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Recently, the biotic context for sexual and mating system evolution in plants has received special 

attention, yet the significance of interactions with antagonists has only begun to be revealed. We 

investigated the effect of florivory on reproduction and inbreeding depression by simulating 

damage on selfed and outcrossed progeny of hermaphrodites of Fragaria virginiana and 

recording the response of reproduction, as well as measuring tolerance to florivory. While both 

florivory and inbreeding affected reproduction, their effects were independent with respect to 

sexual traits but not an asexual trait; inbreeding depression was florivory- and family-dependent, 

specifically, for plantlet production. Plants were intolerant to florivory in terms of flowers, 

moderately tolerant in terms of fruit, and most tolerant in terms of plantlets. However, only under 

severe damage was intolerance statistically significant. Inbreeding did little to change these 

patterns.  Our findings suggest that florivory does not consistently influence inbreeding 

depression, but its indirect effects on plantlet production could lead to increased geitonogamous 

selfing. This, combined with previous work demonstrating increased autogamous selfing 

following weevil damage and knowledge of the mechanism of sex determination in this system, 

suggests that damage by weevils could contribute to the maintenance of hermaphrodites in 

gynodioecious F. virginiana populations. 
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1.0  INTRODUCTION 

The biotic context for sexual and mating system evolution in plants has received special attention 

in the last several years.  While interactions with mutualists have long been recognized to be 

important in influencing key parameters of these evolutionary dynamics (Ashman 2000; Barrett 

2003; Karron et al. 2004) the significance of interactions with antagonists has only just begun to 

be revealed (McCall and Irwin 2006; Ashman and Penet 2007; Steets et al. 2007; Wise and 

Cummins 2007).  With respect to sexual system evolution, Ashman (2002; 2006) outlined the 

myriad ways that antagonists can affect the evolution of dioecy (separate males and females) 

from hermaphroditism (combined sexes).  In particular, antagonists can affect the first step in 

this transition, that is, the evolution of gynodioecy (females and hermaphrodites) from 

hermaphroditism, via specific effects on relative seed production of the sex morphs, the selfing 

rates of hermaphrodites, and the expression of inbreeding depression in selfed offspring 

(Ashman 2002).  While evidence for the effects of antagonists on seed production is substantial 

in hermaphroditic systems (e.g., Krupnick and Weis 1999; Mothershead and Marqui 2000; 

Sánchez -Lafuente 2007; Wise and Cummins 2007), and is steadily growing in gynodioecious 

ones (Puterbaugh 1998; Marshall and Ganders 2001; Collin et al. 2002; Ashman et al. 2004), 

only a few studies have addressed the effects of antagonists on the latter two components, and 

these studies were mostly conducted in hermaphroditic systems (Krupnick and Weis 1999; 

Juenger and Bergelson 2000a; Irwin 2003; but see Penet et al. 2008).  Thus, whether plant-
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antagonist interactions impact the first step in the evolution of dioecy via effects on mating 

system or inbreeding depression remains a largely open question. 

Herbivores or florivores can affect the relative frequency of females and hermaphrodites 

in a gynodioecious population when their interaction with plants differs between sex morphs.  In 

particular, if hermaphrodites are less resistant to or less tolerant of damage than females then 

females may more easily achieve the seed advantage needed for their maintenance and spread 

when herbivores are present (Ashman 2002; Cole and Ashman 2005).  This may indeed be the 

case because herbivores preferentially attack hermaphrodite over female plants in many plant-

herbivore systems (reviewed in Ashman 2002), and this is especially prominent in the case of 

damage to flowers or seeds, as seen in studies of flower-clipping weevils in Fragaria virginiana 

(Ashman et al. 2004), flower-visiting ants in Eritrichium aretoide (Puterbaugh 1998), and seed-

consuming weevils in Sidalcea hendersonii (Marshall and Ganders 2001).  Whether sex morph-

differential damage leads to differences in seed production is in part due to sex differences in 

tolerance of damage (Cole and Ashman 2005), but little is known about the extent or cause of 

variation in tolerance in sexually dimorphic species (but see Ashman et al. 2004; Cole and 

Ashman 2005).  Regardless, in a few cases damage has been demonstrated to increase females’ 

contribution to the seed pool relative to hermaphrodites’ (Puterbaugh 1998; Collin et al. 2002).  

