93,717 research outputs found
Evaluation of Flexible Rogowski Coil Performances In Power Frequency Applications
This paper investigates the effects of some influence
quantities on the measurement of power frequency sinusoidal
currents by means of flexible Rogowski coil sensors. The analysis
is carried out through a numerical model, which is specifically
developed and allows both the prediction of the circuital and
coil parameter effects and the improvement of the coil design.
The estimate of the measurement uncertainty associated with the
on-site use of a flexible and openable Rogowski coil is finally given
by assuming relatively controlled operating conditions
Implantable RF-coiled chip packaging
In this paper, we present an embedded chip integration
technology that utilizes silicon housings and flexible
parylene radio frequency (RF) coils. As a demonstration
of this technology, a flexible parylene RF coil has been
integrated with an RF identification (RFID) chip. The coil
has an inductance of 16 μH, with two layers of metal
completely encapsulated in parylene-C. The functionality
of the embedded chip is verified using an RFID reader
module. Accelerated-lifetime soak testing has been
performed in saline, and the results show that the silicon
chip is well protected and the lifetime of our
parylene-encapsulated RF coil at 37 °C is more than 20
years
The effect of asymmetry of the coil block on self-assembly in ABC coil-rod-coil triblock copolymers
Using the self-consistent field approach, the effect of asymmetry of the coil
block on the microphase separation is focused in ABC coil-rod-coil triblock
copolymers. For different fractions of the rod block , some stable
structures are observed, i.e., lamellae, cylinders, gyroid, and core-shell
hexagonal lattice, and the phase diagrams are constructed. The calculated
results show that the effect of the coil block fraction is
dependent on . When , the effect of asymmetry of
the coil block is similar to that of the ABC flexible triblock copolymers; When
, the self-assembly of ABC coil-rod-coil triblock copolymers
behaves like rod-coil diblock copolymers under some condition. When continues to increase, the effect of asymmetry of the coil block reduces.
For , under the symmetrical and rather asymmetrical
conditions, an increase in the interaction parameter between different
components leads to different transitions between cylinders and lamellae. The
results indicate some remarkable effect of the chain architecture on
self-assembly, and can provide the guidance for the design and synthesis of
copolymer materials.Comment: 9 pages, 3 figure
Wafer-Level Parylene Packaging With Integrated RF Electronics for Wireless Retinal Prostheses
This paper presents an embedded chip integration
technology that incorporates silicon housings and flexible
Parylene-based microelectromechanical systems (MEMS) devices.
Accelerated-lifetime soak testing is performed in saline at elevated
temperatures to study the packaging performance of Parylene C
thin films. Experimental results show that the silicon chip under
test is well protected by Parylene, and the lifetime of Parylenecoated
metal at body temperature (37°C) is more than 60 years,
indicating that Parylene C is an excellent structural and packaging
material for biomedical applications. To demonstrate the proposed
packaging technology, a flexible MEMS radio-frequency (RF) coil
has been integrated with an RF identification (RFID) circuit die.
The coil has an inductance of 16 μH with two layers of metal
completely encapsulated in Parylene C, which is microfabricated
using a Parylene–metal–Parylene thin-film technology. The chip
is a commercially available read-only RFID chip with a typical
operating frequency of 125 kHz. The functionality of the embedded
chip has been tested using an RFID reader module in both air
and saline, demonstrating successful power and data transmission
through the MEMS coil
Globule transitions of a single homopolymer: a Wang-Landau Monte Carlo study
The temperature-independent Wang-Landau Monte Carlo approach is implemented for an off-lattice model of flexible homopolymers and applied to the coil-globule and solidification transitions based on chain sizes up to N=300. An intermediate transformation from low-density liquid globule to high-density liquid globule is suggested. A scheme for identifying polymer structures representative of particular temperatures in the course of the simulation is presented and applied to illustrate intermediate states in the coil-globule transition. Transition temperatures are calculated and used to obtain a theta point of at least Θ=1.96, distinctly higher than the solid-liquid transition temperature TM=1.26
Characterization of Flexible RF Microcoil Dedicated to Surface Mri
In Magnetic Resonance Imaging (MRI), to achieve sufficient Signal to Noise
Ratio (SNR), the electrical performance of the RF coil is critical. We
developed a device (microcoil) based on the original concept of monolithic
resonator. This paper presents the used fabrication process based on
micromoulding. The dielectric substrates are flexible thin films of polymer,
which allow the microcoil to be form fitted to none-plane surface. Electrical
characterizations of the RF coils are first performed and results are compared
to the attempted values. Proton MRI of a saline phantom using a flexible RF
coil of 15 mm in diameter is performed. When the coil is conformed to the
phantom surface, a SNR gain up to 2 is achieved as compared to identical but
planar RF coil. Finally, the flexible coil is used in vivo to perform MRI with
high spatial resolution on a mouse using a small animal dedicated scanner
operating at in a 2.35 T.Comment: Submitted on behalf of TIMA Editions
(http://irevues.inist.fr/tima-editions
Microphase Separation within a Comb Copolymer with Attractive Side Chains: A Computer Simulation Study
Computer simulation modelling of a flexible comb copolymer with attractive interactions between the monomer units of the side chains is performed. The conditions for the coil-globule transition, induced by the increase of attractive interaction, ε, between side chain monomer units, are analysed for different values of the number of monomer units in the backbone, N, in the side chains, n, and between successive grafting points, m. It is shown that the coil-globule transition of such a copolymer corresponds to a first-order phase transition. The energy of attraction (ε) required for the realisation of the coil-globule transition decreases with increasing n and decreasing m. The coil-globule transition is accompanied by significant aggregation of side chain units. The resulting globule has a complex structure. In the case of a relatively short backbone (small value of N), the globule consists of a spherical core formed by side chains and an enveloping shell formed by the monomer units of the backbone. In the case of long copolymers (large value of N), the side chains form several spherical micelles while the backbone is wrapped on the surfaces of these micelles and between them.
Inductive power transfer in e-textile applications: Reducing the effects of coil misalignment
Wireless power transfer (WPT) is an attractive approach for recharging wearable technologies and therefore textile implementations are of interest. Such textile WPT systems are inherently flexible and prone to misalignments of the inductively coupled coils which affects performance. This paper investigates two methods to reduce the effect of coil misalignment in inductive WPT in e-textile applications: a single large transmitter coil and a switched transmitter coil array. Transmission efficiency and maximum received power are determined for both methods, and compared against the baseline system that uses a single small transmitter coil. All coils used in this study were fabricated using automated stitching of PTFE insulated flexible wire onto a polyester/cotton textile. This fabrication method allows coils to be sewn directly to existing garments
- …