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Role of heat generation and thermal diffusion during frontal photopolymerization
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Frontal photopolymerization (FPP) is a rapid and versatile solidification process that can be used to fabricate
complex three-dimensional structures by selectively exposing a photosensitive monomer-rich bath to light. A
characteristic feature of FPP is the appearance of a sharp polymerization front that propagates into the bath as a
planar traveling wave. In this paper, we introduce a theoretical model to determine how heat generation during
photopolymerization influences the kinetics of wave propagation as well as the monomer-to-polymer conversion
profile, both of which are relevant for FPP applications and experimentally measurable. When thermal diffusion is
sufficiently fast relative to the rate of polymerization, the system evolves as if it were isothermal. However, when
thermal diffusion is slow, a thermal wavefront develops and propagates at the same rate as the polymerization
front. This leads to an accumulation of heat behind the polymerization front which can result in a significant
sharpening of the conversion profile and acceleration of the growth of the solid. Our results also suggest that a
novel way to tailor the dynamics of FPP is by imposing a temperature gradient along the growth direction.
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I. INTRODUCTION

Photopolymerization is a robust solidification process that
takes place when a photosensitive monomer-rich bath is
exposed to light. The absorption of radiation by this bath
initiates a series of chemical reactions that ultimately leads
to polymerization, crosslinking of a polymer network, or
both. The high rates of polymerization that are obtained
by exposing the bath to high-intensity radiation facilitate
the rapid fabrication of complex three-dimensional network
solids when multifunctional monomers are employed. The
pattern of the resulting network can be precisely controlled
through selective illumination of the bath and the development
(or selective removal) of unpolymerized material. The light-
sensitive monomer thus behaves as a “negative photoresist”
in the context of lithographic processes. Photopolymerization
is particularly attractive from a manufacturing perspective
because it can be performed at room temperature and in
open or controlled atmospheres using readily available UV
light sources and commercial monomer or prepolymer for-
mulations [1–3]. In practice, photopolymerization has been
used in a number of contexts [3], ranging from photolithogra-
phy [4,5], three-dimensional stereolithography [6], rapid pro-
totyping [7,8], coatings [9], adhesives [10], biomedicine [11],
tissue engineering [12,13], and dentistry [14], all of which
demonstrate the great versatility of this fabrication method as
well as the exciting possibility of manufacturing with light.

The absorption of incoming radiation by the monomer-rich
bath leads to the intensity decaying with distance from the
illuminated surface, as expected from the Beer-Lambert law
[Fig. 1(a)]. The gradient in radiation intensity has important
consequences for the solidification process, as it drives the
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directional growth of the network. Due to the overall rate of
polymerization being proportional to the intensity, the network
solid grows from the illuminated surface towards the bath
in a direction that follows the intensity gradient [Fig. 1(b)].
That is, the network grows from regions of high intensity
to low intensity. Under specific experimental conditions
that will be discussed below, the interfacial layer separating
solid-rich and liquid-rich phases can be thin in comparison to
the typical size of the solid. In this case, the rapid transition
from solid to liquid is analogous to a sharp solidification front
and characteristic of a frontal photopolymerization (FPP)
process [4,15,16]. FPP is, thus, defined by the presence of a
sharp polymerization front that propagates into the bath as
a traveling wave, leading to a scenario that is qualitatively
similar to traditional directional solidification [17].

The evolution of the front position can be modelled by first
introducing an order parameter φ measuring the local fraction
of monomer that has been converted into polymer [Fig. 1(c)].
The polymerization front, corresponding to the leading edge
of the solid, can be formally defined as the location where the
order parameter reaches a critical value φc. The position of
the front is, therefore, implicitly defined through φ rather than
determined from an explicit equation of motion.

Practical implementations of FPP greatly benefit from
quantitative knowledge of how the shape of the monomer-to-
polymer conversion profile, as well as the propagation of the
polymerization front, depend on the experimental parameters.
By determining the relationship between exposure time t and
the position of the polymerization front, i.e., the height of the
solid [Fig. 1(d)], Cabral et al. [4] demonstrated that complex,
multilevel patterns (used as microfluidic devices) can be
rapidly produced with FPP. The material properties of the cured
solid, e.g., its elastic modulus [18] or refractive index, can be
strongly dependent on the conversion fraction φ; therefore,
the ability to finely tune the conversion profile is directly
relevant to the fabrication of gradient polymer solids having
material properties that vary in a systematic manner. Indeed, as
demonstrated by Turturro et al. [12,13], FPP offers a flexible
approach for the controlled production of hydrogel scaffolds
with gradient material properties used in tissue engineering.
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FIG. 1. (Color online) Schematic of an FPP process consisting
of a photosensitive monomer-rich bath confined between a substrate
and a transparent upper surface. The system is selectively irradiated
by covering the transparent surface with a photomask. The intensity
of radiation, I , decreases as it passes through the mixture (a), causing
the network solid to grow from the illuminated surface into the bath
(b). The profile of the solid can be represented by an order parameter
φ corresponding to the fraction of monomer that has been converted
into polymer (c). The position of the polymerization front, zf , is
defined as the location where the order parameter reaches a critical
value φc, marked by the dot in panel (c). Tracking the evolution of
zf provides a measure of the height of the solid at each point in
time (d). The change in slope in panel (a) reflects the fact that the
liquid (φ < φc) and solid (φ > φc) phases can have different optical
properties.

The manufacturing potential of FPP has stimulated a
number of works focusing on the development of theoretical
models [16,19–23] that can be used as predictive tools, as
well as experimental research [15,18,24,25] that aims to
identify the key mechanisms underlying photopolymerization.
In previous studies [4,15,18], we have proposed that FPP
requires (i) strong optical attenuation with limited (ii) mass
and (iii) thermal transport. Recently [26], we have confirmed
and established quantitatively that conditions (i) and (ii) are,
indeed, necessary for FPP to take place. One of the purposes of
this paper is to determine whether condition (iii) is also a firm
requirement by systematically investigating, from a theoretical
point of view, the relationship between heat generation during
photopolymerization and the onset and dynamics of FPP. We
will pay particular attention to understanding how the motion
of the polymerization front and the shape of the conversion
profile are influenced by thermal effects, as these quantities
are both relevant for FPP applications and experimentally
measurable [4,18].

In many photopolymerizing systems, exothermic reactions
are a significant source of heat generation [27,28], with the
continual absorption of radiation by the medium also being a

contributing factor [29]. The Arrhenius-like dependence of
various reaction rates introduces a coupling between heat
generation and polymerization, enabling these two mecha-
nisms to interact with each other in a nonlinear fashion. The
main purpose of this paper is, therefore, to investigate how
thermal effects impact front propagation and determine their
consequences for practical manufacturing processes.

It is important to emphasize that despite the coupling
between photopolymerization and temperature, FPP remains
distinct from thermal frontal polymerization (TFP). Whereas
TFP is driven solely by the positive feedback loop arising
from the release of thermal energy, the onset of thermal
polymerization, and Arrhenius kinetics, FPP is driven by the
absorption of radiation and can be terminated by stopping
the illumination. A related process is isothermal frontal
polymerization (IFT). Like TFP, IFP is autocatalytic; however,
IFP is a consequence of the Tromsdorff-Norish effect, whereby
polymerization inhibits terminating reactions by increasing the
local viscosity of the mixture. For a comprehensive review of
these frontal processes, the reader is referred to Pojman [30].

Recent interest in photopolymerization has sparked the
development of a range of models that can be roughly grouped
into two categories depending on their complexity. In one
group are physicochemical models that accurately account for
each of the reaction steps, e.g., photolysis, photoinitiation,
propagation, chain transfer, and termination [31–34]; oxygen
inhibition [35,36]; nonuniform distributions in the length of
polymer chains [37,38]; heat generation and transport [20];
mass transport due to convection and/or diffusion [25,39]; and
optical effects such as scattering [40] and refractive index
modulation [41]. Although such models can offer theoretical
insights into photopolymerization processes, their practical
use is limited by a lack of tractability and large number of pa-
rameters, some of which cannot be measured experimentally.
Overcoming these drawbacks has motivated the development
of a second group of models, the “minimal” or coarse-grained
models. These make use of phenomenological, rather than
explicit, physicochemical descriptions of photopolymerization
and are specifically designed so they only depend on, and
capture the evolution of, experimental observables, e.g., the
height of the growing solid and radiation intensity. In light of
this, we opt to extend the minimal model introduced by Cabral
et al. [4], which is able to accurately capture the experimental
observations of a range of (near isothermal) thiol-ene systems
with low values of φc [4,15,18,26].