In addition to the relative quantity of seeds produced by the sex morphs, the relative quality of 

the seeds is also an important contributor to sexual system evolution (reviewed in Charlesworth 

1999).  Herbivores may primarily affect seed quality by influencing the selfing rate of self-

compatible hermaphrodites and the expression or magnitude of inbreeding depression of selfed 

offspring. 
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Herbivore damage may modify hermaphrodite selfing rates by altering flowering 

characteristics such as display size or the proximity of anthers and stigmas within flowers and/or 

by influencing pollinator movements between or within flowers on a plant (Karron et al. 2004; 

Ivey and Carr 2005; Penet et al. 2008).  Although not in all cases, selfing rate can increase with 

herbivore damage, e.g., in several hermaphrodite species (Ivey and Carr 2005; Steets et al. 2006; 

Schutzenhofer 2007) and one gynodioecious species (Penet et al. 2008).  In the latter case, such 

an effect could contribute to the maintenance of females.  In fact, antagonists may have their 

greatest impact on the first step in the evolution of dioecy if the antagonist-mediated increase in 

selfing is combined with an antagonist-mediated increase in the expression of inbreeding 

depression (Ashman 2002). 

It is well known that the expression of inbreeding depression can vary with 

environmental conditions (Hauser and Loeschcke 1996; Cheptou et al. 2000; Steets et al. 2006; 

Botham et al. 2009), and the herbivore environment is no exception (Carr and Eubanks 2002; 

Ivey et al. 2004; Koslow and Clay 2007; Leimu et al. 2008); however, the direction of the effect 

can be quite variable.  For instance, in Lychnis flos-cuculi inbreeding depression was reduced in 

the presence of snail herbivores because the snails depressed fruit production of outcrossed 

plants more than selfed plants (Leimu et al. 2008).  In contrast, inbreeding depression in Mimulus 

guttatus increased in the presence of spittlebug herbivores.  Spittlebugs increased (or had no 

effect on) flower production and/or aboveground biomass of outcrossed plants but reduced these 

traits in selfed plants (Carr and Eubanks 2002; Ivey et al. 2004).  The mechanism(s) underlying 

such variable responses is not often known, but they could be a function of variation in 

inbreeding history of the population, individuals studied, or in the type of herbivore involved 

(e.g., Ivey et al. 2004; Leimu et al. 2008).  In addition, since mating system can affect both plant 
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resistance to (Strauss and Karban 1994; Hayes et al. 2004; Du et al. 2008) and tolerance of 

herbivore damage (Carr and Eubanks 2002; Hull-Sanders and Eubanks 2005), either could 

underlie an herbivore-context dependency of inbreeding depression.  A recent review (Núñez-

Farfán et al. 2007), however, provides some insight into these two mechanisms and suggests that 

while inbreeding generally has mixed effects on resistance, it consistently has a negative effect 

on tolerance.  However, because all the studies on the effects of herbivore context on inbreeding 

depression have been conducted in hermaphroditic species, we do not yet know whether such 

effects occur in gynodioecious species, nor if they occur in a direction that would compound the 

antagonist-mediated effects on selfing rate and thus, ultimately, could impact sexual system 

evolution. 

In this study we aim to address this gap in our understanding of the role of the antagonist 

context in the evolution of gynodioecy by examining the effect of simulated weevil florivory on 

reproduction and the expression of inbreeding depression in Fragaria virginiana.  The specific 

questions we addressed were:  (1) Does florivory affect reproductive allocation of hermaphrodite 

plants and does the impact of florivory depend on inbreeding level, i.e. the cross type that 

produced the plant, or severity of damage?  (2) Does the magnitude of inbreeding depression 

depend on florivore environment?  And lastly, (3) does plant tolerance to florivory depend on the 

inbreeding level, severity of damage, or both? 
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2.0  MATERIALS AND METHODS 

2.0.1 Study system 

Fragaria virginiana is an herbaceous perennial native to the eastern United States (Staudt 

1989) with a gynodioecious to subdioecious sexual system (Staudt 1989; Spigler et al. 2008).  

Thus, populations can contain females, hermaphrodites, males (pollen-bearing plants that 

produce no fruit), and occasional neuters (plants that produce neither pollen or fruit) (Stahler et 

al. 1995; Ashman 1999; Spigler et al. 2008).  Recent work suggests that sex is determined by two 

linked loci (or gene regions) with major effects (Spigler et al. 2008), with limited recombination 

between the loci that can explain the variation in sexual phenotypes observed in wild 

populations.  

In northwestern Pennsylvania plants flower between April and June, and produce 

approximately 12-14 flowers per ramet (Ashman 2003).  Hermaphrodites produce perfect 

flowers and are self compatible.  Both autogamous and geitonogamous self pollination are 

possible (Penet et al. 2008), and the rate of self fertilization for hermaphrodites in the source 

population of the material studied here (‘PR’ Ashman 1999) is 0.722 ± 0.004 (family-level 

selfing ranges from 0.167 to 1) (A. S. Rohde, C. L. Collin, L. Penet, A. Johnson and T-L. 

