67,349 research outputs found
Vertex-Coloring 2-Edge-Weighting of Graphs
A -{\it edge-weighting} of a graph is an assignment of an integer
weight, , to each edge . An edge weighting naturally
induces a vertex coloring by defining for every
. A -edge-weighting of a graph is \emph{vertex-coloring} if
the induced coloring is proper, i.e., for any edge .
Given a graph and a vertex coloring , does there exist an
edge-weighting such that the induced vertex coloring is ? We investigate
this problem by considering edge-weightings defined on an abelian group.
It was proved that every 3-colorable graph admits a vertex-coloring
-edge-weighting \cite{KLT}. Does every 2-colorable graph (i.e., bipartite
graphs) admit a vertex-coloring 2-edge-weighting? We obtain several simple
sufficient conditions for graphs to be vertex-coloring 2-edge-weighting. In
particular, we show that 3-connected bipartite graphs admit vertex-coloring
2-edge-weighting
Normal 6-edge-colorings of some bridgeless cubic graphs
In an edge-coloring of a cubic graph, an edge is poor or rich, if the set of
colors assigned to the edge and the four edges adjacent it, has exactly five or
exactly three distinct colors, respectively. An edge is normal in an
edge-coloring if it is rich or poor in this coloring. A normal
-edge-coloring of a cubic graph is an edge-coloring with colors such
that each edge of the graph is normal. We denote by the smallest
, for which admits a normal -edge-coloring. Normal edge-colorings
were introduced by Jaeger in order to study his well-known Petersen Coloring
Conjecture. It is known that proving for every bridgeless
cubic graph is equivalent to proving Petersen Coloring Conjecture. Moreover,
Jaeger was able to show that it implies classical conjectures like Cycle Double
Cover Conjecture and Berge-Fulkerson Conjecture. Recently, two of the authors
were able to show that any simple cubic graph admits a normal
-edge-coloring, and this result is best possible. In the present paper, we
show that any claw-free bridgeless cubic graph, permutation snark, tree-like
snark admits a normal -edge-coloring. Finally, we show that any bridgeless
cubic graph admits a -edge-coloring such that at least edges of are normal.Comment: 17 pages, 11 figures. arXiv admin note: text overlap with
arXiv:1804.0944
Oriented coloring on recursively defined digraphs
Coloring is one of the most famous problems in graph theory. The coloring
problem on undirected graphs has been well studied, whereas there are very few
results for coloring problems on directed graphs. An oriented k-coloring of an
oriented graph G=(V,A) is a partition of the vertex set V into k independent
sets such that all the arcs linking two of these subsets have the same
direction. The oriented chromatic number of an oriented graph G is the smallest
k such that G allows an oriented k-coloring. Deciding whether an acyclic
digraph allows an oriented 4-coloring is NP-hard. It follows, that finding the
chromatic number of an oriented graph is an NP-hard problem. This motivates to
consider the problem on oriented co-graphs. After giving several
characterizations for this graph class, we show a linear time algorithm which
computes an optimal oriented coloring for an oriented co-graph. We further
prove how the oriented chromatic number can be computed for the disjoint union
and order composition from the oriented chromatic number of the involved
oriented co-graphs. It turns out that within oriented co-graphs the oriented
chromatic number is equal to the length of a longest oriented path plus one. We
also show that the graph isomorphism problem on oriented co-graphs can be
solved in linear time.Comment: 14 page
Total coloring of 1-toroidal graphs of maximum degree at least 11 and no adjacent triangles
A {\em total coloring} of a graph is an assignment of colors to the
vertices and the edges of such that every pair of adjacent/incident
elements receive distinct colors. The {\em total chromatic number} of a graph
, denoted by \chiup''(G), is the minimum number of colors in a total
coloring of . The well-known Total Coloring Conjecture (TCC) says that every
graph with maximum degree admits a total coloring with at most colors. A graph is {\em -toroidal} if it can be drawn in torus such
that every edge crosses at most one other edge. In this paper, we investigate
the total coloring of -toroidal graphs, and prove that the TCC holds for the
-toroidal graphs with maximum degree at least~ and some restrictions on
the triangles. Consequently, if is a -toroidal graph with maximum degree
at least~ and without adjacent triangles, then admits a total
coloring with at most colors.Comment: 10 page
Using Differential Evolution for the Graph Coloring
Differential evolution was developed for reliable and versatile function
optimization. It has also become interesting for other domains because of its
ease to use. In this paper, we posed the question of whether differential
evolution can also be used by solving of the combinatorial optimization
problems, and in particular, for the graph coloring problem. Therefore, a
hybrid self-adaptive differential evolution algorithm for graph coloring was
proposed that is comparable with the best heuristics for graph coloring today,
i.e. Tabucol of Hertz and de Werra and the hybrid evolutionary algorithm of
Galinier and Hao. We have focused on the graph 3-coloring. Therefore, the
evolutionary algorithm with method SAW of Eiben et al., which achieved
excellent results for this kind of graphs, was also incorporated into this
study. The extensive experiments show that the differential evolution could
become a competitive tool for the solving of graph coloring problem in the
future
Data Reduction for Graph Coloring Problems
This paper studies the kernelization complexity of graph coloring problems
with respect to certain structural parameterizations of the input instances. We
are interested in how well polynomial-time data reduction can provably shrink
instances of coloring problems, in terms of the chosen parameter. It is well
known that deciding 3-colorability is already NP-complete, hence parameterizing
by the requested number of colors is not fruitful. Instead, we pick up on a
research thread initiated by Cai (DAM, 2003) who studied coloring problems
parameterized by the modification distance of the input graph to a graph class
on which coloring is polynomial-time solvable; for example parameterizing by
the number k of vertex-deletions needed to make the graph chordal. We obtain
various upper and lower bounds for kernels of such parameterizations of
q-Coloring, complementing Cai's study of the time complexity with respect to
these parameters.
Our results show that the existence of polynomial kernels for q-Coloring
parameterized by the vertex-deletion distance to a graph class F is strongly
related to the existence of a function f(q) which bounds the number of vertices
which are needed to preserve the NO-answer to an instance of q-List-Coloring on
F.Comment: Author-accepted manuscript of the article that will appear in the FCT
2011 special issue of Information & Computatio
- …