In Sec. II of this paper, we outline some key results from the
minimal model of Cabral et al. [4] describing isothermal FPP.
These will serve as baseline solutions that will be compared
to those from an extended thermal model accounting for heat
generation and transport. In Sec. III we present the thermal
model and a detailed analysis. The results are discussed in a
practical context and the paper concludes in Sec. IV.

II. PROBLEM DEFINITION AND OVERVIEW
OF PREVIOUS RESULTS

We consider the physical situation shown in Fig. 1, whereby
a photosensitive monomer-rich bath is placed on a substrate
with a prescribed temperature and covered by a transparent
surface, e.g., a glass slide. The bath is illuminated by a light
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source with a given intensity, thus driving photopolymerization
and the growth of a network solid from the transparent surface
into the bulk.

A simple model to describe this process has been proposed
by Cabral et al. [4], which considers the isothermal evolution of
an order parameter φ = φ(z,t) representing the local fraction
of polymer at a point z in the mixture at time t , and the
intensity of radiation throughout the mixture, I = I (z,t). The
coordinate system is chosen such that z points downwards with
z = 0 corresponding to the bottom of the illuminated surface;
see Fig. 1. We will often refer to φ as the conversion fraction
and the curve φ = φ(z,t∗) for a fixed t∗ as the conversion
profile. The rate of conversion is assumed to be proportional
to an effective, overall, rate constant K with units of m2/J,
the fraction of available monomer (1 − φ), and the intensity of
radiation, I . Mass transport mechanisms, such as convection
and diffusion, are not considered in this model, which is
acceptable when front propagation is comparatively fast [26].
The appropriate evolution equation for the order parameter is
then

∂φ

∂t
= K(1 − φ)I. (1a)

The decay of radiation intensity as it passes through the
mixture is modelled using a generalised Beer-Lambert law
given by

∂I

∂z
= −μ̄(φ)I, (1b)

where μ̄ is the local optical attenuation coefficient. The
dependence of this parameter on φ reflects the fact that the neat
liquid phase (φ = 0) and the fully converted phase (φ = 1)
may have different attenuation coefficients given by μ0 and
μ∞, respectively. To capture this in the model, the local
attenuation coefficient is written as the phase average of μ0

and μ∞; in particular,

μ̄(φ) = μ0(1 − φ) + μ∞φ. (1c)

The model is closed by supplementing it with appropriate
boundary and initial conditions. The initial mixture is assumed
to be unpolymerized. In addition, the intensity of radiation at
the illuminated surface is fixed at I0. Therefore, the following
conditions are imposed:

φ = 0, t = 0, (1d)

I = I0, z = 0. (1e)

It is enlightening to first consider the case of photoinvariant
photopolymerization, whereby the optical attenuation coeffi-
cients of the liquid- and solid-rich phases are equal, that is,
μ0 = μ∞ ≡ μ̄. In this case, the system of equations in Eq. (1)
is readily solved to obtain [16]

φ(z,t) = 1 − exp[−KI0t exp(−μ̄z)], (2a)

I (z,t) = I0 exp(−μ̄z). (2b)

The solution for the order parameter can be written in the form
of a traveling wave; in particular,

φ(z,t) ≡ φ̂(ẑ) = 1 − exp[− exp(−ẑ)], (3)

ẑ
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FIG. 2. (Color online) The conversion profile (solid line) in the
case of photoinvariant photopolymerization, which propagates as
a traveling wave into the bath. The nondimensional coordinate ẑ

measures the distance from the inflection point of φ̂. Regions where
φ̂ � 0 and φ̂ � 1 correspond to the liquid-rich and solid-rich phases,
respectively. Separating these phases is a diffuse interface [shaded
(blue) area], or interfacial layer, of width ŵ. Using basic trigonometry,
the width of this layer can be related to the slope of the conversion
profile at its inflection point (indicated by the dashed line) via
ŵ = 1/|φ̂′(0)|.

where ẑ is a nondimensional coordinate given by

ẑ = μ̄[z − zi(t)], zi(t) = μ̄−1 log(KI0t). (4)

In this case, ẑ measures the distance, normalized by μ̄−1,
from the inflection point of φ, denoted as zi . Hats are used to
distinguish variables that are viewed in a frame of reference
that travels with the wave. The profile of this traveling wave is
shown in Fig. 2; regions in the “upbeam” and “downbeam”
directions, ẑ � 0 and ẑ � 0, correspond to solid-rich and
liquid-rich phases, respectively. The wavefront near ẑ = 0
marks the location of a diffuse interface, or interfacial layer,
that forms between these two phases. As discussed in Hennessy
et al. [26], the nondimensional width of the interfacial layer is
given approximately by the inverse of the derivative of φ̂ at its
inflection point:

ŵ � 1

|φ̂′(ẑ = 0)| . (5)

A geometrical interpretation of this expression is shown
in Fig. 2. We find that ŵ = e1, which, in dimensional
terms, corresponds to w = e1μ̄−1; thus, under these modeling
assumptions, the width is controlled solely by the size of the
optical attenuation coefficient.

In practice, it is convenient to consider a sharp solid-
liquid interface that has zero width, defined according to
the location where φ reaches a critical value φc [4,15,18].
This corresponds to the experimentally relevant cutoff of the
conversion profile upon development, i.e., selective dissolution
of the insufficiently crosslinked liquid-rich phase. We denote
this interface by zf = zf (t) and define it implicitly via
the expression φc = φ[zf (t),t]. Using the solution given in
Eq. (2a), we find that

zf (t) = μ̄−1 log(t/τind), (6)

where

τind = (KI0)−1 log[1/(1 − φc)]. (7)

In order for (6) to be physically relevant, it must be positive.
This requirement is only met if t is greater than the induction
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time τind, i.e., if t > τind. This condition reflects the fact that
a solid-liquid interface does not instantaneously form when
the system is irradiated. Changes in the value of φc, arising
from alternative definitions of the sharp interface based on
physical arguments, only modify zf by an additive constant.
The fundamental behavior of zf is not influenced by changes
in φc; therefore, it does not depend critically on the precise
definition of the sharp solid-liquid interface. Experimentally,
φc is readily inferred by measuring the position of the planar
solidification front zf [4,15] or by resolving the chemical
conversion profile φ at a given time t [18].

The model presented in Eq. (1) has been analyzed in
the case of μ0 	= μ∞ by several authors [4,15,16,26]. In
general, the solutions of the full model are qualitatively
similar to those presented here for the case of photoinvariant
photopolymerization.

The remainder of this paper will focus on extending the
model in Eq. (1) to include thermal effects in order to examine
how these influence the dynamics of FPP, particularly the width
of the interfacial layer, w, and the motion of the sharp solid-
liquid interface, zf .

III. THE ROLE OF THERMAL EFFECTS IN FPP

Extending the minimal model in Eq. (1) to include thermal
effects is relatively straightforward. It involves the introduction
of an equation governing the temperature field T = T (z,t) and
accounting for the temperature dependence of the polymeriza-
tion rate constant, K . The equation for the temperature is based
on conservation of thermal energy and considers three main
mechanisms: (i) transfer of heat via thermal diffusion and heat
generation due to the (ii) exothermic polymerization reaction
and (iii) absorption of incoming radiation. The extended
system of equations is given by

∂φ

∂t
= K(T )(1 − φ)I, (8a)

ρcp

∂T

∂t
= ∂

∂z

(
k̄
∂T

∂z

)
+ (�h)

∂φ

∂t
− ∂I

∂z
, (8b)

∂I

∂z
= −μ̄(φ)I, (8c)

where ρcp and k̄ are the volumetric heat capacity and thermal
conductivity of the mixture, respectively. These material prop-
erties could be written as phase averages similar to the local
absorption coefficient μ̄ in Eq. (1c); however, for simplicity,
they are taken to be constants. The parameter �h = �H/Vm

denotes the enthalpy of polymerization per molar volume of
monomer and has units of J/m3. The temperature-dependent
polymerization rate constant K that appears in Eq. (8a) is
assumed to have an Arrhenius form,

K(T ) = K0 exp

[
Ea

R

(
1

T0
− 1

T

)]
, (8d)

where Ea is an activation energy, R is the ideal gas constant,
and K0 is the value of K at a reference temperature of T0.

