163,714 research outputs found

    Cytoplasmic islet cell antibodies recognize distinct islet antigens in IDDM but not in stiff man syndrome

    Get PDF
    Cytoplasmic islet cell antibodies are well-established predictive markers of IDDM. Although target molecules of ICA have been suggested to be gangliosides, human monoclonal ICA of the immunoglobulin G class (MICA 1-6) produced from a patient with newly diagnosed IDDM recognized glutamate decarboxylase as a target antigen. Here we analyzed the possible heterogeneity of target antigens of ICA by subtracting the GAD-specific ICA staining from total ICA staining of sera. This was achieved 1) by preabsorption of ICA+ sera with recombinant GAD65 and/or GAD67 expressed in a baculovirus system and 2) by ICA analysis of sera on mouse pancreas, as GAD antibodies do not stain mouse islets in the immunofluorescence test. We show that 24 of 25 sera from newly diagnosed patients with IDDM recognize islet antigens besides GAD. In contrast, GAD was the only islet antigen recognized by ICA from 7 sera from patients with stiff man syndrome. Two of these sera, however, recognized antigens besides GAD in Purkinje cells. In patients with IDDM, non-GAD ICA were diverse. One group, found in 64% of the sera, stained human and mouse islets, whereas the other group of non-GAD ICA was human specific. Therefore, mouse islets distinguish two groups of non-GAD ICA and lack additional target epitopes of ICA besides GAD. Longitudinal analysis of 6 sera from nondiabetic ICA+ individuals revealed that mouse-reactive ICA may appear closer to clinical onset of IDDM in some individuals

    Protocol for a randomised controlled trial investigating the effectiveness of an online e health application for the prevention of Generalised Anxiety Disorder

    Get PDF
    BACKGROUND Generalised Anxiety Disorder (GAD) is a highly prevalent psychiatric disorder. Effective prevention in young adulthood has the potential to reduce the prevalence of the disorder, to reduce disability and lower the costs of the disorder to the community. The present trial (the WebGAD trial) aims to evaluate the effectiveness of an evidence-based online prevention website for GAD. METHODS/DESIGN The principal clinical question under investigation is the effectiveness of an online GAD intervention (E-couch) using a community-based sample. We examine whether the effect of the intervention can be maximised by either human support, in the form of telephone calls, or by automated support through emails. The primary outcome will be a reduction in symptoms on the GAD-7 in the active arms relative to the non active intervention arms. DISCUSSION The WebGAD trial will be the first to evaluate the use of an internet-based cognitive behavioural therapy (CBT) program contrasted with a credible control condition for the prevention of GAD and the first formal RCT evaluation of a web-based program for GAD using community recruitment. In general, internet-based CBT programs have been shown to be effective for the treatment of other anxiety disorders such as Post Traumatic Stress Disorder, Social Phobia, Panic Disorder and stress in clinical trials; however there is no evidence for the use of internet CBT in the prevention of GAD. Given the severe shortage of therapists identified in Australia and overseas, and the low rates of treatment seeking in those with a mental illness, the successful implementation of this protocol has important practical outcomes. If found to be effective, WebGAD will provide those experiencing GAD with an easily accessible, free, evidence-based prevention tool which can be promoted and disseminated immediately

    Az embrionális GAD formák szerepe a fejlődő szagló-rendszerben = Role of Embryonic GAD Forms in the Developing Olfactory System

