383 research outputs found

    Implications of the Floral Herbivory on Malpighiacea Plant Fitness: Visual Aspect of the Flower affects the attractiveness to Pollinators

    Get PDF
    The Malpighiaceae family is species-rich and is abundant in Brazil. Malpighiaceae flowers provide oil and pollen to pollinating bees and serve as food for herbivorous insects, which damage the floral structures. Although common in the Cerrado, florivory is still poorly studied. In the present study, we evaluated the effect of florivory in one of the most common genera of Malpighiaceae in the Cerrado (Banisteriopsis) and the impact of florivory on fruiting. The florivory rate was quantified in flowers of B. malifolia belonging to two morphotypes and in flowers of B. variabilis. Additionally, a petal-removal experiment was performed, which simulated the presence of damage in the flowers. The manipulation involved a control group with intact flowers, a group without the standard petal and a group of flowers without common petals. The florivory in the petals (floral area lost) differed between the species, and B. malifolia was the most damaged. The experimental manipulation revealed that intact flowers had a higher fruiting rate compared with the remaining flowers. These results reinforce the concept that florivory renders flowers less attractive to pollinating bees, which negatively affects the fruiting rate and the reproductive success of plants. We suggest that basic studies (such as the present investigation) be extended to further elucidate the effect of interactions between pollinators, plants, and herbivores on the general structure of communities

    The effects of florivory and inbreeding on reproduction in hermaphrodites of the wild strawberry, Fragaria virginiana

    Get PDF
    Recently, the biotic context for sexual and mating system evolution in plants has received special attention, yet the significance of interactions with antagonists has only begun to be revealed. We investigated the effect of florivory on reproduction and inbreeding depression by simulating damage on selfed and outcrossed progeny of hermaphrodites of Fragaria virginiana and recording the response of reproduction, as well as measuring tolerance to florivory. While both florivory and inbreeding affected reproduction, their effects were independent with respect to sexual traits but not an asexual trait; inbreeding depression was florivory- and family-dependent, specifically, for plantlet production. Plants were intolerant to florivory in terms of flowers, moderately tolerant in terms of fruit, and most tolerant in terms of plantlets. However, only under severe damage was intolerance statistically significant. Inbreeding did little to change these patterns. Our findings suggest that florivory does not consistently influence inbreeding depression, but its indirect effects on plantlet production could lead to increased geitonogamous selfing. This, combined with previous work demonstrating increased autogamous selfing following weevil damage and knowledge of the mechanism of sex determination in this system, suggests that damage by weevils could contribute to the maintenance of hermaphrodites in gynodioecious F. virginiana populations

    Florivory Shapes both Leaf and Floral Interactions

    Get PDF
    Florivory, or the consumption of flowers, is a ubiquitous interaction that can reduce plant reproduction directly by damaging reproductive tissues and indirectly by deterring pollinators. However, we know surprisingly little about how florivory alters plant traits or the larger community of species interactions. Although leaf damage is known to affect floral traits and interactions in many systems, the consequences of floral damage for leaf traits and interactions are unknown. We manipulated floral damage in Impatiens capensisand measured effects on floral attractive traits and secondary chemicals, leaf secondary chemicals, floral interactions, leaf herbivory, and plant reproduction. We also examined relationships between early season floral traits and floral interactions, to explore which traits structure floral interactions. Moderate but not high florivory significantly increased relative selfed reproduction, leading to a shift in mating system away from outcrossing. Florivory increased leaf secondary compounds and decreased leaf herbivory, although mechanisms other than leaf chemistry may be responsible for some of the reduced leaf damage. Florivory altered four of seven measured interactions, including increased subsequent florivory and reduced flower spiders, although only leaf damage effects were significant after correcting for multiple tests. Pretreatment concentrations of floral anthocyanins and condensed tannins were associated with reduced levels of many floral antagonisms, including florivory, nectar larceny, and flower spider abundance, suggesting these traits play a role in floral resistance. Overall, our results indicate a broad range of community and potential evolutionary consequences of florivory through structuring subsequent floral interactions, altering leaf secondary chemicals, and shaping leaf herbivory

    The importance of shrubland and local agroecological practices for pumpkin production in sub-Saharan smallholdings

    Get PDF
    Land-use and local field management affect pollinators, pest damage and ultimately crop yields. Agroecology is implemented as a sustainable alternative to conventional agricultural practices, but little is known about its potential for pollination and pest management. Sub-Saharan Africa is underrepresented in studies investigating the relative importance of pests and pollinators for crop productivity and how this might be influenced by surrounding landscapes or agroecological practices. In Malawi, we selected 24 smallholder farms differing in landscape-scale shrubland cover, implementation of manual pest removal as an indicator of an agroecological pest management practice, and the number of agroecological soil practices employed at the household level, such as mulching, intercropping and soil conservation tillage. We established pumpkin plots and assessed the abundance and richness of flower visitors and damage of flowers (florivory) caused by pest herbivores on flowers. Using a full-factorial hand pollination and exclusion experiment on each plot, we investigated the relative contribution of pollination and florivory to pumpkin yield. Increasing shrubland cover decreased honeybee abundance but increased the abundance and richness of non-honeybee visitors. Manual removal of herbivores considered to be pests reduced flower visitors, whereas more agroecological soil management practices increased flower visitors. Neither shrubland cover nor agroecological management affected florivory. Pollinator limitation, but not florivory, constrained pumpkin fruit set, and increasing visitor richness decreased the relative differences between hand-and animal-pollinated flowers. We recommend improved protection of shrubland habitats and increasing agroecological soil practices to promote pollinator richness on smallholder farms