The differential equation for the temperature (8b) requires
two boundary conditions: one at the illuminated surface and
one at the bottom of the mixture. We will assume the system
is nonadiabatic so the generated heat can flow out of both

boundaries and into the surrounding environment. At the
illuminated surface, z = 0, we suppose that the temperature
satisfies Newton’s law of cooling:

k̄
∂T

∂z
= h(T − T0), z = 0, (9)

where h is a heat transfer coefficient and T0 is the temperature
of the surface. The temperature at the bottom of the mixture
is assumed to be fixed at T0, which can be controlled, e.g., by
placing the system on a hot plate, as regularly done in practice
instead of placing the entire lithographic system within an
oven. Thus, the second boundary condition can be written as

T = T0, z = H, (10)

where H is the height of the mixture; see Fig. 1. The initial
temperature distribution is given by the steady-state profile in
the absence of irradiation:

T = T0, t = 0. (11)

In addition to these equations, the previous boundary and
initial conditions for the conversion fraction, φ, and the
intensity, I , still apply:

φ = 0, t = 0, (12a)

I = I0, z = 0. (12b)

We also assume that H is sufficiently large so the bottom
of the mixture remains pure in monomer; thus, we suppose
that φ(H,t) = 0 for all time. This condition is pertinent for
FPP processes, since the pattern height is defined by the
front position rather than the thickness of the, e.g., spun cast,
photoresist layer.

This model is expected to remain valid unless the heat
generated by polymerization or radiation absorption is suffi-
ciently large to either (i) activate mass transport mechanisms,
such as buoyancy-driven convection and Soret diffusion, or
(ii) initiate thermal polymerization. We note here that convec-
tion can occur even in the absence of a temperature gradient if
the polymer-rich and monomer-rich phases have sufficiently
different densities. Neglecting thermal and/or compositional
buoyancy-driven convection is an important simplification,
as this mode of mass transport can lead to the onset of a
Taylor-like instability which, in turn, can drive the breakup of
the planar polymerization front [42–44].

From this point forward, we will also assume that the
local absorption coefficient μ̄ is constant in time and space;
thus, we set μ0 = μ∞ ≡ μ̄ and consider only photoinvariant
photopolymerization, which facilitates an analytical study of
this model. As shown by Vitale et al. [18], a photoinvariant FPP
model can accurately capture experimental data, at least for
sufficiently short times. A detailed discussion of the case when
μ0 	= μ∞ is given in Appendix A, where the traveling-wave
conversion profile and position of the sharp interface are
computed for different ratios of μ0 and μ∞. We find that the
temperature influences the dynamics of FPP in similar ways
regardless of the relative size of the attenuation coefficients.
Therefore, the proceeding discussion, which focuses on pho-
toinvariant photopolymerization, is representative of general
photopolymerization.
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A. Scaling

The governing equations are now recast into dimensionless
form by choosing suitable scales for the variables in the
model. This has the advantage of reducing the number of
free parameters in the system and it aids in identifying the
key parameter and time regimes. We scale the time variable
t with (K0I0)−1, which represents the time required for
the conversion profile to first have an inflection point in the
isothermal case; see (4). In addition, distances are written
roughly in terms of the width of the interfacial layer by scaling
the space variable z with the inverse of the mean absorption
coefficient μ̄. The temperature is written as the deviation from
its initial value of T0 and is scaled with �T , which represents
the characteristic increase of the mixture temperature and will
be specified below. Finally, we let K0 and I0 be characteristic
values of the rate constant and intensity, respectively.
Using these scales, we write t = (K0I0)−1t ′, z = μ̄−1z′,
T = T0 + (�T )T ′, I = I0I

′, and K(T ) = K0K
′(T ′), where

primes denote dimensionless quantities. Moreover, we let
H ′ = μ̄H be the dimensionless height of the mixture written
in terms of the reference interfacial width and assume that
H ′ � 1. Using the fact that the dimensionless intensity, or the
transmission, is given by I ′(z′,t ′) = e−z′

, the nondimensional
model can be written, after dropping the primes, as

∂φ

∂t
= K(T )(1 − φ)e−z, (13a)

∂T

∂t
= α2 ∂2T

∂z2
+ �Trxn

�T

∂φ

∂t
+ �Tabs

�T
e−z, (13b)

where α = Ldiff/μ̄
−1 compares the thermal diffusion length,

defined by

Ldiff =
(

k̄

K0I0ρcp

)1/2

, (14)

to the reference interfacial width. The parameter α can also
be interpreted as the relative rate of thermal diffusion to
polymerization, as faster thermal diffusion would imply a
larger value of Ldiff and hence a larger α. The characteristic
temperature increases due to the exothermic polymerization
reaction and the absorption of radiation by the mixture, �Trxn

and �Tabs, are given by

�Trxn = �h

ρcp

, �Tabs = μ̄

ρcpK0
, (15)

respectively. The nondimensional polymerization rate constant
can be written as

K(T ) = exp{γ [1 − (1 + εT )−1]}, (16)

where

γ = Ea

RT0
, ε = �T

T0
, (17)

are nondimensional numbers. We anticipate [18,45] that the
rise in temperature, �T , will be small compared to T0, which
is measured in absolute units (Kelvin). Thus, we have that
ε � 1, in which case the rate constant in Eq. (16) can be
approximated by

K(T ) � exp(ζT ), (18)

where ζ = εγ is the Zeldovich number [30]. Unless otherwise
stated, we will replace (16) with (18) in the analysis below.

The boundary and initial conditions for the nondimensional
model are

∂T

∂z
= βT , z = 0, (19a)

T = 0, z = H, (19b)

φ = 0, t = 0, (19c)

T = 0, t = 0, (19d)

where β is a Biot number given by

β = h

k̄μ̄
. (20)

In the limit β → 0, the illuminated surface becomes a
perfect thermal insulator, whereas if β → ∞, then it becomes
perfectly conducting. As mentioned earlier, we also assume
that φ(H,t) = 0.

B. Analysis

The nonlinear structure of the governing equations prevents
an analytical solution from being easily obtained. Thus, we
decompose the problem into several simpler problems by
making some assumptions about the size of the various
nondimensional numbers and hence the physics that drive the
evolution of the system.

1. Recovery of the isothermal model

We first consider one situation where the thermal model re-
duces to the isothermal model. This occurs when the Zeldovich
number ζ is small. In this case, the polymerization constant can
be written as K(T ) = 1 + O(ζ ); therefore, to leading order,
the reaction rate does not depend on the temperature. Thus,
the polymerization reaction evolves independently from the
temperature field.

2. Reaction-dominated heating

We now suppose that the main source of heat generation
is due to the exothermic photopolymerization reaction. We
still have the freedom to define �T so in this regime we
choose �T = �Trxn. To isolate the effects of this heating
mechanism, the temperature rise due to radiation absorption is
assumed to be small compared to the rise due to the reaction;
thus, it is assumed that �Tabs/�Trxn � 1. This condition is
reasonable if the experiment happens sufficiently rapidly, i.e.,
if t � �h/(I0μ̄). The governing system of equations in this
regime is

∂φ

∂t
= K(T )(1 − φ)e−z, (21a)

∂T

∂t
= α2 ∂2T

∂z2
+ K(T )(1 − φ)e−z, (21b)

where K is given by (18) and with the boundary and initial
conditions defined in Eq. (19).

a. Limit of slow thermal diffusion. We first consider
the limit of slow thermal diffusion relative to the rate of
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polymerization. This regime is described by α � 1. Our
analysis indicates that a thermal boundary layer of width O(α)
rapidly develops near the illuminated surface, influencing the
local polymerization dynamics. However, we find that this
boundary layer does not affect the long-term frontal dynamics
so we do not consider it any further. Away from the illuminated
surface, i.e., for z � α, the diffusive term can be safely
neglected from (21b) and the two equations in Eq. (21) can
be subtracted to obtain ∂(φ − T )/∂t = 0. This equation can
be integrated in time and, by using the fact that T = φ = 0
when z = H , we obtain T = φ for z � α. Therefore, the
temperature rise follows the polymerization reaction: wherever
φ increases, the temperature T does so as well. This solution
for the temperature can be inserted into (21a) to obtain

∂φ

∂t
= K(φ)(1 − φ)e−z. (22)

The right-hand side of this expression suggests that the reaction
can be described by an effective rate constant,

Keff(φ) = eζφ(1 − φ). (23)

This function decreases monotonically if ζ < 1; however,
when ζ > 1 it has a global maximum at φm = 1 − ζ−1. The
solution to (22) can be written as φ(z,t) = φ̂(ẑ), where φ̂ is
determined from an implicit equation involving exponential
integrals [46],