Ashman, unpublished data).  Starting in the spring and continuing through the summer, F. 

virginiana also reproduces asexually via plantlets produced along stolons. 
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Anthonomus signatus (Coleoptera, Curculionidae), the strawberry bud-clipping weevil, is 

a significant florivore on F. virginiana (Kovach et al. 1999; Ashman and Penet 2007).  A. 

signatus females oviposit in flower buds and then sever the pedicel, excising the bud.  Larvae 

develop in the excised bud.  Hermaphrodite plants can suffer consistent and high levels of 

damage by A. signatus (Ashman and Penet 2007).  For instance, up to 70% of hermaphrodites in 

a population can be damaged, and on average these experience a damage intensity of 4.3 ± 0.4 

buds clipped per plant (Penet et al. 2008).  In extreme cases all flowers per plant can be clipped 

(Ashman et al. 2004; Ashman and Penet 2007).  Previous experiments have confirmed that plants 

respond to simulated weevil clipping (i.e., clipping buds off with forceps) similarly to natural 

clipping by A. signatus (Ashman et al. 2004). 

2.0.2 Experimental design 

2.0.2.1 Production of experimental plants 

Hermaphrodite genotypes that are the subject of this experiment were the same as those used in 

Botham et al. (2009) and thus the methods for creating them are described only briefly here; 

refer to Botham et al. (2009) for additional details.  We selected several hermaphrodite F. 

virginiana that were known to be capable of producing fruit.  These plants originated from a wild 

population (‘PR’, in Ashman 1999) but have been under greenhouse cultivation for several years.  

In the greenhouse at the University of Pittsburgh we emasculated flowers of each hermaphrodite 

prior to anthesis and conducted hand pollinations with either self pollen or a mixture of pollen 

from other pollen-bearing plants (i.e., hermaphrodites and males) from the same population of 

origin to produce plants of two ‘inbreeding levels’ (selfed and outcrossed).  Hereafter, the 

outcrossed and selfed seeds of a given hermaphrodite genotype are referred to as a ‘maternal 
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family’.  Individual seeds within maternal families are referred to as outcrossed or selfed 

‘progeny’.  We chose eight maternal seed families from these crosses for this study based on two 

conditions: 1) they had enough seeds to conduct the study, and 2) they presented signs consistent 

with inbreeding depression at the seedling stage in a pilot study.  While this may result in an over 

estimation of inbreeding depression for the population of origin, the main purpose of the current 

study was not to gain an estimate of the magnitude of inbreeding depression per se, but to 

determine whether florivory could alter its expression or if there was an effect of inbreeding on 

tolerance to florivory.  

In July 2007 we randomly selected five selfed and five outcrossed progeny from each 

maternal family and generated nine clonal replicates from each (hereafter, ‘clones’), for a total of 

684 clones.  Clones were initially grown in 4 cm tall pots of a 2:1 mix of Fafard #2 soil:sand.  

Approximately two months later these clones were transplanted into 10 cm tall pots of the same 

potting soil.  After an additional two months of growth in the greenhouse under natural day 

lengths (9.5-11 hours) and temperatures of 7-20⁰ C, we transferred plants to an outside plot for 

overwintering.  In March 2008 we returned all clones to the greenhouse, where they were 

maintained under natural day lengths (12-14 hours) and temperatures of 10-20⁰ C for the 

duration of the experiment.  At this time, we randomly assigned each plant to one of three blocks 

and to one of three florivory treatments (described below). Each block contained one clone of 

each progeny genotype-by-florivory treatment.  We watered plants daily and fertilized twice 

during the experiment, once in the Fall with an application of 50 ppm Plantex© (20-20-20 N-P-

K) and once in the Spring with 0.104 g of 100-day release Nutricote© fertilizer beads (13-13-13 

N-P-K).  We hand-pollinated flowers three times a week with pollen collected from a pool of 

pollen donors to ensure full fruit set. 
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2.0.2.2 Florivory treatment 

To create the florivory treatments we clipped buds from plants with forceps when buds were 

within two days of opening.  To create the ‘average’ damage level we clipped four buds per 

clone, and to create the ‘severe’ damage level we clipped eight buds per clone.  The ‘none’ 

plants receive no clipping (i.e., control).  The average treatment is similar to the average damage 

observed in hermaphrodites in natural populations (Ashman et al. 2004), whereas the severe 

treatment reflects ~1 SD greater than the mean, still a natural level of damage (Ashman, personal 

observation).  