    Japanese Beetles’ Feeding on Milkweed Flowers May Compromise Efforts to Restore Monarch Butterfly Habitat

    Get PDF
    The eastern North American migratory population of monarch butterflies (Danaus plexippus) is in serious decline. Habitat restoration, including adding millions of host plants to compensate for loss of milkweed in US cropland, is a key part of the international conservation strategy to return this iconic butterfly to sustainable status. We report here that Popillia japonica, a polyphagous, invasive beetle, aggregates and feeds on flowers of Asclepias syriaca, the monarch’s most important larval food plant, reducing fruiting and seed set by \u3e90% and extensively damaging milkweed umbels in the field. The beetle’s ongoing incursion into the monarch’s key breeding grounds in the US Midwest is likely to limit pollination and outcrossing of wild and planted milkweeds, reducing their capacity to colonize new areas via seeds. Popillia japonica represents a previously undocumented threat to milkweeds that should be considered in models for monarch habitat restoration

    Leaf Herbivory Induces Resistance Against Florivores In \u3ci\u3eRaphanus sativus\u3c/i\u3e

    Get PDF
    Florivory can have significant negative effects on plant fitness, driving selection for resistance traits in flowers. In particular, herbivory to leaves may induce resistance in flowers because herbivores on leaves often become florivores on flowers as plant ontogeny proceeds. The literature on inducible resistance in floral tissues is limited, so we used a series of experiments to determine whether prior leaf damage by Spodoptera exigua (Hübner) caterpillars affected florivore preference and performance on wild radish (Raphanus sativus L.). We found that Spodoptera exigua larvae preferred petals from control plants versus petals from plants exposed to prior leaf damage, and that larvae gained more mass on petals from control plants, although this depended on the presence of anthocyanins in the petals. Our results suggest that leaf damage can induce changes in petals that reduce Spodoptera exigua larval fitness

    Settling on leaves or flowers: herbivore feeding site determines the outcome of indirect interactions between herbivores and pollinators

    Get PDF
    Herbivore attack can alter plant interactions with pollinators, ranging from reduced to enhanced pollinator visitation. The direction and strength of effects of herbivory on pollinator visitation could be contingent on the type of plant tissue or organ attacked by herbivores, but this has seldom been tested experimentally. We investigated the effect of variation in feeding site of herbivorous insects on the visitation by insect pollinators on flowering Brassica nigra plants. We placed herbivores on either leaves or flowers, and recorded the responses of two pollinator species when visiting flowers. Our results show that variation in herbivore feeding site has profound impact on the outcome of herbivore–pollinator interactions. Herbivores feeding on flowers had consistent positive effects on pollinator visitation, whereas herbivores feeding on leaves did not. Herbivores themselves preferred to feed on flowers, and mostly performed best on flowers. We conclude that herbivore feeding site choice can profoundly affect herbivore–pollinator interactions and feeding site thereby makes for an important herbivore trait that can determine the linkage between antagonistic and mutualistic networks.</p

    Florivory as an opportunity benefit of aposematism

    Get PDF
    A.D.H. was supported by the European Research Council (Advanced Grant 250209 to A. Houston) and fellowships from the Wissenschaftskolleg zu Berlin and the Natural Environment Research Council (NE/L011921/1).Inconspicuous prey pay a cost of reduced feeding opportunities. Flowers are highly nutritious but are positioned where prey would be apparent to predators and often contain toxins to reduce consumption. However, many herbivores are specialized to subvert these defenses by retaining toxins for their own use. Here, we present a model of the growth and life history of a small herbivore that can feed on leaves or flowers during its development and can change its primary defense against visual predators between crypsis and warning coloration. When herbivores can retain plant toxins, their fitness is greatly increased when they are aposematic and can consume flowers. Thus, toxin sequestration leading to aposematism may enable a significant opportunity benefit for florivory. Florivory by cryptic herbivores is predicted when toxins are very potent but are at high concentration only in flowers and not in leaves. Herbivores should usually switch to eating flowers only when large and in most conditions should switch simultaneously from crypsis to aposematism. Our results suggest that florivory should be widespread in later instars of small aposematic herbivores and should be associated with ontogenic color change. Florivory is likely to play an underappreciated role in herbivorous insect life histories and host plant reproductive success.Publisher PDFPeer reviewe
    corecore