108,395 research outputs found

    A comparison between legume technologies and fallow, and their effects on maize and soil traits, in two distinct environments of the West African savannah

    Get PDF
    Legume¿maize rotation and maize nitrogen (N)-response trials were carried out simultaneously from 1998 to 2004 in two distinct agro-ecological environments of West Africa: the humid derived savannah (Ibadan) and the drier northern Guinea savannah (Zaria). In the N-response trial, maize was grown annually receiving urea N at 0, 30, 60, 90 and 120 kg N ha¿1. In Ibadan, maize production increased with N fertilization, but mean annual grain yield declined over the course of the trial. In Zaria, no response to N treatments was observed initially, and an increase in the phosphorus (P) and sulphur (S) fertilizer application rate was required to increase yield across treatments and obtain a response to N applications, stressing the importance of non-N fertilizers in the savannah. In the rotation trial, a 2-year natural fallow¿maize rotation was compared with maize rotated with different legume types: green manure, forage, dual-purpose, and grain legumes. The cultivation of some legume types resulted in a greater annual maize production relative to the fallow¿maize combination and corresponding treatments in the N-response trial, while there was no gain in maize yield with other legume types. Large differences in the residual effects from legumes and fallow were also observed between sites, indicting a need for site-specific land management recommendations. In Ibadan, cultivation of maize after the forage legume (Stylosanthes guianensis) achieved the highest yield. The natural fallow¿maize rotation had improved soil characteristics (Bray-I P, exchangeable potassium, calcium and magnesium) at the end of the trial relative to legume¿maize rotations, and natural fallow resulted in higher maize yields than the green manure legume (Pueraria phaseoloides). In Zaria, maize following dual-purpose soybean achieved the highest mean yield. At both sites, variation in aboveground N and P dynamics of the legume and fallow vegetation could only partly explain the different residual effects on maiz

    Managing Sonchus arvensis using mechanical and cultural methods

    Get PDF
    Perennial sow-thistle (Sonchus arvensis L.) represents an increasing problem in Finland. Options for mechanical and cultural control of S. arvensis were studied in a field experiment on clay soil under organic production. The experiment consisted of different crop sequences: spring cereal (barley, Hordeum vulgare L., in 2001, oats, Avena sativa L., in 2002) with or without inter-row hoeing and/or stubble cultivation, bare fallow, fibre hemp (Cannabis sativa L.), and ley with mowing. In 2003 the entire field was sown to spring wheat. Crop plant and Sonchus shoot density and dry mass prior to cereal harvest and crop yield were assessed. The control effect was rated: bare fallow > ley > cereal with or without inter-row hoeing > poor growth fibre hemp. Bare fallow was an effective but costly way to reduce S. arvensis infestation. Introduction of a regularly mown green fallow or silage ley in the crop rotation is advisable. Mechanical weed control by inter-row hoeing in cereals limits S. arvensis growth. Infestation might also be reduced by stubble cultivation in autumn. When managing S. arvensis using mechanical and cultural methods, appropriate options, including a competitive crop, should be chosen for the specific field and rotation

    Global patterns of cropland use intensity

    Get PDF
    This study presents a global scale analysis of cropping intensity, crop duration and fallow land extent computed by using the global dataset on monthly irrigated and rainfed crop areas MIRCA2000. MIRCA2000 was mainly derived from census data and crop calendars from literature. Global cropland extent was 16 million km2 around the year 2000 of which 4.4 million km2 (28%) was fallow, resulting in an average cropping intensity of 0.82 for total cropland extent and of 1.13 when excluding fallow land. The lowest cropping intensities related to total cropland extent were found for Southern Africa (0.45), Central America (0.49) and Middle Africa (0.54), while highest cropping intensities were computed for Eastern Asia (1.04) and Southern Asia (1.0). In remote or arid regions where shifting cultivation is practiced, fallow periods last 3–10 years or even longer. In contrast, crops are harvested two or more times per year in highly populated, often irrigated tropical or subtropical lowlands where multi-cropping systems are common. This indicates that intensification of agricultural land use is a strategy that may be able to significantly improve global food security. There exist large uncertainties regarding extent of cropland, harvested crop area and therefore cropping intensity at larger scales. Satellite imagery and remote sensing techniques provide opportunities for decreasing these uncertainties and to improve the MIRCA2000 inventory

    Evaluation of agricultural ecosystem services in fallowing land based on farmers' participation and model simulation