2.0.2.3 Reproductive and vegetative traits scored 

For each clone we recorded sexual (number of inflorescences, flowers, and fruits produced) and 

asexual (number of stolons and plantlets produced) traits and plant size.  We used the product of 

the number of leaves and the diameter of the largest leaflet at the end of the experiment as an 

estimate of plant vegetative size.  This value is a good estimate of above-ground biomass in F. 

virginiana (Ashman 1999).  In addition, we produced an index of relative allocation to sexual vs. 

asexual reproduction (hereafter, ‘RSAR’), based on meristem allocation.  In strawberries, an 

axillary meristem can develop into an inflorescence or a stolon (Hancock 1999).  For each plant 

we calculated the proportion of axillary meristems allocated to sexual reproduction as the 

number of inflorescences divided by the sum of the number of inflorescences and stolons.  Thus, 

a value of 0.5 for RSAR indicates a plant allocated an equal proportion of its meristems to sexual 

and asexual reproduction, a value >0.5 indicates greater allocation of meristems to sexual 

reproduction, and a value <0.5 indicates greater allocation of meristems to asexual reproduction. 
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2.0.3 Analysis 

2.0.3.1 Reproductive allocation 

To determine whether florivory affects reproductive investment (flowers, fruits, plantlets) and 

allocation (RSAR) of hermaphrodite plants and whether this varies with inbreeding level we 

conducted a fixed-effects ANCOVA using PROC GLM in SAS (SAS 1996).  Florivory 

treatment, inbreeding level, maternal family, and their interactions were fixed effects.  We 

included maternal family in the design to account for the potential effects of inbreeding history, 

but maternal family was considered a fixed effect (because of the limited number of 

nonrandomly chosen families; Gotelli and Ellison 2004).  In addition, the model included block 

and plant size to account for their effects on reproduction.  All reproductive trait values except 

RSAR were transformed to conform to the assumptions of ANOVA (flower number and plant 

size were square-root transformed; number of inflorescences, fruits, and plantlets were natural 

log transformed).  We present least squares means (controlling for plant size) on untransformed 

data in figures and tables.  Analyses were performed with a sample size of 593 clones because 92 

clones were excluded as they never flowered, died, or did not fully receive their assigned 

florivory treatment (see below).  These exclusions were evenly distributed across experimental 

factors. 

In this analysis we were particularly interested in the effects of florivory treatment and 

inbreeding level and their interaction.  A significant effect of florivory treatment would indicate 

that plants allocate to reproduction differently in the face of florivore damage.  A significant 

effect of inbreeding level would indicate that selfed and outcrossed plants differed in their 

reproductive investment or allocation, while a significant interaction between the two would 

indicate that the effects of florivory differ for selfed and outcrossed plants.  An interaction of any 
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of these with family would indicate that the maternal families in the experiment differed in their 

response to inbreeding or florivory or both.  When a significant overall effect of a factor was 

found, we used Tukey’s tests to identify the levels of the factor that were significantly different. 

2.0.3.2 Inbreeding depression 

A further examination of florivory and inbreeding level was conducted by comparing inbreeding 

depression in fruit, flower, and plantlet production, and RSAR expressed at the maternal family 

level within each of the three florivory treatments.  To do this, we calculated means for selfed 

and outcrossed progeny for each family-florivory combination within each block.  Then, we 

calculated inbreeding depression for each family and florivory level as
o

s

x
x

−= 1δ  , where sx is 

the family mean of selfed individuals and ox  is the family mean of outcrossed individuals 

(Johnston and Schoen 1994) under a given level of florivory within a block.  This yielded 72 

values of inbreeding depression for each trait.  We determined whether maternal family or 

florivore treatment affected inbreeding depression expressed in each trait separately using a 

fixed-effects ANOVA with family, florivory, their interaction, and block as class variables.  

Prior to analysis, inbreeding depression for fruit, total flower, and plantlet production were 

square-root transformed to improve normality.  When a significant overall effect of a factor was 

found, we used Tukey’s tests to identify the levels of the factor that were significantly different. 

2.0.3.3 Tolerance 

To determine whether current(selfed or outcross pollination) or past (maternal family) inbreeding 

level affects plant tolerance to florivory, we calculated tolerance for selfed and outcrossed 

progeny under conditions of average and severe damage, separately.  First, we calculated clone 
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mean values for each fitness component (flowers, fruits and plantlets) for each progeny-by-

florivory treatment.  Then we calculated tolerance as the difference in mean fitness of clones 

experiencing florivory and those not experiencing florivory divided by the severity of florivory 

(Strauss and Agrawal 1999; Wise and Carr 2008).  Based on this calculation, a value of zero 

reflects full compensation (i.e., tolerance), whereas negative values reflect undercompensation 

and positive values reflect overcompensation.  Because we were mainly interested in 

determining whether inbreeding level affected tolerance, we calculated mean tolerance for selfed 

and outcrossed progeny separately and tested each for a significant difference from 0 using t-

tests (PROC TTEST; SAS 1996).  We also determined whether tolerance of selfed progeny 

differed from that of outcrossed progeny using paired t-tests.  Finally, we determined whether 

severity of florivory affected tolerance by testing whether the difference between tolerance under 

severe and average florivory was significantly different from 0 using t-tests.  Bonferroni 

correction was applied to account for multiple tests. 
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3.0 RESULTS 