    Get PDF
    Mindkét GAD gén kifejeződik a 10 napos egér embrió szagló plakódjában. Az expresszió a későbbiekben a szaglóhámban marad meg. Két részlegesen átfedő GABAerg sejtpopulációt azonosítottunk a fejlődő frontonazális nyúlványban: ezek a vándorló LHRH+/GAD65+eGAD+ sejtcsoport és az un. "migratory mass" (MM), amely GAD67+(eGAD)/OMP+ sejteket tartalmaz. A GAD65 jelenlétét először sikerült azonosítanunk a vándorló LHRH+ sejtekben. A GAD65 expresszió 1 hónapos korig folytatódik a már nem vándorló LHRH tartalmú idegsejt populációban is. A felnőtt GAD67 gyakorlatilag nem mutatható ki a frontonazális nyúlványban. Ebben a struktúrában a GAD67 génről alternetív "splicing" mechanizmussal képződő embrionális GAD a fő GAD fehérjeforma. A GAD65 hiányos egérben az LHRH neuronok vándorlása a GABAA receptor gátlásához hasonló módon zavart: a vándorlás sebessége fokozódott és iránya az előagyban megváltozott. A GAD67 hiánya nem befolyásolta jelentősen az LHRH+ sejtek vándorlását. Ennek valószínű magyarázata az, hogy a GAD67 KO egerekben az embrionális GAD mennyisége megnövekedett. | 1) Both GAD genes are expressed in the mouse embryo as early as E10 in the olfactory placode. The expression later is maintained in the olfactory epithelium (OE). 2) We have found that, except for the OE, there are two partially overlapping GABAergic lineages in the developing frontonasal process: the migratory LHRH+/GAD65+/eGAD+ and the migratory mass (MM), which is: GAD67+(eGAD)+/OMP+. The identification of GAD65 in the migratory LHRH+ cells is a novel result. 3) GAD65 expression in the LHRH lineage continues in the post-migratory LHRH+ neurons until the first month postnatally. 4) The adult GAD67 is barely expressed in the frontonasal process, instead, the alternatively spliced embryonic GAD is the predominant GAD derived from the GAD67 gene. 5) The absence of GAD65 in GAD65 KO mice impared the migration of LHRH+ cells in a way similar to the effect of GABA- A-R inhibitors, namely, enhanced speed of migration and change in direction of migration in the forebrain part of the migratory route. 6) The absence of GAD67 in GAD67 KO mice is not so pronounced, probably due to up-regulation of embryonic GAD

    Adiponectin protects against paraquat-induced lung injury by attenuating oxidative/nitrative stress.

    Get PDF
    The specific mechanisms underlying paraquat (PQ)-induced lung injury remain unknown, which limits understanding of its cytotoxic potential. Although oxidative stress has been established as an important mechanism underlying PQ toxicity, multiple antioxidants have proven ineffective in attenuating the deleterious effects of PQ. Adiponectin, which shows anti-oxidative and antinitrative effects, may have the potential to reduce PQ-mediated injury. The present study determined the protective action of globular domain adiponectin (gAd) on PQ-induced lung injury, and attempted to elucidate the underlying mechanism or mechanisms of action. BALB/c mice were administered PQ, with and without 12 or 36 h of gAd pre-treatment. The pulmonary oxidative/nitrative status was assessed by measuring pulmonary O2(•-), superoxide dismutase (SOD), malondialdehyde (MDA), nitric oxide (NO) and 8-hydroxy-2-dydeoxy guanosine (8-OHdG) production, and blood 3-Nitrotyrosine (3-NT). At a dose of 20 mg/kg, PQ markedly increased O2(•-), SOD, MDA, NO and 8-OHdG production 3 h post-administration, but did not significantly increase 3-NT levels until 12 h. gAd inhibited these changes in a dose-dependent manner, via transient activation of MDA, followed by attenuation of MDA formation from 6 h onwards. Histological analysis demonstrated that gAd decreased interstitial edema and inflammatory cell infiltration. These results suggest that gAd protects against PQ-induced lung injury by mitigating oxidative/nitrative stress. Furthermore, gAd may be a potential therapeutic agent for PQ-induced lung injury, and further pharmacological studies are therefore warranted

    Multiple FLC haplotypes defined by independent cis-regulatory variation underpin life history diversity in Arabidopsis thaliana

    Get PDF
    Relating molecular variation to phenotypic diversity is a central goal in evolutionary biology. In Arabidopsis thaliana, FLOWERING LOCUS C (FLC) is a major determinant of variation in vernalization—the acceleration of flowering by prolonged cold. Here, through analysis of 1307 A. thaliana accessions, we identify five predominant FLC haplotypes defined by noncoding sequence variation. Genetic and transgenic experiments show that they are functionally distinct, varying in FLC expression level and rate of epigenetic silencing. Allelic heterogeneity at this single locus accounts for a large proportion of natural variation in vernalization that contributes to adaptation of A. thaliana

