59,216 research outputs found

    Mechanisms linking plant diversity to large herbivore performance

    Get PDF
    There is established concern that loss of biodiversity will affect ecosystem productivity, nutrient cycling, carbon storage, stability and other properties^1,2^. Interactions between trophic levels are thought to link changes to biodiversity and ecosystem processes^3-6^. However, there is a lack of empirical studies linking plant diversity with altered trophic levels^7,8^, especially for large herbivores, the important but often neglected, controlling trophic level in terrestrial systems. Here we examine responses in performance of the large generalist herbivore to changes in plant diversity, using an indoor cafeteria trial and a field experiment. Our results show that increased plant diversity improves herbivore performance but it is depressed at highest plant diversity levels. We propose the Disturbance Selection Hypothesis for explaining plant diversity effects on primary consumers. Increasing the number of plant species in grassland, increases consumption and enhances nutrient intake (presumably improving animal fitness) by modifying nutrient balance, toxin dilution and taste modulation. High plant diversity simultaneously intensifies animal diet switching frequency, and weakens the herbivore's ability to select food, thereby increasing foraging cost and disturbing the herbivore's selection of forage. Thus, the consequence of plant diversity for large herbivore performance depends on the trade-off between the positive and negative effects. At highest plant diversity the positive effects weaken and negative effects strengthen. We suggest knowledge of the mechanisms is the means for understanding relationships between biodiversity and ecosystem functioning, and the management of large herbivores on rangelands used for conservation and grazing

    Aboveground Net Primary Productivity in Grazed and Ungrazed pastures: Grazing Optimisation Hypothesis or Local Extinction of Vegetation Species

    Get PDF
    The controversy that has surrounded herbivory studies in the last few decades prompted our investigation to establish the extent to which herbivore optimisation hypothesis or compensatory growth evidence is real. We used the traditional movable cage method to collect primary productivity data on herbage, functional groups and key individual grass species in various controlled large herbivore treatments in an east African savanna. The herbivore treatments in triplicate blocks included cattle, wild herbivores with and without mega herbivores and combinations of cattle and wild herbivores also with and without mega herbivores. The findings revealed that at herbage level, most grazed treatments (four out of five) had higher productivity than the ungrazed control and three showed grazing optimisation curve at sixth polynomial degree between monthly productivity and grazing intensity (1-g/ng). At functional group level forbs productivity was higher in the ungrazed control than in any of the grazed treatments while at individual grass species level _Themeda triandra_ productivity was higher in all grazed treatments than in ungrazed control. We conclude against presence of herbivore optimisation hypothesis at herbage, functional group and species level because of lack of attributable grazing effect in grazed treatments that matches complex ecological effects in the ungrazed treatment

    Resource partitioning among African savanna herbivores in North Cameroon: the importance of diet composition, food quality and body mass

    Get PDF
    The relationship between herbivore diet quality, and diet composition (the range of food plants consumed) and body mass on resource partitioning of herbivores remains the subject of an ongoing scientific debate. In this study we investigated the importance of diet composition and diet quality on resource partitioning among eight species of savanna herbivore in north Cameroon, with different body mass. Dung samples of four to seven wild herbivore and one domesticated species were collected in the field during the dry and wet period. Diet composition was based on microhistological examination of herbivore droppings, epidermis fragments were identified to genus or family level. In addition, the quality of the faecal droppings was determined in terms of phosphorus, nitrogen and fibre concentrations. The results showed that there was no significant correlation between body mass and (differences in) diet composition for wet and dry season. When all species are considered, only significant relationships are found by the Spearman rank correlation analyses during the wet season between body mass and phosphorus and nitrogen, but this relationship did not exist during the dry season. When the analyses focuses on ruminants only (thus leaving out hippo), none of the relationships between body mass and diet quality was significant in either season. During the dry season the proportion of graminoids ranged between 10% (small unidentified herbivore species) to 90% (hippopotamus), during the wet season this proportion ranged from 60% (zebu) to 90% (hippopotamus). All species but zebu had more graminoids in their dung during wet season compared with dry season. However all species but hartebeest had more graminoids old stems in their dung during the dry season, compared with the wet season. The niche breadth for food categories consumed by kob (0.300), hippo (0.090), hartebeest (0.350), roan (0.510) and zebu (0.300) was much greater in the dry season than in the wet season for kob (0.120), hippo (0.020), hartebeest (0.190), roan (0.090) and zebu (0.200). When looking at grass taxa consumed, the niche breadth of kob (0.220), hartebeest (0.140), and roan (0.250) was also greater in the dry season when compared with the wet season for kob (0.050), hartebeest (0.120) and roan (0.120). The opposite was found for zebu and hippo. Comparison of the species’ diet compositions with randomized data showed that dietary overlap between different herbivore species was much higher than what would be expected on the basis of chance, demonstrating surprisingly limited niche separation between species. This offers potential for competition, but it is more likely that the high niche overlap indicates absence of competition, due to low herbivore densities and abundant food resources, permitting species to share non-limiting resources. With increasing herbivore densities and subsequent increasing scarcity of resources, the relationship between diet quality and body mass in combination with increased niche separation is expected to become more visibl