3.0.1 Reproductive allocation 

Simulated florivory reduced flower number (table 1).  On average plants exposed to severe 

florivory produced the fewest flowers (mean ± SE:  13.6 ± 0.7), and those exposed to the average 

florivory level in turn produced significantly fewer flowers (15.7 ± 0.6) than undamaged plants 

(18.8 ± 0.6).  In contrast, florivory did not significantly impact the average number of fruits, 

plantlets or RSAR (table 1).  However, there was a significant family-by-florivory interaction for 

RSAR (table 1); as florivory severity increased, variation in RSAR among families was reduced 

and they converged on an RSAR that reflects equivalent allocation of meristems to sexual and 

asexual organs (fig. 1). 

Inbreeding level significantly affected fruits, plantlets and RSAR, but not flower number 

(table 1).  Moreover, the effect of inbreeding on these traits varied greatly among families.  On 

average, selfed plants produced significantly more fruits (5.52 ± 0.26) than did outcrossed plants 

(3.32 ± 0.24), but this effect was most pronounced in three families (17, 254, and 425) (fig. 2B).  

Outcrossed plants produced significantly more plantlets (3.31 ± 0.10) than selfed plants (3. 01 ± 

0.11), and this difference was quite extreme for one family (425; fig. 2C).  Although the 

difference was small, selfed plants on average allocated a significantly greater fraction of 

meristems to sexual reproduction (0.52 ± 0.01) than did outcrossed plants (0.49 ± 0.01), but 

again two families (254, 425) had the most pronounced pattern (fig. 2D). 

The only reproductive trait to show an interaction between inbreeding and florivory was 

plantlet production (table 1).  Here, outcrossed plants produced ~15% more plantlets than selfed 
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ones when damaged; this was significant under average damage, and the same pattern was 

present though non-significant under severe damage (fig. 3). 

 

 

Table 1. ANCOVAs for reproductive traits in hermaphrodite Fragaria virginiana 

 

 Flowers Fruits Plantlets RSAR 

Factor df F df F df F df F 

FLOR 2 20.46**** 2 2.06 2 0.03 2 0.51 

INB 1 0.12 1 28.49**** 1 4.51** 1 6.40** 

MFAM 7 1.72 7 26.59**** 7 11.28**** 7 7.71**** 

FLOR x INB 2 0.35 2 0.19 2 4.35*** 2 0.69 

MFAM x INB 7 1.84 7 9.57**** 7 4.50**** 7 7.15**** 

FLOR x MFAM 14 0.85 14 0.70 14 0.72 14 2.27*** 

FLOR x MFAM x INB 14 0.77 14 0.62 14 1.68* 14 0.85 

Plant size 1 58.40**** 1 12.94**** 1 15.79**** 1 0.97 

Block 2 0.42 2 0.84 2 0.71 2 0.18 

 

Note.  Inbreeding level (INB), florivory treatment (FLOR), maternal family (MFAM), and block 

are fixed effects.  RSAR = relative allocation to sexual versus asexual reproduction. 

* P < 0.06; ** P < 0.05; *** P < 0.01; **** P < 0.001. 
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Figure 1. Least squares means (±SE) for relative meristem allocation to sexual and asexual reproduction 

(RSAR) under three florivory treatments (none, average, and severe) in eight maternal families of Fragaria 

virginiana. 

 

 

Figure 2. Least squares means (±SE) of flower production, fruit production, plantlet production, and 

relative meristem allocation to sexual and asexual reproduction (RSAR) for selfed (black bars) and outcrossed 

(white bars) progeny for eight maternal families of Fragaria virginiana.  Significant differences (P < 0.05) between 

selfed and outcrossed progeny within a given maternal family are indicated by an asterisk above the columns. 
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Figure 3. Plantlet production (least squares means ±SE) of selfed and outcrossed Fragaria virginiana 

under three levels of florivory.  Within a treatment level, selfed and outcrossed means that do not share a letter are 

significantly different at P < 0.05. 

 

 

3.0.2 Inbreeding depression 

Interestingly, there was no significant overall effect of florivory treatment on the expression of 

inbreeding depression (table 2), but there was a maternal family-by-florivory interaction for 

inbreeding depression in plantlets (table 2; fig. 4).  In response to increasing florivory, two 

families expressed an increase in inbreeding depression (425, marginally significant; 435) while 

another changed from an expression of inbreeding depression under average florivory to 

outbreeding depression under severe florivory (254) (fig. 4).  Complex patterns prevailed in most 

families (fig. 4).  In fact, maternal families varied significantly for inbreeding depression in all 

traits except flower number (table 2).  Three families (17, 254, and 425) exhibited strong 

outbreeding depression in fruit production (fig. 5B); two of those families (17 and 425) also 
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exhibited moderate inbreeding depression in the number of plantlets produced (fig. 5C).  Both 

plantlet production and RSAR also showed maternal family-variation ranging from inbreeding to 

outbreeding depression (fig. 5C and 5D). 

