1,222 research outputs found

    Mechanics and mechanisms of fatigue in a WC-Ni hardmetal and a comparative study with respect to WC-Co hardmetals

    Get PDF
    There is a major interest in replacing cobalt binder in hardmetals (cemented carbides) aiming for materials with similar or even improved properties at a lower price. Nickel is one of the materials most commonly used as a binder alternative to cobalt in these metal-ceramic composites. However, knowledge on mechanical properties and particularly on fatigue behavior of Ni-base cemented carbides is relatively scarce. In this study, the fatigue mechanics and mechanisms of a fine grained WC-Ni grade is assessed. In doing so, fatigue crack growth (FCG) behavior and fatigue limit are determined, and the attained results are compared to corresponding fracture toughness and flexural strength. An analysis of the results within a fatigue mechanics framework permits to validate FCG threshold as the effective fracture toughness under cyclic loading. Experimentally determined data are then used to analyze the fatigue susceptibility of the studied material. It is found that the fatigue sensitivity of the WC-Ni hardmetal investigated is close to that previously reported for Co-base cemented carbides with alike binder mean free path. Additionally, fracture modes under stable and unstable crack growth conditions are inspected. It is evidenced that stable crack growth under cyclic loading within the nickel binder exhibit faceted, crystallographic features. This microscopic failure mode is rationalized on the basis of the comparable sizes of the cyclic plastic zone ahead of the crack tip and the characteristic microstructure length scale where fatigue degradation phenomena take place in hardmetals, i.e. the binder mean free path. (C) 2014 Elsevier Ltd. All rights reserved.Peer ReviewedPostprint (author’s final draft

    Fatigue testing and properties of hardmetals in the gigacycle range

    Get PDF
    Hardmetal products are frequently fatigue loaded in service, such as e.g. cutting tools for milling or percussion drills. In the present work, the fatigue behaviour of hardmetals was investigated into the gigacycle range using ultrasonic resonance fatigue testing at 20 kHz in push-pull mode at R = - 1. Liquid cooling was afforded using water with addition of a corrosion inhibitor. Hourglass shaped specimens were prepared, the surface being ground and polished with subsequent stress-relieving anneal to remove the high compressive residual stresses introduced during grinding. S-N curves with fairly low scatter were obtained, which indicates microstructure-controlled and not defect-controlled failure. Low binder content as well as fine WC grains were found to improve the fatigue endurance strength. In no case, however, a horizontal branch of the S-N curve was observed, i.e. there is no fatigue “limit” at least up to 1010 cycles. The initiation sites were in part difficult to identify; in such cases when the site was clearly visible, decohesion of the binder from large WC grains seems to have caused crack initiation. This further corroborates that microstructural features and not singular defects as e.g. inclusions are the initiation sites, which underlines the high purity of the hardmetal grades used. Based on fracture mechanical consideration a damage diagram was determined allowing to deduce critical defect sizes.Peer ReviewedPostprint (author's final draft

    Influence of the microstructure on the thermal shock behavior of cemented carbides

    Get PDF
    The influence of single and repetitive sudden changes of temperature on the mechanical integrity of cemented carbides was investigated as a function of their microstructure. Thermal shock resistance was assessed by testing the residual flexural strength of hardmetal beams after being subjected to thermal shock by water quenching. Results indicate that hard cemented carbides tend to exhibit a superior resistance to the nucleation of thermal shock damage but a lower resistance to the propagation of this damage mechanism than tough grades, and vice versa. These trends are in agreement with those expected from the evaluation of the thermal shock Hasselman’s parameters. The evidenced strength loss after thermal shock may be related to the subcritical growth of intrinsic flaws driven by localized microcracking surrounding them. Results also point out on Ni-base hardmetals to exhibit a slightly higher resistance to abrupt changes of temperature than Co-base ones.Peer ReviewedPostprint (author's final draft

    Laser surface texturing of a WC-CoNi cemented carbide grade: surface topography design for honing application

    Get PDF
    Abrasive effectiveness of composite-like honing stones is related to the intrinsic surface topography resulting from the cubic boron nitride (CBN) grains protruding out of the metallic matrix. Within this framework, Laser Surface Texturing (LST) is implemented for replicating topographic features of a honing stone in a WC-base cemented carbide grade, commonly employed for making tools. In doing so, regular arrays of hexagonal pyramids (similar to CBN grains) are sculpted by a laser micromachining system. Micrometric precision is attained and surface integrity does not get affected by such surface modification. Finally, potential of laser-patterned cemented carbide tools, as alternative to conventional honing stones, is supported by successful material removal and enhanced surface smoothness of a steel workpiece in the abrasive testing.Peer ReviewedPostprint (author's final draft