Ei(ζ ) − Ei[ζ (1 − φ̂)] = e−ẑ+ζ , (24)

and ẑ is a traveling-wave coordinate defined by

ẑ = z − log t. (25)

Mathematically, this expression for ẑ is equivalent to (4)
once the nondimensionalization is taken into consideration;
however, the (dimensionless) inflection point of the thermal
conversion profile no longer occurs at ẑ = 0 as in Eq. (4). The
conversion profiles associated with (24) are shown in Fig. 3(a),
where they are plotted in such a way that the inflection point
of φ̂, denoted by ẑi , occurs at the origin. As ζ increases, corre-
sponding to a polymerization rate constant that depends more
strongly on the temperature, the conversion profiles sharpen in
the sense that the interfacial layer becomes narrower. Recalling
that T = φ in this regime, these curves also represent the
temperature distribution throughout the mixture. Furthermore,
this equality implies that the temperature profile settles into a
traveling wave that propagates with the polymerization front.
The sharpening of the interface is due to a retention of thermal
energy behind the wavefront and the Arrhenius kinetics of the
reaction. The retention of heat is caused by the slow rate of
thermal diffusion relative to the rate of polymerization, thus
preventing the generated heat from spreading ahead of the
moving front. The Arrhenius kinetics lead to the conversion
of monomer being more rapid behind the front than ahead
of it, therefore, giving rise to a sharper, albeit asymmetric,
conversion profile.

The dependence of the (nondimensional) width of the
interfacial layer on the Zeldovich number ζ can be examined
by making use of a definition similar to (5), namely

ŵ = 1/|φ̂′(ẑi)|. (26)
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ŵ

0

1

2

3

(a)

(b) (c)

FIG. 3. (a) Conversion profiles in the limit of slow thermal
diffusion, α � 1, in the case of reaction-dominated heating. These are
plotted as a function of the traveling-wave coordinate ẑ = z − log t

and are shifted so the inflection point, ẑi , occurs at the origin.
[(b) and (c)] Dependence of the width of the interfacial layer (b) and
the induction time (c) on the Zeldovich number ζ . The solid line and
symbols in (b) correspond to widths that are computed numerically
and from the approximation in Eq. (29), respectively.

The dimensional width of the interfacial layer is w = μ̄−1ŵ.
The inflection point of φ̂, as well as the value of the
conversion fraction at this point, φ̂(zi) ≡ φ̂i , can be determined
simultaneously by solving the nonlinear system of equations

Ei(ζ ) − Ei[ζ (1 − φ̂i)] = e−ẑi+ζ , (27a)

eζ (φ̂i+1)−2ẑi [1 − ζ (1 − φ̂i)] = e−ẑi+ζ . (27b)

In general, the solution must be obtained numerically. How-
ever, we find that both ẑi and φ̂i vary roughly linearly with ζ ,
suggesting that approximate expressions for these quantities
can be obtained by analyzing their behavior for ζ � 1 and
then extrapolating. Using perturbation methods, the solution
of this system of equations for small values of ζ is found to be

ẑi = ζ (1 − 2e−1) + O(ζ 2), (28a)

φ̂i = 1 − e−1 + 3ζ (e−1 − 1)e−1 + O(ζ 2). (28b)

By inserting the solution for ẑi into (26), we obtain

ŵ � exp[1 − ζe−1(3ζe−1 − ζ + 1)]

1 + ζ − 3ζe−1
. (29)

This approximation breaks down when ζ = (3e−1 − 1)−1,
reflecting the fact that it is technically only valid for ζ � 1.

Figure 3(b) plots widths that are computed numerically
(solid lines) and using the approximation in Eq. (29) (symbols).
The two are in excellent agreement, and they both illustrate
how moderate increases in ζ lead to large decreases in the
width of the interfacial layer.

The (nondimensional) position of the sharp interface
defined by φc and the corresponding induction time can be
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computed directly from (24) and are found to be

zf (t) = log(t/τind), (30a)

τind = e−ζ {Ei(ζ ) − Ei[ζ (1 − φc)]}. (30b)

The position of the interface retains its logarithmic dependence
on time in this thermal regime. Moreover, at each time t , the
speed of the interface is equivalent to that found in isothermal
systems [see (6)]. However, for a given time, the positions of
the interfaces in thermal and isothermal systems will not be the
same due to differences in the induction time τind. In particular,
the accelerated rate of polymerization due to heat release can
significantly reduce the induction time, as shown in Fig. 3(c),
where τind is plotted as a function of ζ for different values of
φc. The monotonic decrease of these curves with ζ reflects
the fact that increasing ζ will lead to a greater increase in the
reaction rate for a given temperature change, thus enabling the
φ = φc threshold to be crossed in a shorter amount of time. The
reduction in the induction time primarily occurs when φc >

1/2. For φc � 1, the induction time is not strongly altered by
thermal effects, even when the coupling between the reaction
and the temperature is strong, i.e., when ζ > 1. This is because
the interface is formed sufficiently quickly when φc � 1 that
strong thermal coupling does not have time to accelerate this
process. For ζ � 1, we find that τind ∼ log[1/(1 − φc)], thus
recovering (7) after the nondimensionalization is taken into
consideration.

b. Limit of fast thermal diffusion. We now briefly discuss
the case when diffusion of heat is fast compared to the
rate of photopolymerization, corresponding to α � 1. In
this case, the generated heat is rapidly spread across the
domain, resulting in small increases in the temperature. It is,
therefore, useful to introduce a rescaled temperature θ defined
by T (z,t) = α−2θ (z,t) so T is small when θ = O(1). The
governing equations then become

∂φ

∂t
= K(α−2θ )(1 − φ)e−z, (31a)

α−2 ∂θ

∂t
= ∂2θ

∂z2
+ K(α−2θ )(1 − φ)e−z, (31b)

subject to

∂θ

∂z
= βθ, z = 0, (31c)

θ = 0, z = H, (31d)

φ = 0, t = 0, (31e)

θ = 0, t = 0. (31f)

We will assume, reasonably, that ζ � α2. Upon neglecting
small terms of O(α−2) and higher, we find that the poly-
merization rate constant no longer depends on the temper-
ature and the leading-order conversion fraction is given by
the nondimensional version of the isothermal solution (2).
Therefore, the sharpness of the front as well as its propagation
remain unchanged in this limit. The temperature evolves
quasistatically so at each moment in time it takes on its

instantaneous steady-state profile given by

θ (z,t) = t−1

(
βz + 1

βH + 1

)
E1(te−H ) − t−1E1(te−z)

+ t−1

(
H − z

βH + 1

)
[βE1(t) − e−t ], (32)

where E1 is an exponential integral that is related to Ei.
This solution does not satisfy the initial condition for the
temperature, namely θ (z,0) = 0, as it is technically only valid
for times which satisfy t � α−2. In fact, there is an initial time
regime given by t = O(α−2) where the temperature undergoes
a rapid transient evolution into the profile given by (32). The
solution in this regime can be resolved by first defining t̃ = α2t

and then letting φ(z,t) = (z,t̃) and θ (z,t) = �(z,t̃) in the
system (31). Upon neglecting terms of O(α−2) and higher, we
find that (z,t̃) ≡ 0 and the new temperature variable solves

∂�

∂t̃
= ∂2�

∂z2
+ e−z, (33a)

with the following conditions:

∂�

∂z
= β�, z = 0, (33b)

� = 0, z = H, (33c)

� = 0, t̃ = 0. (33d)

A series solution to this equation can be obtained; however,
it is not required so we do not present it here. It can be
shown that �(z,t̃ → ∞) = θ (z,t → 0); thus, the solution for
the temperature undergoes a smooth transition from the first
time regime into the next.

c. Effects of moderate thermal diffusion. The dynamics
that occur when the time scale of thermal diffusion is com-
mensurate with that of the photopolymerization reaction, i.e.,
when α = O(1), can be studied by solving (21) numerically.
Figure 4 presents the results from a computation when α = 1,
β = 0, and ζ = 2, and it shows the evolution of the conversion
profile [Fig. 4(a)], the temperature [Fig. 4(b)], the width of
the interfacial layer [Fig. 4(c)], and the position of the sharp
interface [Fig. 4(d)]. The heat that is released from the poly-
merization reaction raises the temperature of the mixture near
the illuminated surface. Despite the nonuniformity of the
temperature profile, photopolymerization still appears to be
frontal, although the conversion profiles are no longer time
invariant when viewed from a frame of reference that travels
with the interface. As Fig. 4(c) shows, the width of the
interfacial layer evolves slowly in time. In particular, the
initial width is reduced in comparison to the isothermal case
as a consequence of the buildup of temperature behind the
wavefront. However, as the system cools due to diffusion, this
layer broadens until it reaches the isothermal width. The widths
are not shown for t < 1, as for these times the conversion
profiles have yet to fully develop an interfacial layer.