    Get PDF
    Fallowing with green fertilizer can benefit agricultural ecosystem services (AES). Farmers in Taiwan do not implement fallow practices and plant green fertilizer because the current subsidy level (46,000 NTperha)istoolowtomanagefallowing.Thispaperdefinestheobjectiveofgovernmentagriculturepolicyorthefarmersobjectiveasmaximizationoffarmproductivity,approximatedtothevalueofsocialwelfareandAES.Farms,whichdonotfollowproperfallowingpractices,oftenhavepoorlymaintainedfallowlandorleftfarmlandabandoned.Thisresultsinnegativeenvironmentalconsequencessuchascutworminfestationsinabandonedland,whichinturncanaffectcropsinadjacentfarmlands.Theobjectivesofthisstudyaretwofold.First,itdeterminestheproperfallowingsubsidybasedontheconceptofpaymentforecosystemservicestoenticemorefarmerstoparticipateinfallowing.Second,itsimulatesthebenefitofplantinggreenmanureinfallowlandtothesupplyofAESbasedontherateoffarmerswhoarewillingtoparticipateinfallowlandpracticesandessentialparametersthatcanaffectsoilfertilitychange.Theapproachinvolvesaseriesofinterviewsandadevelopedempiricalmodel.ThevalueofAESwhentherateoffarmerparticipationis100 per ha) is too low to manage fallowing. This paper defines the objective of government agriculture policy or the farmer’s objective as maximization of farm productivity, approximated to the value of social welfare and AES. Farms, which do not follow proper fallowing practices, often have poorly maintained fallow land or left farmland abandoned. This results in negative environmental consequences such as cutworm infestations in abandoned land, which in turn can affect crops in adjacent farmlands. The objectives of this study are twofold. First, it determines the proper fallowing subsidy based on the concept of payment for ecosystem services to entice more farmers to participate in fallowing. Second, it simulates the benefit of planting green manure in fallow land to the supply of AES based on the rate of farmers who are willing to participate in fallow land practices and essential parameters that can affect soil fertility change. The approach involves a series of interviews and a developed empirical model. The value of AES when the rate of farmer participation is 100% represents a 1.5% increase in AES (448,317,000 NTperha)istoolowtomanagefallowingThispaperdefinestheobjectiveofgovernmentagriculturepolicyorthefarmer’sobjectiveasmaximizationoffarmproductivityapproximatedtothevalueofsocialwelfareandAESFarmswhichdonotfollowproperfallowingpracticesoftenhavepoorlymaintainedfallowlandorleftfarmlandabandonedThisresultsinnegativeenvironmentalconsequencessuchascutworminfestationsinabandonedlandwhichinturncanaffectcropsinadjacentfarmlandsTheobjectivesofthisstudyaretwofoldFirstitdeterminestheproperfallowingsubsidybasedontheconceptofpaymentforecosystemservicestoenticemorefarmerstoparticipateinfallowingSeconditsimulatesthebenefitofplantinggreenmanureinfallowlandtothesupplyofAESbasedontherateoffarmerswhoarewillingtoparticipateinfallowlandpracticesandessentialparametersthatcanaffectsoilfertilitychangeTheapproachinvolvesaseriesofinterviewsandadevelopedempiricalmodelThevalueofAESwhentherateoffarmerparticipationis100 ) over the value at the current participation rate of 14%. This study further concludes that the appropriate fallowing subsidy has a large positive impact on AES and social welfare (e.g., benefit from food and biofuel supplies) and is seen as a basis of ecological governance for sustainable agro-ecosystems

    RISK-RETURN ANALYSIS OF INCORPORATING ANNUAL LEGUMES AND LAMB GRAZING WITH DRYLAND CROP ROTATIONS

    Get PDF
    Profitability and risk, 1988-2001, are examined for lamb-grazed field pea as a fallow alternative with wheat, or an extended wheat-sunflower-millet rotation. Switching from conventional wheat-fallow to an extended rotation with grazed-peas increases profitability (2.3% to 7.3%), and reduces risk (below 0% target in only 2 versus 7 of 14 years).Crop Production/Industries,

    Soil organic carbon dynamics of improved fallow-maize rotation systems under conventional and no-tillage in Central Zimbabwe

    Get PDF
    Fallowing increases soil organic carbon (SOC) during the fallowing phase. However, this benefit is lost quickly during the cropping phase. The objective of this study was to evaluate SOC dynamics of an improved fallow-maize rotation under no-tillage (NT) and conventional tillage (CT) from time of fallow termination, through the next two cropping seasons. The treatments studied were improved fallows of Acacia angustissima (A. angustissima) and Sesbania sesban (S. sesban), natural fallow and continuous maize. Our hypothesis is that fallowing maintained higher SOC and lower soil bulk densities through the cropping phase when compared with continuous maize system and that NT maintained higher SOC when compared with CT. Soil organic carbon was significantly greater under fallows than under continuous maize from fallow termination to the end of the second cropping season. Soil organic carbon for the 0¿5 cm depths was 11.0, 10.0, 9.4 and 6.6 g kg¿1 for A. angustissima, S. sesban, natural fallow and continuous maize, respectively at fallow termination. After two cropping seasons SOC for the same depth was 8.0, 7.0, 6.1, 5.9 g kg¿1 under CT and 9.1, 9.0, 8.0, 6.0 g kg¿1 under NT for A. angustissima, S. sesban, natural fallow and continuous maize, respectively. Total SOC stocks were also higher under fallows when compared with continuous maize at fallow termination and after two cropping seasons. Soil bulk densities were lower under fallows when compared with continuous maize during the period of study. We concluded that fallows maintained greater SOC and NT sequestered more SOC than CT. Acacia angustissima was the better tree legume fallow for SOC sequestration when compared with S. sesban or natural fallow because it maintained higher SOC and lower bulk densities after two seasons of maize cropping