    Hall-Petch strengthening of the constrained metallic binder in WC-Co cemented carbides: Experimental assessment by means of massive nanoindentation and statistical analysis

    Get PDF
    WC–Co cemented carbides are geometrically complex composites constituted for two interpenetrating networks of the constitutive ceramic and metal phases. Accordingly, assessment of microstructural effects on the local mechanical properties of each phase is a challenging task, especially for the metallic binder. In this work, it is attempted by combining massive nanoindentation, statistical analysis, and implementation of a thin film model for deconvolution of the intrinsic hardness and flow stress of the metallic phase. Plotting of yield stress values as a function of the binder mean free path results in a Hall-Petch strengthening relationship with a slope (ky) of 0.98 MPa m1/2. This value points out the effectiveness of WC–Co phase boundaries as strong obstacles to slip propagation; and thus, for toughening of the brittle phase (WC) by means of crack-bridging ductile (Co) reinforcement.Peer ReviewedPostprint (author's final draft

    Implementation of an effective time-saving two-stage methodology for microstructural characterization of cemented carbides

    Get PDF
    Linear intercept on scanning electron microscopy micrographs is the most commonly used measurement method to determine carbide grain size and contiguity in WC–Co cemented carbides (hardmetals). However, it involves manual time-consuming measurements and is critically dependent on the quality of the micrographs as well as on the identification and definition of grain boundaries. In this study a two-stage methodology for microstructural characterization of hardmetals is presented. First, a digital semi-automatic image analysis procedure for grain size determination of the carbide phase is presented. It involves an experimental assessment of grain size on processed images corresponding to a series of WC–Co and WC–Ni cemented carbide grades with different microstructural characteristics. Obtained results are then compared to the values obtained by means of the linear intercept technique. A good correlation between the mean grain sizes determined following both measurement techniques was attained. Based on experimental findings, a series of empirical relations were found to correlate grain size distributions obtained following both methods. Second, an empirical relation for estimating carbide contiguity in WC–Co cemented carbides is proposed. This relation considers simultaneously the influence of the binder content and the experimentally determined mean grain size on contiguity. The proposed equation for contiguity estimation is based on extensive data collection from open literature. An excellent agreement was attained between contiguity values estimated from such equation and those obtained using the linear intercept technique. This validates the two-stage procedure as an effective time-saving methodology for microstructural characterization of WC–Co cemented carbides.Peer ReviewedPostprint (author's final draft

    Small-scale assessment of corrosion-induced damage in hardmetals

    Get PDF
    In this work, the effect of corrosion-induced damage on the mechanical response of hardmetals was evaluated at small-scale level by means of nanoindentation and nanoscratch. Damage was introduced in a controlled way through immersion in acidic solution. It is found that surface degradation associated with corrosion leads to a strong reduction of hardness and elastic modulus, as compared to non-corroded samples. Similarly, significant differences are observed in nanoscratch response, regarding not only width and depth of tracks but also deformation mechanisms developed as contact load is progressively increased. Damage was already evidenced in corroded surfaces at scratching loads one order of magnitude lower than for virgin specimens. Cracking and fragmentation of individual WC grains, together with chipping of at the track edges were the main deformation and fracture micromechanisms identified. Changes in nanoindentation and nanoscratch response and damage scenario are discussed on the basis of the corrosion-induced changes within the intrinsic microstructural assemblage of hardmetals.Postprint (published version

    Fracture toughness of cemented carbides obtained by electrical resistance sintering

    Get PDF
    The unique combination of hardness, toughness and wear resistance exhibited by WC-Co cemented carbides (hardmetals) has made them a preeminent material choice for extremely demanding applications, such as metal cutting/forming tools or mining bits, in which improved and consistent performance together with high reliability are required. The high fracture toughness values exhibited by hardmetals are mainly due to ductile ligament bridging and crack deflection (intrinsic to carbides). In this work two WC-Co grades obtained by using the electric resistance sintering technique are studied. The relationships between the process parameters (cobalt volume fraction, sintering current and time, die materials, etc.), the microstructural characteristics (porosity, cobalt volume fraction, carbide grain size, binder thickness and carbide contiguity) and mechanical properties (Vickers hardness and fracture toughness) are established and discussed. Also the presence of microstructural anisotropy and residual stresses is studied. The sintering process at 7 kA, 600 ms and 100 MPa, in an alumina die, followed by a treatment of residual stress relief (800 °C, 2 h in high vacuum), allows to obtain WC-Co pellets with the best balance between an homogeneous microstructure and mechanical behaviour.EU for funding this research with in the framework of the EU 7th Framework FoF.NMP.2013-10 608729 EFFIPRO Projec
    • …
    corecore