    Differential effects of jasmonic acid treatment of Brassica nigra on the attraction of pollinators, parasitoids, and butterflies

    Get PDF
    Herbivore-induced plant defences influence the behaviour of herbivores as well as that of their natural enemies. Jasmonic acid is one of the key hormones involved in both these direct and indirect induced defences. Jasmonic acid treatment of plants changes the composition of defence chemicals in the plants, induces volatile emission, and increases the production of extrafloral nectar. However, few studies have addressed the potential influence of induced defences on flower nectar chemistry and pollinator behaviour. These have shown that herbivore damage can affect pollination rates and plant fitness. Here, we have investigated the effect of jasmonic acid treatment on floral nectar production and the attraction of pollinators, as well as the effect on the behaviour of an herbivore and its natural enemy. The study system consisted of black mustard plants, Brassica nigra L. (Brassicaceae), pollinators of Brassica nigra (i.e., honeybees and syrphid flies), a specialist herbivore, Pieris rapae L. (Lepidoptera: Pieridae), and a parasitoid wasp that uses Pieris larvae as hosts, Cotesia glomerata L. (Hymenoptera: Braconidae). We show that different trophic levels are differentially affected by jasmonic acid-induced changes. While the herbivore prefers control leaves over jasmonic acid-treated leaves for oviposition, the parasitoid C. glomerata is more attracted to jasmonic acid-treated plants than to control plants. We did not observe differences in pollinator preference, the rates of flower visitation by honeybees and syrphid flies were similar for control and jasmonic acid-treated plants. Plants treated with jasmonic acid secreted less nectar than control plants and the concentrations of glucose and fructose tended to be lower than in nectar from control plants. Jasmonic acid treatment resulted in a lower nectar production than actual feeding damage by P. rapae caterpillars

    The accelerating influence of humans on mammalian macroecological patterns over the late Quaternary

    Get PDF
    The transition of hominins to a largely meat-based diet ~1.8 million years ago led to the exploitation of other mammals for food and resources. As hominins, particularly archaic and modern humans, became increasingly abundant and dispersed across the globe, a temporally and spatially transgressive extinction of large-bodied mammals followed; the degree of selectivity was unprecedented in the Cenozoic fossil record. Today, most remaining large-bodied mammal species are confined to Africa, where they coevolved with hominins. Here, using a comprehensive global dataset of mammal distribution, life history and ecology, we examine the consequences of “body size downgrading” of mammals over the late Quaternary on fundamental macroecological patterns. Specifically, we examine changes in species diversity, global and continental body size distributions, allometric scaling of geographic range size with body mass, and the scaling of maximum body size with area. Moreover, we project these patterns toward a potential future scenario in which all mammals currently listed as vulnerable on the IUCN\u27s Red List are extirpated. Our analysis demonstrates that anthropogenic impact on earth systems predates the terminal Pleistocene and has grown as populations increased and humans have become more widespread. Moreover, owing to the disproportionate influence on ecosystem structure and function of megafauna, past and present body size downgrading has reshaped Earth\u27s biosphere. Thus, macroecological studies based only on modern species yield distorted results, which are not representative of the patterns present for most of mammal evolution. Our review supports the concept of benchmarking the “Anthropocene” with the earliest activities of Homo sapiens

