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INTRODUCTION 

 

Cemented carbides (WC-Co) are materials used in a wide range of applications in many 

relevant industries, i.e. as cutting tools (turning, milling, drilling) for machining of metal 

components in the automotive and/or aerospace industry, as components of drill bits or 

road headers in the rock tools and mining area, or as wear parts in wire drawing dies or 

punch tools, all these applications with stringent requirements [1-3]. Regarding cemented 

carbides processing, the need to implement more efficient routes than conventional liquid 

sintering is one of the objectives pursued by the industrial sector. Field-assisted sintering 

techniques (FAST) have gained particular interest in the last decades [4-6] because of 

being very quick processes; particularly, the electric resistance sintering (ERS) process 

[7-9] consists in an electrical current passing through a powder mass to be sintered at the 

time that pressure is applied. The Joule effect acts heating and sintering the powders. 

However, despite its potential advantages, it remains an objective to control the variables 

associated with the sintering process, as well as to evaluate and rationalize the influence 

of these variables on the physical and mechanical properties of the manufactured samples. 

 

The influence of the microstructural parameters on the behaviour in service has been 

widely studied by the scientific-technical community, particularly the mechanical and 

tribological performance [1, 10-16]. The content and physical dimensions of each 

constituent phase are the most common features for defining the microstructure [1,10,17]. 

Within this context, the principal parameters used to characterize the microstructure of 

hardmetals are the average grain size of WC particles (dWC) and the binder volume 

content. However, both parameters are frequently varied simultaneously, and correlation 

between property and microstructure requires of additional two-phase normalizing 

parameters. Among them, the binder mean free path (λCo) is the most used one as it refers 

to the mean size of the metallic phase. In general, an increase of the binder mean free path 

implies a rise of the fracture toughness of the material at the expense of a decrease in 

hardness [17,18]. Main reason behind it is the fact that thicker and less constrained (i.e. 

effectively more ductile) ligaments exist for hardmetal grades with higher binder contents 

and coarser microstructures [14,15,17,19]. Also, the binder intercept size is an 
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outstanding microstructural parameter because of its influence on the shear stresses of the 

material (for example, in cutting tool grades of hardmetals) [20]. 

Fracture toughness is the most important mechanical property of the WC-Co, considering 

the intrinsic fragility of these materials. There are different procedures to evaluate fracture 

toughness of cemented carbides [21-25]. The conventional indentation microfracture [24] 

is widely used in the literature because of its simplicity, cost and versatility. However, 

the measured values depend on the equation used, surface preparation, presence of 

residual stresses and the studied hardmetal grade [24,26,27]. In this context, the main 

objective of this work is to establish the relationship between the microstructure, the 

manufacturing process by ERS and the fracture toughness of WC-Co. 

 

 
Fig. 1. SEM images of the powders used for the sintering of hardmetals. 

 

Table 1. Chemical composition and properties of the starting powders supplied by 

Kyocera 

Unimerco (Denmark). 

Grade WC-6Co WC-10Co 

C (wt%) 5.78 5.52 

O (wt%) 0.13 0.12 

Spherical WC-Co particles (m) 

d10% 86 78 

d50% 141 128 

d90% 225 204 

D[4,3] 148 136 

Density (g/cm3) 

Apparent 15.0 14.5 

Tap 4.4 4.0 

Flowability (s/50 g) 19.2 19.7 

Compressibility (%) 

100 MPa 

61 63 

Electrical resistivity (Ω⋅m) x 10-6 6.9 6.4 

Table 2. Experimental parameters associated to the electrical resistance sintering of the 

studied WC-Co. 

Materials 

Cylindrical die 

Alumina and sialon of high purity and 

density 

Internal diameter 12 mm 



Punches High purity copper 

Wafers (in powder contact) 

Cu-W alloy 

ERS parameters 

Compaction pressure 100 MPa applied at 100 mm/s 

Continuous electrical 

current wave 

Pulse Square 

Frequency (MHz) 10 

Intensity (kA) 5 - 10 

Time (ms) 300 - 1000 

 

 

 

 
 

 

 

 



Table 3. Experimental parameters of the microstructure of WC-Co studied. 

Grade WC-6Co WC-10Co 

fCo 

wt% 6 10 

vol% 10.2 16.5 

WC-Co 

sintered 

Binder mean free paths (nm) Co 90 8 120 16 

Carbide contiguity ([33]) CWC 0.64 0.01 0.50 0.02 

Carbide grain size (nm) dWC 300 30 290 45 

 

 
 

 
 

 

 



 
 

CONCLUSIONS 

 

In this work two WC-Co grades obtained using the ERS technique were investigated. 

Based on the main findings of the study, the following conclusions may be drawn: 

1) The ERS is a fast processing route. This technique is currently effective to obtain 

simple pieces or preforms of cemented carbides (WC-Co). The physical (density) and 

mechanical properties (hardness and fracture toughness) of the manufactured materials 

depend on the energy supplied during the electric sintering. This energy depends on the 

process parameters (sintering current and time, die materials, applied pressure, etc.). 

2) The fracture toughness of these WC-Co depends on the role played by the cobalt 

ligaments and the deviation of the crack associated to the presence of the WC carbides 

(toughening mechanisms / R-curve behavior). 

3) Electrically sintered WC-Co pellets present residual stresses, porosity and small 

microstructural changes (carbide grain size and cobalt binder thickness). These 

differences depend on the zone (bases and the lateral surface) and the direction (radial or 

axial), being the responsible of the anisotropy of the fracture toughness of the WC-Co 

pellets obtained by ERS. 

4) The anisotropy of the mechanical behaviour is greater if additional electrical pulses are 

applied, while this heterogeneity is negligible if an adequate heat treatment of the WC-

Co pellets is carried out following the ERS. 

5) Whatever the WC-Co grade studied, in this work the following manufacturing process 

of the pellets is recommended: electric sintering (7 kA, 600 ms and 100 MPa, in an 

cylindrical alumina die), and then a relief treatment of residual stresses (800 ºC, 2 h and 

high vacuum). 

This recommendation is made in terms of the best balance of structural integrity, density, 

homogeneity and mechanical behaviour (Vickers hardness and KIc) of the pellets. 
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