The evolution of the sharp interface is shown in Fig. 4(d)
for two values of φc. The temperature field is superimposed
in the background of this panel. Also shown is the evolution
of the same interface as predicted by the isothermal model
(shown as dashed lines). For φc � 1, the initial evolution of
the interfaces in the thermal and isothermal cases is roughly
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FIG. 4. (Color online) Dynamics in the parameter regime α =
O(1), corresponding to similar rates of thermal diffusion and
polymerization, in the case of reaction-dominated heating. [(a) and
(b)] Snapshots of the conversion profile (a) and the temperature
(b) at (nondimensional) times t = 0.01, 0.68, 4.6, 32, 215, 1468,
and 104. The conversion profile settles into a traveling wave.
The temperature increases locally near the illuminated surface at
z = 0. This heat is then distributed throughout the domain via
diffusion and the mixture cools to a uniform temperature of zero.
(c) Evolution of the width of the interfacial layer. (d) Motion of
sharp interfaces defined by two values of φc with the temperature
field superimposed in the background. The dashed line in this panel
denotes quantities computed from the isothermal solution given by
the nondimensionalization of (2). The parameter values are α = 1,
β = 0, ζ = 2, and H = 30.

the same. This is due to the interface being rapidly created and
propagating into the bulk at a speed that keeps it ahead of the
region where the temperature has increased. In the long term,
however, this heated thermal region overtakes the interface,
with the former advancing like t1/2, due to diffusion being the
driving factor, and the latter like log t . Once the interface is
overtaken, it experiences an acceleration due to increased rates
of polymerization and generation of solid-rich phase. As the
system cools, the interface decelerates and begins to travel at
the same speed as in the isothermal case. What is particularly
remarkable is that the gain in position from thermally induced
acceleration is lost during the deceleration phase and, in the
long term, the interface evolves as if the system had been
isothermal the entire time. This return to isothermal behavior
is most easily explained if Fig. 4(d) is interpreted as showing
the time t at which an interface forms at a distance zf from
the illuminated upper surface. Keeping this in mind, we find
that the temperature rise decreases with zf ; therefore, the
polymerization kinetics are not subject to a strong thermal
acceleration far from the upper surface. Hence, the interfaces
should form at roughly the same time as in the isothermal case
at these positions. Similar behavior is seen for larger values
of φc, although the acceleration of the interfacial position
happens immediately due to thermal effects influencing the
polymerization reaction before φc is reached.

From numerical experimentation we have found that the
qualitative aspects of these results remain unchanged under

parameter variation. The most significant change occurs when
β increases. When this is the case, more heat is able to flow
out of the system through the illuminated surface. This reduces
the temperature in the mixture and hence also the interfacial
sharpening and acceleration.

3. Absorption-dominated heating

We now consider the opposite physical situation where the
dominant heating mechanism is radiation absorption rather
than exothermic reactions. Thus, we set �T = �Tabs and
suppose that �Trxn/�Tabs � 1. The governing system of
equations in this case can be written as

∂φ

∂t
= K(T )(1 − φ)e−z, (34a)

∂T

∂t
= α2 ∂2T

∂z2
+ e−z, (34b)

with K as in Eq. (18) and boundary and initial conditions
given by (19). The problem for the temperature decouples
from that for the conversion fraction and it can be solved
analytically using a Fourier series. By solving (34a), we find
that the conversion fraction can be written in terms of the
temperature:

φ(z,t) = 1 − exp

[
−e−z

∫ t

0
eζT (z,s) ds

]
. (35)

Although a closed-form expression for the temperature is
known, it is sufficiently complicated to prevent the integral
in Eq. (35) from being evaluated analytically.

a. Limit of slow thermal diffusion. An interesting solution
can, however, be found in the limit of slow thermal diffusion,
i.e., when α � 1. We find that thermal boundary layers form
at both the top and bottom of the mixture, the former being
analogous to that seen in the case of reaction-dominated
heating and the latter only being noticeable if the mixture is not
very deep. These thin layers do not affect the structure of the
travelling waves; hence, we do not consider them further. In
the interior of the mixture, the diffusive term can be neglected
from (34b) and the simplified equation can be solved to
find T (z,t) � t exp(−z). Thus, the temperature of the mixture
increases linearly with time from the constant absorption of
radiation but decays exponentially from the surface due to
the spatial attenuation of light. In fact, the temperature can
be written as T (z,t) = tI (z), showing that the temperature is
simply a scalar multiple of the intensity profile. By inserting
the solution for the temperature into (35), we find that

φ(ẑ) = 1 − exp{ζ−1[1 − exp(ζ e−ẑ)]}, (36)

where ẑ = z − log t . Strictly speaking, this solution is only
valid for nondimensional times which satisfy t � ε−1, where
ε is given in Eq. (17). For larger times, the temperature is
sufficiently large that the full form of K given by (16) must
be used. The inflection point of (36) satisfies the nonlinear
equation

[ζ − exp(ζe−ẑi )]e−ẑi = −1, (37)

and once it is determined, the width of the interfacial layer can
be evaluated using (26). The location of the sharp interface and
the corresponding induction time can be determined directly
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ŵ

0

2

4

ζ
0 1 2 3 4 5

τ i
nd

0

1

2

3
φc = 0.15
φc = 0.50
φc = 0.95

(a)

(b) (c)

FIG. 5. (a) Conversion profiles in the limit of slow thermal
diffusion, α � 1, in the case of absorption-dominated heating.
These are plotted as a function of the traveling-wave coordinate
ẑ = z − log t and are shifted so the inflection point, ẑi , occurs
at the origin. (b) The width of the interfacial layer as a function of ζ .
The solid line has been computed numerically while the symbols
denote asymptotic approximations given by (39) valid for small
(circles) and large (stars) values of ζ . (c) Dependence of the induction
time on the Zeldovich number ζ for various values of φc.

from (36) and are found to be

zf (t) = log(t/τind), (38a)

τind = ζ−1 log{1 + ζ log[1/(1 − φc)]}. (38b)

The dynamics of the system in this regime are qualitatively
very similar to those in the case of radiation-dominated
heating with slow thermal diffusion. Increasing ζ leads to
conversion profiles with thinner interfacial layers, as shown
in Fig. 5(a). The interfacial sharpening mechanism parallels
that seen previously as well. In particular, the temperature
can be written as T (ẑ) = e−ẑ, which implies that it remains
constant in time when viewed from a frame of reference that
travels with the polymerization front. The slow rate of thermal
diffusion maintains high temperatures behind the front and
low temperatures ahead of it. The polymerization reaction is,
therefore, accelerated behind the interface, whereas it proceeds
at essentially the same rate as in the isothermal case ahead
of it.

The width of the interfacial layer as a function of ζ is
shown in Fig. 5(b). The same qualitative behavior is observed
here as in the case of reaction-dominated heating, although
the dependence of ŵ on ζ is now much weaker. In addition,
the inflection point ẑi varies nonlinearly with ζ , making it
difficult to obtain an approximate expression for this quantity
that is uniformly valid over a wide range of values. However,
it is possible to obtain expressions that are valid for small and
large ζ . For ζ � 1 we find that

ẑi � ζ 2/2, w � (1 + ζ/2 − ζ 2/24)−1e1, (39a)

whereas for ζ � 1,

ẑi � log

(
ζ

log ζ

)
, w � exp(1 − ζ−1)

log ζ
. (39b)

These approximations are compared to numerical solutions in
Fig. 5(b) and the agreement is found to be excellent.