    Spatial heterogeneity and irreversible vegetation change in semi-arid grazing systems

    Get PDF
    Recent theoretical studies have shown that spatial redistribution of surface water may explain the occurrence of patterns of alternating vegetated and degraded patches in semiarid grasslands. These results implied, however, that spatial redistribution processes cannot explain the collapse of production on coarser scales observed in these systems. We present a spatially explicit vegetation model to investigate possible mechanisms explaining irreversible vegetation collapse on coarse spatial scales. The model results indicate that the dynamics of vegetation on coarse scales are determined by the interaction of two spatial feedback processes. Loss of plant cover in a certain area results in increased availability of water in remaining vegetated patches through run-on of surface water, promoting within-patch plant production. Hence, spatial redistribution of surface water creates negative feedback between reduced plant cover and increased plant growth in remaining vegetation. Reduced plant cover, however, results in focusing of herbivore grazing in the remaining vegetation. Hence, redistribution of herbivores creates positive feedback between reduced plant cover and increased losses due to grazing in remaining vegetated patches, leading to collapse of the entire vegetation. This may explain irreversible vegetation shifts in semiarid grasslands on coarse spatial scales

    Testing the paradox of enrichment along a land use gradient in a multitrophic aboveground and belowground community

    Get PDF
    In the light of ongoing land use changes, it is important to understand how multitrophic communities perform at different land use intensities. The paradox of enrichment predicts that fertilization leads to destabilization and extinction of predator-prey systems. We tested this prediction for a land use intensity gradient from natural to highly fertilized agricultural ecosystems. We included multiple aboveground and belowground trophic levels and land use-dependent searching efficiencies of insects. To overcome logistic constraints of field experiments, we used a successfully validated simulation model to investigate plant responses to removal of herbivores and their enemies. Consistent with our predictions, instability measured by herbivore-induced plant mortality increased with increasing land use intensity. Simultaneously, the balance between herbivores and natural enemies turned increasingly towards herbivore dominance and natural enemy failure. Under natural conditions, there were more frequently significant effects of belowground herbivores and their natural enemies on plant performance, whereas there were more aboveground effects in agroecosystems. This result was partly due to the “boom-bust” behavior of the shoot herbivore population. Plant responses to herbivore or natural enemy removal were much more abrupt than the imposed smooth land use intensity gradient. This may be due to the presence of multiple trophic levels aboveground and belowground. Our model suggests that destabilization and extinction are more likely to occur in agroecosystems than in natural communities, but the shape of the relationship is nonlinear under the influence of multiple trophic interactions.

    Herbaceous production in South India-limiting factors and implications for large herbivores

    Get PDF
    This study's goal was to better understand the growth pattern and limitations of the herbaceous production that supports South India's rich large herbivore grazer assemblage. We conducted a fully factorial nitrogen and water (three levels each) treatment field experiment in the herbivore rich South Indian Western Ghats region to determine the seasonal pattern and the extent to which nitrogen and water availability limit herbaceous production. Graminoid production was found to be nitrogen limited. Despite low rainfall, additional water did not significantly increase overall biomass production nor extend growth in the dry season. Accumulated standing biomass was highest in the late wet season (November) and lowest in the dry season (May). Leaf nitrogen was highest in the early wet season (June) and lowest in the late dry season (March). Grazing had a positive effect on grass production by extending the growing season. Biomass production and graminoid leaf nitrogen concentration levels in the study area were similar to other tropical areas in the world. Also similar to other tropical large herbivore areas, the dry season poses an annual challenge for large herbivores in the study area -particularly the smaller bodied species-to satisfy their nutrient requirements
    • …
    corecore