25,576 research outputs found

    Coexistence of competing first passage percolation on hyperbolic graphs

    Get PDF
    We study a natural growth process with competition, which was recently introduced to analyze MDLA, a challenging model for the growth of an aggregate by diffusing particles. The growth process consists of two first-passage percolation processes FPP1\text{FPP}_1 and FPPλ\text{FPP}_\lambda, spreading with rates 11 and λ>0\lambda>0 respectively, on a graph GG. FPP1\text{FPP}_1 starts from a single vertex at the origin oo, while the initial configuration of FPPλ\text{FPP}_\lambda consists of infinitely many \emph{seeds} distributed according to a product of Bernoulli measures of parameter μ>0\mu>0 on V(G)∖{o}V(G)\setminus \{o\}. FPP1\text{FPP}_1 starts spreading from time 0, while each seed of FPPλ\text{FPP}_\lambda only starts spreading after it has been reached by either FPP1\text{FPP}_1 or FPPλ\text{FPP}_\lambda. A fundamental question in this model, and in growth processes with competition in general, is whether the two processes coexist (i.e., both produce infinite clusters) with positive probability. We show that this is the case when GG is vertex transitive, non-amenable and hyperbolic, in particular, for any λ>0\lambda>0 there is a μ0=μ0(G,λ)>0\mu_0=\mu_0(G,\lambda)>0 such that for all μ∈(0,μ0)\mu\in(0,\mu_0) the two processes coexist with positive probability. This is the first non-trivial instance where coexistence is established for this model. We also show that FPPλ\text{FPP}_\lambda produces an infinite cluster almost surely for any positive λ,μ\lambda,\mu, establishing fundamental differences with the behavior of such processes on Zd\mathbb{Z}^d.Comment: 53 pages, 13 figure

    Iron deficiency up-regulates iron absorption from ferrous sulphate but not ferric pyrophosphate and consequently food fortification with ferrous sulphate has relatively greater efficacy in iron-deficient individuals

    Get PDF
    Fe absorption from water-soluble forms of Fe is inversely proportional to Fe status in humans. Whether this is true for poorly soluble Fe compounds is uncertain. Our objectives were therefore (1) to compare the up-regulation of Fe absorption at low Fe status from ferrous sulphate (FS) and ferric pyrophosphate (FPP) and (2) to compare the efficacy of FS with FPP in a fortification trial to increase body Fe stores in Fe-deficient children v. Fe-sufficient children. Using stable isotopes in test meals in young women (n 49) selected for low and high Fe status, we compared the absorption of FPP with FS. We analysed data from previous efficacy trials in children (n 258) to determine whether Fe status at baseline predicted response to FS v. FPP as salt fortificants. Plasma ferritin was a strong negative predictor of Fe bioavailability from FS (P <0·0001) but not from FPP. In the efficacy trials, body Fe at baseline was a negative predictor of the change in body Fe for both FPP and FS, but the effect was significantly greater with FS (P <0·01). Because Fe deficiency up-regulates Fe absorption from FS but not from FPP, food fortification with FS may have relatively greater impact in Fe-deficient children. Thus, more soluble Fe compounds not only demonstrate better overall absorption and can be used at lower fortification levels, but they also have the added advantage that, because their absorption is up-regulated in Fe deficiency, they innately ‘target’ Fe-deficient individuals in a populatio

    Oscillatory Spin Polarization and Magneto-Optic Kerr Effect in Fe3O4 Thin Films on GaAs(001)

    Full text link
    The spin dependent properties of epitaxial Fe3O4 thin films on GaAs(001) are studied by the ferromagnetic proximity polarization (FPP) effect and magneto-optic Kerr effect (MOKE). Both FPP and MOKE show oscillations with respect to Fe3O4 film thickness, and the oscillations are large enough to induce repeated sign reversals. We attribute the oscillatory behavior to spin-polarized quantum well states forming in the Fe3O4 film. Quantum confinement of the t2g states near the Fermi level provides an explanation for the similar thickness dependences of the FPP and MOKE oscillations.Comment: to appear in Phys. Rev. Let

    The First Passage Probability of Intracellular Particle Trafficking

    Full text link
    The first passage probability (FPP), of trafficked intracellular particles reaching a displacement L, in a given time t or inverse velocity S = t/L, can be calculated robustly from measured particle tracks, and gives a measure of particle movement in which different types of motion, e.g. diffusion, ballistic motion, and transient run-rest motion, can readily be distinguished in a single graph, and compared with mathematical models. The FPP is attractive in that it offers a means of reducing the data in the measured tracks, without making assumptions about the mechanism of motion: for example, it does not employ smoothing, segementation or arbitrary thresholds to discriminate between different types of motion in a particle track. Taking experimental data from tracked endocytic vesicles, and calculating the FPP, we see how three molecular treatments affect the trafficking. We show the FPP can quantify complicated movement which is neither completely random nor completely deterministic, making it highly applicable to trafficked particles in cell biology.Comment: Article: 13 pages, 8 figure

    Role of heat generation and thermal diffusion during frontal photopolymerization

    Get PDF
    Frontal photopolymerization (FPP) is a rapid and versatile solidification process that can be used to fabricate complex three-dimensional structures by selectively exposing a photosensitive monomer-rich bath to light. A characteristic feature of FPP is the appearance of a sharp polymerization front that propagates into the bath as a planar traveling wave. In this paper, we introduce a theoretical model to determine how heat generation during photopolymerization influences the kinetics of wave propagation as well as the monomer-to-polymer conversion profile, both of which are relevant for FPP applications and experimentally measurable. When thermal diffusion is sufficiently fast relative to the rate of polymerization, the system evolves as if it were isothermal. However, when thermal diffusion is slow, a thermal wavefront develops and propagates at the same rate as the polymerization front. This leads to an accumulation of heat behind the polymerization front which can result in a significant sharpening of the conversion profile and acceleration of the growth of the solid. Our results also suggest that a novel way to tailor the dynamics of FPP is by imposing a temperature gradient along the growth directio
    • …
    corecore