 

 

 

Table 2. ANOVAs testing for the effects of florivory treatment and maternal family on inbreeding depression in 

sexual and asexual reproductive traits of Fragaria virginiana 

 

 Flowers Fruits Plantlets RSAR 

Factor df F df F df F df F 

FLOR 2 0.34 2 0.73 2 1.61 2 1.23 

MFAM 7 1.3 7 13.05*** 7 3.88** 7 5.5*** 

FLOR x MFAM 14 0.44 14 0.64 14 2.22* 14 0.95 

Block 2 0.21 2 0.55 2 0.34 2 0.12 

 

Note.  Florivory treatment (FLOR), maternal family (MFAM), and block are fixed effects.  

RSAR = relative allocation to sexual versus asexual reproduction. 

* P < 0.05; ** P < 0.01; *** P < 0.001. 
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Figure 4. Mean (±SE) inbreeding depression (δ) in plantlet production for Fragaria virginiana 

hermaphrodites by maternal family under three levels (none, average, or severe) of simulated florivory.  Treatments 

within a family that were significantly different are connected by curved solid lines (P < 0.05) or curved dashed 

lines (P = 0.059). 

 

 

 

Figure 5. Mean (±SE) inbreeding depression (δ) in eight maternal families of Fragaria virginiana.  

Variation among families was significant for fruits and plantlets but not for flowers or relative allocation to sexual 

versus asexual reproduction (RSAR; table 2).  Note that Y-axis scaling for fruits is different from the rest. 
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3.0.3 Tolerance 

Plants showed variable patterns of tolerance, ranging from an almost complete lack of 

compensation (flowers) to slight overcompensation (plantlets) (fig. 6).  Under average florivory, 

indices of tolerance were generally negative, reflecting undercompensation, but none were 

significantly different from 0.  However, under conditions of severe florivory, indices of 

tolerance for flowers (fig. 6A) and fruits (fig. 6B) were significantly negative, reflecting a lack of 

tolerance.  Tolerance indices did not, however, differ between severe and average damage (all |t| 

< 1.06; P> 0.32; df= 7), suggesting that the difference in statistical significance was largely due 

to a reduction in variance in tolerance under severe damage.  Likewise, in no case was tolerance 

of selfed and outcrossed plants significantly different (all |t| < 1.96; P> 0.09; df= 7), although one 

needs to keep in mind that these t-tests had limited power. 
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Figure 6. Mean (±SE) tolerance of selfed and outcrossed Fragaria virginiana exposed to average and 

severe simulated florivory.  Tolerance indexes are in the units of fitness components per bud removed (see “Material 

and Methods” for details); those that are significantly different from 0 based on t-tests are noted as follows:  one 

asterisk indicates P < 0.05, two asterisks indicate P < 0.01, and three asterisks indicate P < 0.001.  Tests that retained 

significance after Bonferroni correction are indicated in parentheses. 

 

 

 

 

 

 

 

 



 20 

4.0 DISCUSSION 

By exposing outcrossed and selfed clones of F. virginiana hermaphrodites to simulated weevil 

florivory, we demonstrated that both damage and inbreeding affect reproduction, but their effects 

are largely independent with respect to the sexual traits examined.  Interestingly, this 

independence was not seen for the asexual reproductive trait, plantlet production.  Thus, it was 

only for this trait that inbreeding depression was florivory-dependent, and even here the pattern 

varied among families.  In fact, inbreeding depression was maternal family-dependent for the 

majority of traits examined.  Lastly, while plants largely did not compensate for florivory this 

was only significant under severe damage, and inbreeding level did little to change this pattern.  

In the following paragraphs we interpret these results in light of other studies of antagonist-

dependent inbreeding depression and their potential role in sexual system evolution. 

4.0.1 Independent vs. interactive effects of inbreeding and florivory 

A particularly interesting outcome of the work presented here is that florivory and inbreeding 

level had largely independent effects.  This was because each affected different sexual traits.  

Florivory reduced flower number but had no effect on fruit production, whereas inbreeding 

increased fruit production but had no effect on flower number.  The absence of an inbreeding 

effect on flower number could be due to an absence of genetic variation in this trait or its 

tolerance to florivory.  While flower number can be a highly heritable trait (Hof et al. 1999; 

Ashman 2003; Caruso 2004), the limited sampling of genotypes used in this study may have 

restricted genetic variation.  However, Ashman and colleagues (2004), using a larger set of 

maternal genotypes, also did not detect genetic variation in tolerance to florivory with respect to 
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flower number, suggesting a paucity of variation for tolerance to florivory is not uncommon.  

