57,201 research outputs found

    f-Divergence constrained policy improvement

    Full text link
    To ensure stability of learning, state-of-the-art generalized policy iteration algorithms augment the policy improvement step with a trust region constraint bounding the information loss. The size of the trust region is commonly determined by the Kullback-Leibler (KL) divergence, which not only captures the notion of distance well but also yields closed-form solutions. In this paper, we consider a more general class of f-divergences and derive the corresponding policy update rules. The generic solution is expressed through the derivative of the convex conjugate function to f and includes the KL solution as a special case. Within the class of f-divergences, we further focus on a one-parameter family of α\alpha-divergences to study effects of the choice of divergence on policy improvement. Previously known as well as new policy updates emerge for different values of α\alpha. We show that every type of policy update comes with a compatible policy evaluation resulting from the chosen f-divergence. Interestingly, the mean-squared Bellman error minimization is closely related to policy evaluation with the Pearson χ2\chi^2-divergence penalty, while the KL divergence results in the soft-max policy update and a log-sum-exp critic. We carry out asymptotic analysis of the solutions for different values of α\alpha and demonstrate the effects of using different divergence functions on a multi-armed bandit problem and on common standard reinforcement learning problems

    f-Divergence constrained policy improvement

    Get PDF
    To ensure stability of learning, state-of-the-art generalized policy iteration algorithms augment the policy improvement step with a trust region constraint bounding the information loss. The size of the trust region is commonly determined by the Kullback-Leibler (KL) divergence, which not only captures the notion of distance well but also yields closed-form solutions. In this paper, we consider a more general class of f-divergences and derive the corresponding policy update rules. The generic solution is expressed through the derivative of the convex conjugate function to f and includes the KL solution as a special case. Within the class of f-divergences, we further focus on a one-parameter family of α-divergences to study effects of the choice of divergence on policy improvement. Previously known as well as new policy updates emerge for different values of α. We show that every type of policy update comes with a compatible policy evaluation resulting from the chosen f-divergence. Interestingly, the mean-squared Bellman error minimization is closely related to policy evaluation with the Pearson χ²-divergence penalty, while the KL divergence results in the soft-max policy update and a log-sum-exp critic. We carry out asymptotic analysis of the solutions for different values of α and demonstrate the effects of using different divergence functions on a multi-armed bandit problem and on common standard reinforcement learning problems

    Combining Model-Based and Model-Free Updates for Trajectory-Centric Reinforcement Learning

    Full text link
    Reinforcement learning (RL) algorithms for real-world robotic applications need a data-efficient learning process and the ability to handle complex, unknown dynamical systems. These requirements are handled well by model-based and model-free RL approaches, respectively. In this work, we aim to combine the advantages of these two types of methods in a principled manner. By focusing on time-varying linear-Gaussian policies, we enable a model-based algorithm based on the linear quadratic regulator (LQR) that can be integrated into the model-free framework of path integral policy improvement (PI2). We can further combine our method with guided policy search (GPS) to train arbitrary parameterized policies such as deep neural networks. Our simulation and real-world experiments demonstrate that this method can solve challenging manipulation tasks with comparable or better performance than model-free methods while maintaining the sample efficiency of model-based methods. A video presenting our results is available at https://sites.google.com/site/icml17pilqrComment: Paper accepted to the International Conference on Machine Learning (ICML) 201
    • …
    corecore