Examining (38) shows that the position of the sharp inter-
face again has a logarithmic dependence on time. Moreover,
the variation of the induction time with ζ and φc, shown
in Fig. 5(c), follows the same trends as in the case of
radiation-dominated heating.

b. Limit of fast thermal diffusion. The analysis of the model
in the case of fast thermal diffusion, α � 1, follows the same
approach as before. We introduce a new temperature variable
θ , defined according to T (z,t) = α−2θ (z,t), and suppose that
t � α−2 and ζ � α2. After neglecting terms of O(α−2)
and higher, we find that the leading-order solution for the
conversion profile is the same as in the isothermal case and
given by (2). The temperature is in a steady state which can be
written as

θ (z,t) = θ∞(z) ≡ −e−z + (1 + βH )−1

× [(1 + βz)e−H + (β + 1)(H − z)]. (40)

The solution in the t = O(α−2) time regime satisfies the same
problem as in Eq. (33). This implies that in the limit of fast
thermal diffusion, the only way to distinguish a system that
is heated primarily by the exothermic polymerization reaction
rather than the absorption of radiation is through the long-
term behavior of the temperature field. In the former case, the
temperature rise at a given point will decay to zero, whereas
in the latter it will reach a constant nonzero value.

c. Effects of moderate thermal diffusion. As before, the
case when α = O(1) can be studied via numerical simulations
of the governing equations (34). Figure 6 shows the results of
a simulation using α = 1, ζ = 1, β = 1, H = 30, and φc =
0.05. The transient dynamics are very similar to those seen
when the heating is due to the polymerization reaction and will
not, therefore, be discussed further. The long-term dynamics
differ considerably, however, due to the nontrivial steady-state
temperature profile, shown in Fig. 6(b). As a result, the
conversion profiles are permanently sharpened [Fig. 6(c)] and
for a given time, solid-liquid interface has always propagated
further into the bulk than in the isothermal case [Fig. 6(d)].
The solid-liquid interface experiences a marked acceleration
that begins at t � 10, corresponding to the time when it is
overtaken by the heated region of the mixture. For larger times
that roughly satisfy t > 103, the interface decelerates slightly
as it propagates into a colder bath, reducing the gain it had
over the isothermal interface.

To further explore the behavior of the system at large times,
we compute asymptotic expressions for the conversion profile,
the width of the interfacial layer, and the position of the
interface by considering the evolution after the temperature has
approximately settled into its steady-state configuration. We
define a time t1 � 1 such that T (z,t) � α−2θ∞(z) for t > t1,
where θ∞ is given by (40). In addition, we let φ(z,t1) = φ1(z).
In practice, φ1 can be determined by solving the transient
problem starting from t = 0; however, a precise functional
form is not required here. If we consider only the linear
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FIG. 6. (Color online) Dynamics in the parameter regime α =
O(1), corresponding to similar rates of thermal diffusion and
polymerization, in the case of absorption-dominated heating. [(a) and
(b)] Snapshots of the conversion profile (a) and the temperature (b) at
(nondimensional) times t = 0.01, 0.68, 4.6, 32, 215, 1468, and 104.
The conversion profile settles into a traveling wave. The temperature
increases until it reaches a steady state. (c) Evolution of the width
of the interfacial layer. (d) Motion of the sharp interface with the
temperature field superimposed in the background. The dashed line
denotes the isothermal solution given by the nondimensionalization
of (2). The symbols in (a), (c), and (d) correspond to asymptotic
solutions valid for large times given by (42). The parameter values
are α = 1, β = 1, ζ = 1, H = 30, and φc = 0.05.

contribution to the temperature profile, which turns out to
be the only relevant contribution for large times, and neglect
exponentially small terms proportional to e−H , then it can be
shown that the order parameter satisfies

∂φ

∂t
� e�H (1 − φ)e−(1+�)z, t > t1 � 1, (41)

with φ(z,t1) = φ1(z), where � = ζα−2(1 + β)(1 + βH )−1.
The long-term solution of this equation is (see Appendix B)

φ(z,t) = 1 − exp{−t exp[�H − (1 + �)z]}, (42a)

for t � t1 � 1. The width of the interfacial layer and the
position of the sharp interface are given by

w = e1(1 + �)−1, (42b)

zf (t) = (1 + �)−1 log

{
e�H t

log[1/(1 − φc)]

}
, (42c)

which hold for t � t1 � 1. Using the expression in Eq. (42c),
it can be shown that the sharp interface reaches the bottom
of the mixture at the same time as in the isothermal case.
This happens when t = eH log[1/(1 − φc)], independent of
ζ . Therefore, the long-term kinetics of wave propagation are
ultimately enslaved to the “cold” boundary at z = H , which
serves to constantly diminish any gains that are obtained
through thermal effects, regardless of the coupling strength
between temperature and the reaction rate.

The asymptotic approximations for the conversion frac-
tion (42a), width of the interfacial layer (42b), and the
position of the sharp interface (42c) are shown as symbols
in Figs. 6(a), 6(c), and 6(d), respectively. The approximations
clearly capture the long-term behavior of the numerical
solution.

IV. DISCUSSION AND CONCLUSION

In this paper we have systematically investigated how
the generation of heat within a photopolymerizing bath can
influence the onset and dynamics of FPP. Heat generation was
assumed to be due to exothermic reactions and the absorption
of radiation. Particular attention was paid to determining the
shape of traveling-wave conversion profiles and the motion of
a sharp solid-liquid interface defined by the location where
the conversion fraction reaches a critical value. Both of these
aspects are directly relevant to the practical use of FPP. For
instance, the position of the sharp interface determines the
patterned size of the growing network solid. The ability to
control the width of the interfacial layer can facilitate the
fabrication of gradient polymer solids with material properties
that vary in a specific manner.

Heat generation during photopolymerization creates a ther-
mal front that propagates into the bath with the polymerization
front. Depending on the relative rates of thermal diffusion
and photopolymerization, the thermal front can advance as
fast, or faster, than the polymerization front. We find, in
particular, that three key regimes emerge. When thermal
diffusion is fast compared to photopolymerization, the thermal
front propagates much more rapidly than the polymerization
front [Fig. 7(a)]. The fast distribution of heat across the
large domain results in small temperature increases that do
not significantly affect the dynamics of FPP. If diffusion is
comparatively slow, the thermal and polymerization fronts
travel together at the same rate [Fig. 7(b)]. The accumulation of
thermal energy behind the polymerization front in combination
with Arrhenius reaction kinetics leads to a sharpening of the
conversion profile. Moreover, as the generated heat cannot
spread ahead of the polymerization front into monomer-rich
fluid, the solid-liquid interface evolves as if the system were
isothermal. Finally, when the time scales of diffusion and
photopolymerization are similar and φc is small [Fig. 7(c)],
the initial propagation of the thermal front will be as fast as
the polymerization front. However, the thermal front, being
driven by diffusion in the long term, eventually overtakes
the polymerization front, at which point the evolution of the
latter becomes nonlogarithmic. Remarkably, the logarithmic
behavior of the polymerization front is recovered for large
times due to the system cooling to its initial temperature or
the temperature settling into a linear profile. For larger values
of φc, the thermal front is always ahead of the polymerization
front due to increased induction times. We found that FPP can
occur in all three of these regimes, although the conversion
profiles and propagation rates can differ slightly from their
isothermal counterparts.

An interesting prediction of our model is that a buildup of
heat behind the polymerization front can influence the shape
of the conversion profile. This was demonstrated particularly
clearly when thermal diffusion and polymerization occur on
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FIG. 7. (Color online) The three thermal regimes predicted from
the model. These are characterised by the size of the nondimensional
parameter α, which measures the rate of thermal diffusion relative
to photopolymerization. Shading is used to describe the temperature,
with dark and light representing hot and cold, respectively. (a) The
thermal front is always ahead of the polymerization front when
diffusion of heat is fast. The rapid spreading of heat leads to small
temperature rises. (b) Slow diffusion of heat causes the thermal
front to propagate with the polymerization front. (c) When the
rates of diffusion and photopolymerization are similar, the thermal
and polymerization fronts can initially travel together. However, the
polymerization front is eventually overtaken.

similar time scales and the generation of heat is primarily due
to radiation absorption; in this case, the presence of a strong
and permanent temperature gradient led to long-term changes
in the width of the interfacial layer as well as the motion of
the sharp solid-liquid interface. Both of these quantities were
found to depend on a single nondimensional number �, which
can be written in terms of dimensional quantities as

� � EaK0I0ρcp

RT 2
0 k̄μ̄3

dT

dz
. (43)

The direct relationship between � and dT /dz suggests
that the dynamics of FPP can be tailored by imposing a
temperature gradient along the growth direction of the solid,
therefore, enabling the coupling between temperature and
photopolymerization to be taken advantage of in a precise
manner. We will explore this novel approach to controlling
FPP in an upcoming publication.