This might not be surprising given that traits like tolerance, which may be subject to strong 

selection and are tightly linked to fitness, are expected to have low genetic variation (Geber and 

Griffen 2003; Blows and Hoffmann 2005).  Other studies, however, have found significant 

genetic variation in tolerance (Shen and Bach 1997; Stinchcombe and Rausher 2002; Fornoni et 

al. 2003), including one which examined tolerance to florivory (Wise et al. 2008) (but see 

Juenger and Bergelson 2000b; Ivey et al. 2009), indicating that the magnitude of variation may 

depend heavily on the system. 

The absence of a florivory effect on fruit number is in line with the finding of Ashman et 

al. (2004) for hermaphrodite genotypes, indicating that hermaphrodites are generally tolerant to 

average levels of damage for this fitness component, although they may be intolerant at severe 

damage levels (fig. 6).  The finding of an effect of inbreeding on fruit number, however, is novel, 

particularly given the surprising direction of this effect, which is particularly pronounced in three 

families (fig. 2B).  For these families, selfed progeny had higher fruit production than outcrossed 

progeny, a finding consistent with outbreeding depression for fruit production. This result may 

best be explained by considering the genetics underlying fruit production in this 

gyno(sub)dioecious species.  Recently, Spigler et al. (2008) demonstrated that two linked gene 

regions are responsible for sexual phenotype.  Their model postulates that female fertility (fruit 

production) is conferred by an allele G that is dominant (or co-dominant) to an allele g that codes 

for female sterility, such that hermaphrodite individuals are GG or Gg at this ‘locus’ whereas gg 

individuals produce no fruit (i.e., are males) (Spigler et al. 2008).  Given this simple model, 

selfed progeny of a GG hermaphrodite will also be homozygous GG whereas outcrossed 

progeny will be a mix of GG and Gg, given that pollen from the outcross pollen pool would 
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contain either G or g alleles.  If G is codominant then the mean fruit setting ability of the 

outcrossed progeny would be lower than the selfed progeny.  (In contrast, if G is dominant then 

in these families there would be no difference between selfed and outcrossed progeny in fruit 

production.)   On the other hand, if a hermaphrodite is Gg then its selfed progeny will be 25% 

GG, 50% Gg and 25% gg.  If the frequency of g in the outcross pollen pool was greater than 

50% (a possibility given that gg plants were included as outcross pollen donors) then outcrossed 

progeny would be more likely to be gg than selfed progeny, and as a consequence on average 

outcrossed progeny would have lower fruit production than selfed progeny, under either 

dominance or codominance of G.  While we do not yet know which scenario was the case, 

controlled crosses to evaluate the putative genotypes at the G locus for the maternal 

hermaphrodites used in this study and, thus, to test this hypothesis, are underway.  Regardless, 

this finding reveals a particularly intriguing ‘cost’ to outcrossing for hermaphrodite genotypes in 

a subdioecious species, and suggests that there could be selection for autonomous selfing to 

maintain them. 

Plantlet production was the only trait for which inbreeding and florivory had interactive 

effects, and thus inbreeding depression was florivory-dependent, although the pattern varied 

among families (fig. 4).  Selfed progeny produced fewer plantlets than outcrossed progeny under 

florivory, significantly so under average damage levels (fig. 3).  The higher plantlet production 

under florivory may reflect resource redistribution from the combination of reduced fruit 

production of outcrossed plants (see above) and lower investment in flower expansion and 

maintenance when buds are lost to florivory.  Such an interpretation is supported most clearly by 

patterns seen in two families (17 and 425) which both showed outbreeding depression in fruits 

and inbreeding depression in plantlets that increased with severity of florivory.  Such results lend 
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credence to the idea that the presence of antagonists can lead to different fitness outcomes for a 

given reproductive strategy (i.e., that a shift from sexual to asexual reproduction may be favored 

when florivores are present). 

Maternal family variation in inbreeding depression was seen for plantlets (table 2) and 

was also evident from an interaction between maternal family and inbreeding level for fruits and 

RSAR in the ANCOVA (table 1).  Variation among families in inbreeding depression is a 

common phenomenon that could reflect several causes.  First, family variation in inbreeding 

depression has been linked to among-lineage variation in selfing rate and subsequent purging of 

deleterious recessive alleles (Lande and Schemske 1985).  However, some systems have shown 

no consistent relationship between inbreeding history and inbreeding depression (Carr et al. 

1997; Stone and Motten 2002).  Second, Dudash et al. (1997) suggested that family differences 

may be due to the nature of deleterious mutations carried by individuals that undergo selfing, i.e., 

if traits are affected by deleterious recessive alleles, overdominance, or epistatic interactions.  

