoma patients, STR (n = 226) predicted significantly lower OS in univariable analysis, but was not an independent prognostic factor. Our data suggest that maximal safe resection can continue to be carried out for patients with medulloblastoma and suggest STR should not inform patient management when observed as a sole, isolated risk-feature. Funding: Cancer Research UK, Newcastle Hospitals Charity, Children\u27s Cancer North, British Division of the International Academy of Pathology

    Therapeutic implications of improved molecular diagnostics for rare CNS-embryonal tumor entities: results of an international, retrospective study

    Get PDF
    BACKGROUND: Only few data are available on treatment-associated behavior of distinct rare CNS-embryonal tumor entities previously treated as "CNS-primitive neuroectodermal tumors" (CNS-PNET). Respective data on specific entities, including CNS neuroblastoma, FOXR2 activated (CNS NB-FOXR2), and embryonal tumor with multi-layered rosettes (ETMR) are needed for development of differentiated treatment strategies. METHODS: Within this retrospective, international study, tumor samples of clinically well-annotated patients with the original diagnosis of CNS-PNET were analyzed using DNA methylation arrays (n=307). Additional cases (n=66) with DNA methylation pattern of CNS NB-FOXR2 were included irrespective of initial histological diagnosis. Pooled clinical data (n=292) were descriptively analyzed. RESULTS: DNA methylation profiling of "CNS-PNET" classified 58(19%) cases as ETMR, 57(19%) as HGG, 36(12%) as CNS NB-FOXR2, and 89(29%) cases were classified into 18 other entities. Sixty-seven (22%) cases did not show DNA methylation patterns similar to established CNS tumor reference classes. Best treatment results were achieved for CNS NB-FOXR2 patients (5-year PFS: 63%±7%, OS: 85%±5%, n=63), with 35/42 progression-free survivors after upfront craniospinal irradiation (CSI) and chemotherapy. The worst outcome was seen for ETMR and HGG patients with 5-year PFS of 18%±6% and 22%±7%, and 5-year OS of 24%±6% and 25%±7%, respectively. CONCLUSION: The historically reported poor outcome of CNS-PNET patients becomes highly variable when tumors are molecularly classified based on DNA methylation profiling. Patients with CNS NB-FOXR2 responded well to current treatments and a standard-risk-CSI based regimen may be prospectively evaluated. The poor outcome of ETMR across applied treatment strategies substantiates the necessity for evaluation of novel treatments
    corecore