74,834 research outputs found

    The Relationship of Red and Photographic Infrared Spectral Data to Grain Yield Variation Within a Winter Wheat Field

    Get PDF
    Two band hand-held radiometer data from a winter wheat field, collected on 21 dates during the spring growing season, were correlated within field final grain yield. Significant linear relationships were found between various combinations of the red and photographic infrared radiance data collected and the grain yield. The spectral data explained approximately 64 percent of the within field grain yield variation. This variation in grain yield could not be explained using meteorological data as these were similar for all areas of the wheat field. Most importantly, data collected early in the spring were highly correlated with grain yield, a five week time window existed from stem elongation through antheses in which the spectral data were most highly correlated with grain yield, and manifestations of wheat canopy water stress were readily apparent in the spectral data

    Phosphorus and nitrogen uptake of spring cereals in different tillage systems

    Get PDF
    On the clay soil, the mean grain yield of stubble cultivated and direct drilled treatments was 3 and 18 % less, respectively, than that of ploughed treatment. The relative reductions in P and N uptake were the same magnitude than the grain yield reductions

    Automated Grain Yield Behavior Classification

    Get PDF
    A method for classifying grain stress evolution behaviors using unsupervised learning techniques is presented. The method is applied to analyze grain stress histories measured in-situ using high-energy X-ray diffraction microscopy (HEDM) from the aluminum-lithium alloy Al-Li 2099 at the elastic-plastic transition (yield). The unsupervised learning process automatically classified the grain stress histories into four groups: major softening, no work-hardening or softening, moderate work-hardening, and major work-hardening. The orientation and spatial dependence of these four groups are discussed. In addition, the generality of the classification process to other samples is explored

    Yield prediction by analysis of multispectral scanner data

    Get PDF
    A preliminary model describing the growth and grain yield of wheat was developed. The modeled growth characteristics of the wheat crop were used to compute wheat canopy reflectance using a model of vegetation canopy reflectance. The modeled reflectance characteristics were compared with the corresponding growth characteristics and grain yield in order to infer their relationships. It appears that periodic wheat canopy reflectance characteristics potentially derivable from earth satellites will be useful in forecasting wheat grain yield

    Predicting spring barley yield from variety-specific yield potential, disease resistance and straw length, and from environment-specific disease loads and weed pressure

    Get PDF
    Abstract For low-input crop production, well-characterised varieties increase the possibilities of managing diseases and weeds. This analysis aims at developing a framework for analyzing grain yield using external varietal information about disease resistance, weed competitiveness and yield potential and quantifying the impact of susceptibility grouping and straw length scores (as a measure for weed competitiveness) for predicting spring barley grain yield under variable biotic stress levels. The study comprised 52 spring barley varieties and 17 environments, i.e., combinations of location, growing system and year. Individual varieties and their interactions with environments were analysed by factorial regression of grain yield on external variety information combined with observed environmental disease loads and weed pressure. The external information was based on the official Danish VCU testing. The most parsimonious models explained about 50% of the yield variation among varieties including genotypeenvironment interactions. Disease resistance characteristics of varieties, weighted with disease loads of powdery mildew, leaf rust and net blotch, respectively, had a highly significant influence on grain yield. The extend to which increased susceptibility resulted in increased yield losses in environments with high disease loads of the respective diseases was predicted. The effect of externally determined straw length scores, weighted with weed pressure, was weaker although significant for weeds with creeping growth habit. Higher grain yield was thus predicted for taller plants under weed pressure. The results are discussed in relation to the model ramework, impact of the considered traits and use of information from conventional variety testing in organic cropping systems

    Meta-Analysis on grain yield effects of cereals-legume intercropping

    Get PDF
    Meta-Analysis on grain yield effects of cereals-legume intercroppin

    Response of Sunflower Yield and Phytohormonal Changes to Azotobacter,Azospirillum,Pseudomonas and Animal Manure in a Chemical Free Agroecosystem