Third, family variation in inbreeding depression in response to a stressor could result from 

family variation in the magnitude of phenotypic variation, where families with higher phenotypic 

variance for a given trait have a higher likelihood of displaying inbreeding depression (Waller et 

al. 2008).  Both variation in inbreeding history and extent of phenotypic variation are likely 

causes for the patterns seen here because, 1) although the selfing rate of maternal hermaphrodites 

used in this study are not known, selfing rates of hermaphrodites from the source population are 

known to vary widely (range: 0.167 to 1; unpublished data), and 2) families varied two-fold in 

coefficient of variation for plantlet, RSAR and fruit production (unpublished data). 
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4.0.2 Tolerance and inbreeding depression 

Our study joins a small but growing number that have examined the effects of inbreeding on 

tolerance (reviewed in Núñez-Farfán et al. 2007).  We found tolerance varied with trait, and 

plants were significantly intolerant under severe damage levels, but that inbreeding had little 

effect on tolerance.  This latter result contrasts with studies showing negative effects of 

inbreeding on tolerance (Carr and Eubanks 2002; Ivey et al. 2004; Hull-Sanders and Eubanks 

2005), but this could be due to many factors, including the type of damage inflicted, the fitness 

traits measured, amount of genetic variation for tolerance, or experimental sample size.  Given 

the few studies conducted, that no prior studies have examined inbreeding’s effects on tolerance 

to florivory, and the variability of responses demonstrated thus far, it may be premature to draw 

conclusions about the prevalence of negative effects of inbreeding on tolerance; instead it 

underscores the need for studies of inbreeding and tolerance to be conducted in more systems, 

with more types of antagonists and response variables. 

4.0.3 Implications for sexual system evolution 

Florivory may affect sexual system evolution if it affects the relative seed production of 

hermaphrodites and females, the selfing rate of hermaphrodites, and/or inbreeding depression 

(Ashman 2002; 2006).  Ashman et al. (2004) addressed the first of these mechanisms for the 

strawberry-bud clipping weevil system and found that weevil damage did not significantly alter 

relative seed production.  Our current results inform directly on the last mechanism and 

indirectly on the second mechanism; we address each of these in turn. 
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As described above, florivory did not, in general, affect inbreeding depression -- only for 

plantlet production was there a significant increase in inbreeding depression in the ‘presence’ of 

florivores.  However, the effect of increased plantlet production by outcrossed plants under 

florivory could feed back and indirectly increase hermaphrodite selfing rate.  Specifically, 

because selfing can occur via pollen movement both within flowers (autogamous) or between 

flowers (geitonogamous) in strawberry, increased plantlet production could result in an increase 

in geitonogamous selfing among plantlets of a clone.  In fact, selfing rate of focal fruits on 

hermaphrodites increases with an increase in the proportion of local flowering ramets that are 

clones of the focal genet in wild strawberry populations (L. Penet, C. L.Collin, and T-L. 

Ashman, unpublished ms.).  Weevil damage is patchy but persistent across years (Ashman and 

Penet 2007), so even small differences in clonal growth could be magnified over time.  Such an 

effect, however, could potentially be modified by the negative effect of outcrossing on fruit 

production.  As described above, in some (but not all) maternal families outcrossed progeny had 

lower fruit production than selfed ones; this could mitigate the potential increase in 

geitonogamous pollination.  It is also important to recall that weevil damage has been seen to 

increase autogamous selfing through reduced floral display (Penet et al. 2008), so the net effect 

of weevil damage on the selfing rate would be to increase total selfing via both mechanisms.  

Although it is difficult to predict the net effect on selfing, the fitness consequence of such selfing 

ultimately depends on the severity of inbreeding depression—which from accounts here (e.g., 

fig. 5) and in Botham et al. (2009) suggests that it is highly variable but on average less than 0.5.  

Taken at face value these findings suggest that weevil damage may not influence population sex 

ratio in F. virginiana through its effects on inbreeding depression, but rather via affects on 

selfing rate. 
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If in general weevil damage increases selfing rate then it could impact the sex ratio by 

increasing the production of GG hermaphrodites.  More GG hermaphrodites would be produced 

under selfing than outcross or panmictic pollination because the preponderance of males (gg) and 

low fruiting (putative Gg) hermaphrodites in wild populations (Ashman 1999; R. Spigler and T-

L. Ashman unpublished data) leads to more g than G pollen in the xenogomous pool.  In 

addition, there are several lines of evidence suggesting that G pollen may have lower siring 

success than g pollen (T-L. Ashman and M. Harbist, unpublished data).  A test of this possibility 

requires an understanding not just of variation in phenotypic gender and its association with sex 

ratio but also an understanding of the frequency of genotypes at the female function locus and its 

association with sex ratio and weevil damage. 
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