    Episodic future thinking in generalized anxiety disorder

    Full text link
    Research on future-oriented cognition in generalized anxiety disorder (GAD) has primarily focused on worry, while less is known about the role of episodic future thinking (EFT), an imagery-based cognitive process. To characterize EFT in this disorder, we used the experimental recombination procedure, in which 21 GAD and 19 healthy participants simulated positive, neutral and negative novel future events either once or repeatedly, and rated their phenomenological experience of EFT. Results showed that healthy controls spontaneously generated more detailed EFT over repeated simulations. Both groups found EFT easier to generate after repeated simulations, except when GAD participants simulated positive events. They also perceived higher plausibility of negative-not positive or neutral-future events than did controls. These results demonstrate a negativity bias in GAD individuals' episodic future cognition, and suggest their relative deficit in generating vivid EFT. We discuss implications for the theory and treatment of GAD.R01 MH060941 - NIMH NIH HHS; R01 MH078308 - NIMH NIH HHS; R01AG08441 - NIA NIH HHS; R01 AT007257 - NCCIH NIH HHS; R01MH60941 - NIMH NIH HHS; R01 AG008441 - NIA NIH HHS; R34 MH099311 - NIMH NIH HHS; R21MH102646 - NIMH NIH HHS; R01AT007257 - NCCIH NIH HHS; R21 MH102646 - NIMH NIH HHS; R34MH078308 - NIMH NIH HH

    Crystal structure of a Fanconi anemia-associated nuclease homolog bound to 5′ flap DNA: basis of interstrand cross-link repair by FAN1

    Get PDF
    Fanconi anemia (FA) is an autosomal recessive genetic disorder caused by defects in any of 15 FA genes responsible for processing DNA interstrand cross-links (ICLs). The ultimate outcome of the FA pathway is resolution of cross-links, which requires structure-selective nucleases. FA-associated nuclease 1 (FAN1) is believed to be recruited to lesions by a monoubiquitinated FANCI–FANCD2 (ID) complex and participates in ICL repair. Here, we determined the crystal structure of Pseudomonas aeruginosa FAN1 (PaFAN1) lacking the UBZ (ubiquitin-binding zinc) domain in complex with 5′ flap DNA. All four domains of the right-hand-shaped PaFAN1 are involved in DNA recognition, with each domain playing a specific role in bending DNA at the nick. The six-helix bundle that binds the junction connects to the catalytic viral replication and repair (VRR) nuclease (VRR nuc) domain, enabling FAN1 to incise the scissile phosphate a few bases distant from the junction. The six-helix bundle also inhibits the cleavage of intact Holliday junctions. PaFAN1 shares several conserved features with other flap structure-selective nucleases despite structural differences. A clamping motion of the domains around the wedge helix, which acts as a pivot, facilitates nucleolytic cleavage. The PaFAN1 structure provides insights into how archaeal Holliday junction resolvases evolved to incise 5′ flap substrates and how FAN1 integrates with the FA complex to participate in ICL repair

    A gorilla adenovirus-based vaccine against Zika virus induces durable immunity and confers protection in pregnancy

    Get PDF
    The teratogenic potential of Zika virus (ZIKV) has made the development of an effective vaccine a global health priority. Here, we generate two gorilla adenovirus-based ZIKV vaccines that encode for pre-membrane (prM) and envelope (E) proteins (GAd-Zvp) or prM and the ectodomain of E protein (GAd-Eecto). Both vaccines induce humoral and cell-mediated immune responses and prevent lethality after ZIKV challenge in mice. Protection is antibody dependent, CD

    Atomistic simulations of rare events using gentlest ascent dynamics

    Full text link
    The dynamics of complex systems often involve thermally activated barrier crossing events that allow these systems to move from one basin of attraction on the high dimensional energy surface to another. Such events are ubiquitous, but challenging to simulate using conventional simulation tools, such as molecular dynamics. Recently, Weinan E et al. [Nonlinearity, 24(6),1831(2011)] proposed a set of dynamic equations, the gentlest ascent dynamics (GAD), to describe the escape of a system from a basin of attraction and proved that solutions of GAD converge to index-1 saddle points of the underlying energy. In this paper, we extend GAD to enable finite temperature simulations in which the system hops between different saddle points on the energy surface. An effective strategy to use GAD to sample an ensemble of low barrier saddle points located in the vicinity of a locally stable configuration on the high dimensional energy surface is proposed. The utility of the method is demonstrated by studying the low barrier saddle points associated with point defect activity on a surface. This is done for two representative systems, namely, (a) a surface vacancy and ad-atom pair and (b) a heptamer island on the (111) surface of copper.Comment: total 30 page
    corecore