    Get PDF
    There are new trends in agriculture to move toward the low input systems with the lower application of chemical fertilizers. To reach this goal, different methods, such as the application of biofertilizers, may be used. So this experiment was conducted in 2010 at a research farm in Arak, Iran, in factorial in the form of a randomized complete block design with three replications and four factors: animal manure (M), Pseudomonas putida (P), Azotobacter chroococcum (A)and Azospirillum lipoferum (Z). Results indicated that manure significantly affected grain yield (P≤0.01); the highest grain yield was achieved in the interaction of manure × Azotobacter × Pseudomonas (4.556 ton/ha). Grain yield was not significantly affected by the microorganisms. Moreover, the four factors of the experiment significantly affected auxin, gibberellin and cytokinin content of plant. Overall, this experiment indicated that desirable yield can be achieved by the application of manure and biofertilizers, in a sustainable agriculture

    Expression of the CCCH-tandem zinc finger protein gene OsTZF5 under a stress-inducible promoter mitigates the effect of drought stress on rice grain yield under field conditions

    Get PDF
    Increasing drought resistance without sacrificing grain yield remains an ongoing challenge in crop improvement. In this study, we report that Oryza sativa CCCH‐tandem zinc finger protein 5 (OsTZF5) can confer drought resistance and increase grain yield in transgenic rice plants. Expression of OsTZF5 was induced by abscisic acid, dehydration and cold stress. Upon stress, OsTZF5‐GFP localized to the cytoplasm and cytoplasmic foci. Transgenic rice plants overexpressing OsTZF5 under the constitutive maize ubiquitin promoter exhibited improved survival under drought but also growth retardation. By introducing OsTZF5 behind the stress‐responsive OsNAC6 promoter in two commercial upland cultivars, Curinga and NERICA4, we obtained transgenic plants that showed no growth retardation. Moreover, these plants exhibited significantly increased grain yield compared to non‐transgenic cultivars in different confined field drought environments. Physiological analysis indicated that OsTZF5 promoted both drought tolerance and drought avoidance. Collectively, our results provide strong evidence that OsTZF5 is a useful biotechnological tool to minimize yield losses in rice grown under drought conditions

    Contribution of N from frequently chopped green manure to a succeeding crop of barley

    Get PDF
    The aim of the present work was to study to what extent N in mulched green manure herbage contributes to spring barley grain yield the subsequent year. The green manure herbage was either chopped and left on stubble (GML) or removed (GMR). On silty clay loam with spring incorporated green manure the subsequent barley grain yield was 10% higher with GML than with GMR. The additional grain N yield of 4 kg ha-1 with GML corresponded to only 3 % of N in above-ground green manure biomass. On loamy soil with late autumn incorporated green manure the treatments did not affect the grain yield the subsequent year. How large part of the N that was lost through leaching or gaseous emissions and how large part that was built into soil organic matter was not measured. However, this investigation confirms that potential N losses from mowed green manure might be large. Alternative ways of using the herbage should be found

    Effects of inter-varietal diversity, biotic stresses and environmental productivity on grain yield of spring barley variety mixtures

    Get PDF
    Varietal seed mixtures tend to increase and stabilize crop yields, yet their application is sparse. Large-scale cultivation of variety mixtures may require a better understanding of how inter-varietal interactions and their interaction with the environment may influence the grain yield of variety mixtures relative to their component varieties. For this purpose, six variety mixtures of spring barley and 14 component varieties were grown in each of 17 trial environments. A total of 28 observed and a priori plant characteristics, including grain yield, disease severity and weed competitiveness, were derived for each component variety in each trial. The relationship between inter-varietal diversity of each characteristic and the mixing effect on grain yield was analysed. Additionally, various types of yield stability were estimated and compared among mixtures and component varieties. One mixture out-yielded all of its component varieties in almost half of the trial environments. Inter-varietal diversity in grain yield potential correlated significantly with mixing effect, as did straw length diversity when weighted with weed pressure. The grain yields of most mixtures were more stable across environments than their component varieties when accounting also for the general response to environmental productivity. Hence, most mixtures adapted slightly better to environmental productivity and were less sensitive to environmental stress than their component varieties. We conclude that the efficacy of variety mixtures may be enhanced by mixing relatively high-yielding varieties differing in responsiveness to environmental productivity
    corecore