A key assumption underlying the thermal model is that
the temperature increases are sufficiently small that mass
transport, e.g., convection and diffusion, can be neglected.
In the limit of fast thermal diffusion, the temperature increases
are always small so this assumption is likely to hold true.

When thermal diffusion is slow, however, there are long-lived
temperature increases which could be sufficiently large to
activate mass-transport mechanisms. If this were the case, then
the sharpening of the diffuse interface due to thermal effects
would compete with broadening of it due, for example, to mass
diffusion [26]. A beneficial future study would, therefore, be
to further ascertain the relationship between the rate of thermal
diffusion, the onset of mass transport, and the dynamics of FPP.
Further, since many light-driven polymerization processes can
also be thermally initiated if a thermal-sensitive initiator is
added to the reactive mixture, we expect the coupling of
light- and heat-induced polymerization to have important
implications for manufacturing.

The thermal model presented here implicitly assumes that
diffusion of heat is restricted to one spatial dimension, which
strictly applies when the lateral dimensions of the monomer
bath are much greater than its height. In the case of lateral
confinement, e.g., when the photomask aperture is of same
order as the height of the bath, there can be a significant
transfer of heat to the cooler liquid-rich phase through the
sides of the solid that are orthogonal to the illuminated surface.
The resulting lateral temperature gradient, with the center
of the solid being warmer than its sides, in combination
with Arrhenius reaction kinetics, could drive the formation
of a curved solidification front. However, such a scenario
is only likely to occur in the case when the dimensionless
parameter α is order one in size. For large values of α,
diffusion of heat will still be sufficiently fast to keep the
mixture approximately uniform in temperature; when α is
small, diffusion of heat through the sidewalls of the solid
will be too slow to reduce the local temperature and hence
impact the process of photopolymerization. Thus, in both the
large-α and small-α limits, the dynamics of FPP are essentially
one-dimensional, regardless of the lateral size of the solid.

Applying the thermal model in practice requires a careful
consideration of the boundary conditions at the bottom of
the mixture. An underlying assumption of our analysis is
that the bath is sufficiently deep for the temperature at the
bottom to remain constant and equal to its initial value. For
shallower baths, such as those where the depth is on the order
of the interfacial width, i.e., H = O(μ̄−1), there can be a
significant accumulation of heat near the bottom boundary
due to generation or diffusive transport. This, in turn, can lead
to a local increase in temperature if this boundary is at least
partially insulating. Thus, when using the model to describe
shallower mixtures, we recommend replacing the boundary
condition (10) with an analogous version of (9), which would
account for such behavior. Indeed, we have shown that by
modifying the thermal model in this way, it can accurately
capture experimental data obtained in several nonisothermal
FPP systems [45].

This paper highlights how the additional mathematical
tractability afforded by a simple, minimal model of pho-
topolymerization can yield novel insights that are relevant for
practical uses of this process. In addition, the ability to present
our theoretical results in terms of experimentally measurable
quantities will facilitate comparisons between the model and
reality, therefore leading to a better quantitative understanding
of FPP and how it can be used to fabricate state-of-the-art
polymer network solids.
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APPENDIX A: OTHER PHOTOPOLYMERIZATION TYPES

Section III focused on the case of photoinvariant photopoly-
merization, whereby the optical attenuation coefficients of the
solid- and liquid-rich phases are equal. We now generalize
the analysis to the case when these coefficients are not equal
and show that the key results also apply to more general FPP
situations.

It is straightforward to show that in the limit of fast thermal
diffusion, α � 1, the leading-order problem reduces to that of
the minimal model of Sec. II for all combinations of μ0 and
μ∞. Therefore, the system will exhibit isothermal behavior.

Extending the analysis in the limit of slow thermal diffusion,
α � 1, is more technical and will be the focus of the remainder
of this appendix. In general, the analysis cannot be carried
out analytically, although substantial progress can be made
in the limits of strong photodarkening (μ0 � μ∞) and strong
photobleaching (μ∞ � μ0). We find that the width of the
interfacial layer is set by the dominant optical attenuation
coefficient and is a decreasing function of the Zeldovich
number ζ . In addition, the temperature still follows the
conversion and intensity profiles in the cases of reaction-and
absorption-driven heating, respectively, and the scaling laws
for the position of the interface with time remain the same.

1. Strong photodarkening and slow thermal diffusion

We first consider photodarkening photopolymerization by
setting μ̄(φ) = μ∞φ in the thermal model (8). The equations
are then nondimensionalised as in Sec. III A with μ̄ replaced
by μ∞. In the case of reaction-dominated heating, i.e.,
�Tabs/�Trxn � 1, the governing equations become

∂φ

∂t
= eζT (1 − φ)I, (A1a)

∂T

∂t
= eζT (1 − φ)I, (A1b)

∂I

∂z
= −φI, (A1c)

with φ = T = 0 at t = 0 and I = 1 at z = 0. We will assume,
for simplicity, that the domain is unbounded and that φ,T ,I →
0 as z → ∞. We seek a traveling-wave solution to these
equations of the form

φ(z,t) = φ̂(ẑ), (A2a)

T (z,t) = T̂ (ẑ), (A2b)

I (z,t) = żf Î (ẑ), (A2c)

where ẑ = z − zf (t), żf = dzf /dt , and zf is the position of
the sharp solid-liquid interface defined implicitly through φc =
φ[zf (t),t] = φ̂(0). We can immediately deduce that T̂ = φ̂ so
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ẑ − ẑi
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FIG. 8. Travelling-wave conversion profiles in the limit of slow
thermal diffusion in the case of (a) strong photodarkening, reaction-
dominated heating; (b) strong photodarkening, absorption-dominated
heating; (c) strong photobleaching, reaction-dominated heating; and
(d) strong photobleaching, absorption-dominated heating. Each panel
shows three different values of ζ given by 0 (solid), 2 (dash), and
5 (dash-dot). The inflection point ẑi of φ̂ has been chosen as the
origin.

the system reduces to

−dφ̂

dẑ
= eζ φ̂(1 − φ̂)Î , (A3a)

dÎ

dẑ
= −φ̂Î . (A3b)

Upon dividing these equations, we obtain

dÎ

dφ̂
= φ̂ e−ζ φ̂

1 − φ̂
, (A4)

subject to Î (φ̂ = 0) = 0. This equation can be solved to find
that

Î (φ̂) = −ζ−1(1 − e−ζ φ̂) + e−ζ {Ei(ζ ) − Ei[ζ (1 − φ̂)]}. (A5)

By inserting this expression into (A3a), a single differential
equation is obtained for the conversion profile. To close the
problem, the condition φ̂(0) = φc is imposed. Solutions to this
equation are shown in Fig. 8(a).

In the case of absorption-dominated heating,
�Trxn/�Tabs � 1, the leading-order equations are given
by

∂φ

∂t
= eζT (1 − φ)I, (A6a)

∂T

∂t
= φI, (A6b)

∂I

∂z
= −φI, (A6c)

with φ = T = 0 at t = 0, I = 1 at z = 0, and φ,T ,I → 0
as z → ∞. We again seek a traveling-wave solution of the
form (A2c) and immediately find that T̂ = Î . Thus, the
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problem reduces to

−dφ̂

dẑ
= eζ Î (1 − φ̂)Î , (A7a)

dÎ

dẑ
= −φ̂Î . (A7b)

Following the same procedure as above, we find that

Î (φ̂) = ζ−1 log{1 − ζ [φ̂ + log(1 − φ̂)]}, (A8)

thus leading to

dφ̂

dẑ
= −ζ−1{1 − ζ [φ̂ + log(1 − φ̂)]}(1 − φ̂)

× log{1 − ζ [φ̂ + log(1 − φ̂)]}, (A9)

with φ̂(0) = φc. Solutions of this equation are shown in
Fig. 8(b).

2. Strong photobleaching and slow thermal diffusion

In this case we set μ̄(φ) = μ0(1 − φ) in the thermal
model (8) and nondimensionalize using μ0 rather than μ̄.
The analysis proceeds in exactly the same manner as in
Appendix A 1 so we omit the details here. In the limit of
reaction-dominated heating, we find that

T̂ = φ̂, (A10a)

Î = ζ−1(1 − e−ζ φ̂), (A10b)

dφ̂

dẑ
= −ζ−1(1 − φ̂)(eζ φ̂ − 1), (A10c)

with φ̂(0) = φc. The conversion profiles in this case are shown
in Fig. 8(c).