    Can a change in cropping patterns produce water savings and social gains: A case study from the Fergana Valley, Central Asia

    Get PDF
    Abstract The study examines possible water savings by replacing alfalfa with winter wheat in the Fergana Valley, located upstream of the Syrdarya River in Central Asia. Agricultural reforms since the 1990s have promoted this change in cropping patterns in the Central Asian states to enhance food security and social benefits. The water use of alfalfa, winter wheat/fallow, and winter wheat/green gram (double cropping) systems is compared for high-deficit, low-deficit, and full irrigation scenarios using hydrological modeling with the HYDRUS-1D software package. Modeling results indicate that replacing alfalfa with winter wheat in the Fergana Valley released significant water resources, mainly by reducing productive crop transpiration when abandoning alfalfa in favor of alternative cropping systems. However, the winter wheat/fallow cropping system caused high evaporation losses from fallow land after harvesting of winter wheat. Double cropping (i.e., the cultivation of green gram as a short duration summer crop after winter wheat harvesting) reduced evaporation losses, enhanced crop output and hence food security, while generating water savings that make more water available for other productive uses. Beyond water savings, this paper also discusses the economic and social gains that double cropping produces for the public within a broader developmental context

    Integrating sheep grazing into wheat–fallow systems: Crop yield and soil properties

    Get PDF
    The two predominant systems for weed management in summer fallow are tillage with a field cultivator or multiple applications of broad spectrum herbicides with zero tillage. Both systems are based on substantial use of off farm resources. Our objective was to determine if strategic grazing of sheep may allow grain growers to more sustainably manage crop residues, volunteer crop, and other weeds during fallow periods. We conducted a study near Bozeman, Montana, USA, comparing three fallow weed management systems in two crop rotations from 2005 to 2008. Fallow weed management systems were conventional tillage, chemical-fallow (herbicide application), and sheep grazing. The crop rotations were summer fallow–spring wheat and summer fallow–winter wheat. In late fall, chemical-fallow treatment had greater residue cover and soil water content than did tilled- or grazed-fallow. At 0–15-cm depth, soil had lower bulk density in chemical- and tilled-fallow than in grazed fallow. Similarly, soil NO3-N, Ca, SO4-S concentrations and EC were lower following grazed-fallow than tilled-fallow, but Na concentration was higher following grazed-fallow than tilled- or chemical-fallow. Following spring and winter wheat, soil properties were not influenced by treatments. Grain yield was greater in winter wheat than in spring wheat but the trend reversed in protein concentration. Although soil properties varied among treatments, fallow management system had little influence on yield or quality of spring and winter wheat. Sheep grazing during fallow periods had limited impact on subsequent wheat yield and quality, and is a suitable practice for weed and residue management in wheat–fallow systems

    Constraints or Cooperation? Determinants of Secondary Forest Cover Under Shifting Cultivation

    Get PDF
    This study examines the drivers of land use in a shifting cultivation system with forest fallow. Forest fallow provides on-farm soil quality benefits, local hydrological regulation, and global public goods. An optimal control model demonstrates that farmers have an incentive to fallow less than is socially optimal, though market failures limiting crop production can have a countervailing effect by encouraging fallow. An econometric model estimated using data from the Brazilian Amazon suggests that fallowing does not result from internalization of local fallow services but instead is associated with poor market access and labor and liquidity constraints.forest, farms, fallow, ecosystem services, land use, spatial econometrics, Brazil, credit, International Development, Land Economics/Use,

    ESTIMATION OF SOIL EROSION TIME PATHS: THE VALUE OF SOIL MOISTURE AND TOPSOIL DEPTH INFORMATION

    Get PDF
    Rates of soil erosion in the dryland cropping region of Saskatchewan are investigated under alternative cropping strategies. Chemical fallow is examined as an alternative to tillage fallow for moisture and soil conservation. Conclusions include: (a) flexible cropping increases net discounted returns and substantially reduced soil erosion compared to the predominant crop rotation; (b) chemical fallow is a viable alternative to tillage fallow but only when topsoil already has been eroded substantially; and (c) an increase in the discount rate is soil conserving, since it causes producers to plant more often rather than fallow.Land Economics/Use,
    corecore