1,735 research outputs found

    Functional Modelling for Fault Diagnosis and its application for NPP.

    Get PDF
    The paper presents functional modelling and its application for diagnosis in nuclear power plants. Functional modelling is defined and its relevance for coping with the complexity of diagnosis in large scale systems like nuclear plants is explained. The diagnosis task is analyzed and it is demonstrated that the levels of abstraction in models for diagnosis must reflect plant knowledge about goals and functions which is represented in functional modelling. Multilevel flow modelling (MFM), which is a method for functional modelling, is introduced briefly and illustrated with a cooling system example. The use of MFM for reasoning about causes and consequences is explained in detail and demonstrated using the reasoning tool, the MFMSuite. MFM applications in nuclear power systems are described by two examples: a PWR; and an FBR reactor. The PWR example show how MFM can be used to model and reason about operating modes. The FBR example illustrates how the modelling development effort can be managed by proper strategies including decomposition and reuse

    That which is not form: the practical challenges in using functional concepts in design

    Get PDF
    Functional modelling is a very significant part of many different well known design methodologies. This paper investigates the questions of what functional modelling approaches people use in industry and how they conceptualize functions. Using interviews and the findings from an experiment where 20 individual designers were asked to generate a functional model of a product, the paper highlights the different notions designers associate with the word function. Difficulties associated with functional modelling arise from varied and inconsistent notions of functions as well as wider challenges associated with modelling and the introduction of methods in industry

    Functional Modelling of Water Vapour Transmission through Surface Defects Using Surface Segmentation Analysis

    Get PDF
    Flexible photovoltaic films have been recently shown to have efficiencies comparable to those of solid Si based photovoltaics. Flexible PV films have significant advantages in terms of ease of manufacture by roll-to-roll (R2R) techniques and in easy building integration. A significant challenge is the protection of the flexible solar cells from water vapour ingress, which seriously reduces cell life and efficiency. Transparent barrier films are a possible solution to addressing the water vapour transmission rate (WVTR) challenge. Consequently thin barrier films such as those made from Al2O3 are the subject of increasing research interest when used for the encapsulation of flexible PV modules. The film can be produced by several thin film deposition processes such as atomic layer deposition (ALD). However, micro-scale defects in the barrier film such as pinholes and particulate debris have been shown to have serious consequences in terms of WVTR. Our previous research has empirically shown that small defects (≤3μm lateral dimension) were less significant in determining water vapour ingress. In contrast, larger defects (≥3 μm lateral dimension) have been shown to have a greater effect on the barrier functionality. The present paper illustrates the use of surface segmentation techniques to efficiently extract defect data from measured surface topography of barrier film sheets. Experimental results are presented where the defect information is correlated with the WVTR tests. A model is then presented to test the hypothesis that the major contributing defects to water vapour transmission rate (WVTR) are small numbers of large defects. The model presented in the paper shows excellent correlation with experimental results and provides a theoretical basis for the development of in process surface measurement for thin film R2R manufacture

    Functional Reasoning and Functional Modelling

    Get PDF
    A car that will not start on a cold winter day and one that will not start on a hot summer day usually indicate two very different situations. When pressed to explain the difference, we would give a winter account- Oil is more viscous in cold conditions, and that causes . . .\u27\u27 -and a summer story- Vapor lock is a possibility in hot weather and is usually caused by . . .\u27\u27 How do we build such explanations? One possibility is that understanding how the car works as a device gives us a basis for generating the explanations. But that raises another question: how do people understand devices? Model-based reasoning is a subfield of artificial intelligence focusing on device understanding issues. In any model-based-reasoning approach, the goal is to model\u27\u27 a device in the world as a computer program. Unfortunately, model\u27\u27 is a loaded term-different listeners understand the word to mean very different concepts. By extrapolation, model-based reasoning\u27\u27 can suggest several different approaches, depending on the embedded meaning of model.\u27\u2

    Functional modelling in evolvable assembly systems

    Get PDF
    The design and reconfiguration of adaptive production systems is a key driver in modern advanced manufacturing. We summarise the use of an ap-proach from the field of functional modelling to capture the function, behaviour, and structure of a system. This model is an integral part of the Evolvable Assembly Systems architecture, allowing the system to adapt its behaviour in response to changing product requirements. The integrated approach is illustrated with an example taken from a real EAS instantiation

    Hazard identification based on plant functional modelling

    Get PDF

    Use of COTS functional analysis software as an IVHM design tool for detection and isolation of UAV fuel system faults

    Get PDF
    This paper presents a new approach to the development of health management solutions which can be applied to both new and legacy platforms during the conceptual design phase. The approach involves the qualitative functional modelling of a system in order to perform an Integrated Vehicle Health Management (IVHM) design – the placement of sensors and the diagnostic rules to be used in interrogating their output. The qualitative functional analysis was chosen as a route for early assessment of failures in complex systems. Functional models of system components are required for capturing the available system knowledge used during various stages of system and IVHM design. MADe™ (Maintenance Aware Design environment), a COTS software tool developed by PHM Technology, was used for the health management design. A model has been built incorporating the failure diagrams of five failure modes for five different components of a UAV fuel system. Thus an inherent health management solution for the system and the optimised sensor set solution have been defined. The automatically generated sensor set solution also contains a diagnostic rule set, which was validated on the fuel rig for different operation modes taking into account the predicted fault detection/isolation and ambiguity group coefficients. It was concluded that when using functional modelling, the IVHM design and the actual system design cannot be done in isolation. The functional approach requires permanent input from the system designer and reliability engineers in order to construct a functional model that will qualitatively represent the real system. In other words, the physical insight should not be isolated from the failure phenomena and the diagnostic analysis tools should be able to adequately capture the experience bases. This approach has been verified on a laboratory bench top test rig which can simulate a range of possible fuel system faults. The rig is fully instrumented in order to allow benchmarking of various sensing solution for fault detection/isolation that were identified using functional analysis

    Functional modelling of a novel mutation in BBS5.

    Get PDF
    BACKGROUND: Bardet-Biedl syndrome (BBS) is an autosomal recessive ciliopathy disorder with 18 known causative genes (BBS1-18). The primary clinical features are renal abnormalities, rod-cone dystrophy, post-axial polydactyly, learning difficulties, obesity and male hypogonadism. RESULTS: We describe the clinical phenotype in three Saudi siblings in whom we have identified a novel mutation in exon 12 of BBS5 (c.966dupT; p.Ala323CysfsX57). This single nucleotide duplication creates a frame shift results in a predicted elongated peptide. Translation blocking Morpholino oligonucleotides were used to create zebrafish bbs5 morphants. Morphants displayed retinal layering defects, abnormal cardiac looping and dilated, cystic pronephric ducts with reduced cilia expression. Morphants also displayed significantly reduced dextran clearance via the pronephros compared to wildtype embryos, suggesting reduced renal function in morphants. The eye, kidney and heart defects reported in morphant zebrafish resemble the human phenotype of BBS5 mutations. The pathogenicity of the novel BBS5 mutation was determined. Mutant mRNA was unable to rescue pleiotropic phenotypes of bbs5 morphant zebrafish and in cell culture we demonstrate a mislocalisation of mutant BBS5 protein which fails to localise discretely with the basal body. CONCLUSIONS: We conclude that this novel BBS5 mutation has a deleterious function that accounts for the multisystem ciliopathy phenotype seen in affected human patients
    corecore