In the limit of absorption-dominated heating, the solution
satisfies

T̂ = Î = ζ−1 log(1 + ζ φ̂), (A11a)

dφ̂

dẑ
= −ζ−1(1 + ζ φ̂)(1 − φ̂) log(1 + ζ φ̂), (A11b)

subject to φ̂(0) = φc. Figure 8(d) shows the conversion profiles
in this case.

3. Determination of the interface position

To complete the analysis of the various models in the limit
of slow thermal diffusion, the position of the sharp interface,
zf , must be determined. A differential equation for this
quantity can be obtained by imposing the boundary condition
I (z = 0,t) = 1 and then writing the intensity as in Eq. (A2c).
This yields żf Î [−zf (t)] = 1, which can be integrated to obtain

t − τind =
∫ 0

−zf (t)
Î (ẑ) dẑ, (A12)

where τind is the induction time. In principle, once zf is known,
the induction time can be computed by imposing the initial
condition φ(z,0) = 0. In all of the cases previously considered,
the intensity in the travelling frame can be written as Î =
Î [φ̂(ẑ)]; thus, using the change of variable s = φ̂(ẑ) and the fact

that φ̂ satisfies an equation of the form dφ̂/dẑ = G(φ̂)Î (φ̂),
the integral in Eq. (A12) can be rewritten as

t − τind =
∫ φc

φ̂[−zf (t)]
G(s) ds. (A13)

This form will be useful when computing approximations for
the interface position.

In the limit of small φc, the motion of the sharp interface
in the case of strong photodarkening is not significantly
influenced by thermal effects. Such behavior was also seen
in the photoinvariant model. To explore this further, we let
φ = φc and ẑ = φ−1

c Z in the differential equations for the
order parameter, (A3a) with (A5), or (A9), and then expand
about small φc. By applying these scalings in Eq. (A13), we
find that

t − τind = φcG(0){1 − [−Zf (t)]} + O
(
φ2

c

)
, (A14)

where Zf (t) = φczf (t). The leading-order solutions are given
by

φ̂(ẑ) = 2φc

2 + φcẑ
, (A15a)

zf (t) = 2(t − τind)

φc(φc + t − τind)
, (A15b)

τind = φc, (A15c)

and are independent of ζ , thus confirming that thermal effects
do not influence the evolution of the interface when φc � 1.
Equation (A15b) predicts that the interface position zf

approaches a constant value as t → ∞. However, this limit
pushes the solution outside of its range of validity and, thus, it
does not capture the behavior of the true solution. Indeed, we
will show below that zf behaves logarithmically for t � 1.

The initial motion of the interface can be determined by
expanding (A13) about zf � 1 to obtain

zf (t) � 1

Î (φc)
(t − τind), (A16)

which is valid for t − τind � 1. In all cases, Î (φc) is a
decreasing function of ζ so stronger thermal effects lead
to higher initial interface velocities. In the case of strong
photodarkening and φc � 1, the initial motion of the interface
is very rapid due to negligible attenuation of radiation in the
liquid-rich phase and the low threshold to form an interface.
In particular, we find that żf (τind) ∼ φ−2

c � 1 in this case.
The long-term motion of the interface can be computed

asymptotically by writing the associated differential equation
in the form

dzf

dt
= 1

Î [φ̂(−zf )]
, (A17)

with zf (0) = 0. For large times, we expect zf � 1. If this is the
case, then the quantity φ̂(−zf ) corresponds to the conversion
fraction far in the upbeam direction. This motivates writing
φ̂(−zf ) = 1 − δ(−zf ), where δ � 1. In the case of strong
photobleaching, the intensity Î can be expanded about small
δ to obtain

żf ∼ ζ

1 − e−ζ
, (A18)
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for radiation-dominated heating, and

żf ∼ ζ

log(1 + ζ )
, (A19)

for absorption-dominated heating. In both cases, the sharp
interface propagates at a constant speed throughout the mixture
at a rate that increases with ζ . In addition, the long-term
behavior is independent of φc, indicating that thermal effects
will eventually become important, even if φc � 1. This
is in stark contrast to what is found for photoinvariant
photopolymerization, where the velocity is given by żf = t−1,
which not only decreases with time but is also independent
of ζ .

Obtaining the long-term behavior of the interface in the case
of strong photodarkening is more involved, as the intensity Î

is singular when φ̂ = 1 and, therefore, it cannot simply be
expanded about small δ. Instead, a precise functional form
for δ = δ(ẑ), valid for ẑ � 0, will be determined and used to
construct the leading-order part of (A17), which then can be
integrated. In particular, we let φ̂(ẑ) = 1 − δ(ẑ) in Eq. (A3a)
with (A5), or (A9), and then expand about δ � 1. For reaction-
dominated heating, we find that

δ(ẑ) ∼ exp{−ζ−1[exp(ζAe−ẑ) − 1]}, ẑ � 0, (A20)

whereas for absorption-dominated heating,

δ(ẑ) ∼ exp[g(ζ ) − Ae−ẑ], ẑ � 0, (A21)

where A > 0 is a constant of integration and g is a complicated
function of ζ with the property that g(0) = 0. In both cases,
the leading-order part of (A17) is given by żf ∼ B(ζ )e−zf ,
where B is a constant depending on ζ . The long-term motion
of the interface is, therefore, logarithmic and given by

zf (t) ∼ log t + log B(ζ ), t � 1. (A22)

Differentiating this expression with respect to time shows the
the velocity of the interface is independent of ζ , similarly to
the case of photoinvariant photopolymerization. However, the
time at which the transition to logarithmic behavior occurs
does depend on ζ .

The asymptotic expressions for the position of the sharp
interface are validated using numerical simulations of the
thermal model in the limit of slow thermal diffusion. Figure 9
shows the evolution of this interface in the cases of strong
photodarkening and strong photobleaching with radiation- and
absorption-dominated heating. In all cases, we have set ζ = 2
and φc = 0.05. The asymptotic solutions (dashed lines) are in
excellent agreement with the numerics (solid lines). Moreover,
Figs. 9(a) and 9(b) clearly show the transition from algebraic
behavior, given by (A15b), to logarithmic behavior predicted
for photodarkening photopolymerization.

APPENDIX B: THE UNIVERSAL LARGE-TIME
LIMIT OF THE MINIMAL MODEL

A remarkable property of the minimal model in the case
of photoinvariant photopolymerization is that the conversion
fraction approaches the same travelling-wave profile regard-
less of the initial condition. This implies that the initial
evolution of the system is eventually forgotten about. To see

10
−4

10
−2

10
0

10
2

0

20

40

t− τind

z f
(t

)

10
−4

10
−2

10
0

10
2

0

20

40

t− τind

z f
(t

)

0 1 2 3
0

2

4

6

8

t− τind

z f
(t

)

0 1 2 3
0

2

4

6

8

t− τind

z f
(t

)

(a) (b)

(c) (d)

FIG. 9. (Color online) Evolution of the sharp solid-liquid inter-
face in the limit of slow thermal diffusion in the case of (a) strong pho-
todarkening, reaction-dominated heating; (b) strong photodarkening,
absorption-dominated heating; (c) strong photobleaching, reaction-
dominated heating; and (d) strong photobleaching, absorption-
dominated heating. Solid lines have been computed from numerical
simulations of the thermal model and dashed lines correspond to
asymptotic solutions. In all cases, ζ = 2 and φc = 0.05.

this in detail, consider the initial value problem given by

∂φ

∂t
= A(1 − φ)e−Bz, (B1)

subject to φ(z,t1) = φ1(z), where A and B are arbitrary
constants. It is reasonable to assume that φ1 satisfies
φ1(z → ∞) → 0, so no polymerization has taken place in
the far field. The solution of this problem is given by

φ(z,t) = 1 − [1 − φ1(z)] exp[−A(t − t1)e−Bz]. (B2)

We rewrite this solution in terms of the coordinate ẑ=z−s(t),
where

s(t) = B−1 log[A(t − t1)], (B3)

to obtain

φ(ẑ,t) = 1 − {1 − φ1[ẑ + (t)]} exp(−e−Bẑ). (B4)

At the moment, s has no physical meaning, as it corresponds
to neither the inflection point of the conversion profile nor the
point where a critical value of φc is obtained. By taking the
limit t � t1, we find that

s = B−1 log(At) + O(t1/t) � 1 (B5)

and hence

φ ∼ 1 − exp(−e−Bẑ), t � t1. (B6)

Therefore, in the long-time limit, s converges to the inflection
point and the conversion profile becomes independent of the
initial condition.
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