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Abstract

To ensure stability of learning, state-of-the-art generalized policy iteration algorithms aug-
ment the policy improvement step with a trust region constraint bounding the information
loss. The size of the trust region is commonly determined by the Kullback-Leibler (KL)
divergence, which not only captures the notion of distance well but also yields closed-form
solutions. In this paper, we consider a more general class of f -divergences and derive the
corresponding policy update rules. The generic solution is expressed through the derivative
of the convex conjugate function to f and includes the KL solution as a special case. Within
the class of f -divergences, we further focus on a one-parameter family of α-divergences to
study effects of the choice of divergence on policy improvement. Previously known as well
as new policy updates emerge for different values of α. We show that every type of policy
update comes with a compatible policy evaluation resulting from the chosen f -divergence.
Interestingly, the mean-squared Bellman error minimization is closely related to policy
evaluation with the Pearson χ2-divergence penalty, while the KL divergence results in the
soft-max policy update and a log-sum-exp critic. We carry out asymptotic analysis of
the solutions for different values of α and demonstrate the effects of using different diver-
gence functions on a multi-armed bandit problem and on common standard reinforcement
learning problems.

Keywords: Reinforcement Learning, Policy Search, Bandit Problems

1. Introduction

Many state-of-the art reinforcement learning algorithms, including natural policy gradi-
ents (Kakade, 2001; Bagnell and Schneider, 2003; Peters et al., 2003), trust region policy op-
timization (TRPO) (Schulman et al., 2015) and relative entropy policy search (REPS) (Pe-
ters et al., 2010), impose a Kullback-Leibler (KL) divergence constraint between successive
policies during parametric policy iteration to avoid large steps towards unknown regions of
the state space. Similar objective functions with an entropy-like term have been proposed in
the context of linearly-solvable optimal control (Kappen, 2005; Todorov, 2006) and inverse
reinforcement learning (Ziebart et al., 2008). In all these approaches, the objective function
has the form of the free energy, therefore they all can be viewed as performing free energy
minimization (Still and Precup, 2012).

In this paper, we explore the implications of using a generic f -divergence to constrain the
policy improvement. The objective function in this case resembles the free energy objective,
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Belousov and Peters

commonly encountered in variational methods (Wainwright and Jordan, 2007), but with the
KL divergence replaced by an f -divergence. The idea of using f -divergence penalties for
general non-linear problems goes back to the early work by Teboulle (1992). Generalizations
of the KL divergence—apart from being very useful at providing a unified view of exist-
ing algorithms, e.g., statistical inference can be seen as f -divergence minimization (Altun
and Smola, 2006) and various message passing algorithms can be understood as minimizing
different α-divergences (Minka, 2005),—pave the way to new algorithms that are better
suited for particular problems—e.g., the generative adversarial networks (GANs) (Good-
fellow et al., 2014) minimize a particular f -divergence, the Jensen-Shannon divergence,
which is well-suited for measuring similarity between real-world images (Nowozin et al.,
2016). This paper is, to our knowledge, the first to shed light on policy improvement in
reinforcement learning from the f -divergence point of view.

2. Background

This section provides the background on the f -divergence, the α-divergence, and the convex
conjugate function, highlighting the key properties required for our derivations.

The f-divergence (Csiszár, 1963; Morimoto, 1963; Ali and Silvey, 1966) generalizes
many similarity measures between probability distributions (Sason and Verdu, 2016). For
two distributions π and q on a finite set A, the f -divergence is defined as

Df (π‖q) ,
∑
a∈A

q(a)f

(
π(a)

q(a)

)
,

where f is a convex function on (0,∞) such that f(1) = 0. For example, the KL divergence
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Figure 1: The α-divergence
smoothly connects several
prominent divergences.

corresponds to fKL(x) = x log x. Note that π must be abso-
lutely continuous with respect to q to avoid division by zero,
i.e., q(a) = 0 implies π(a) = 0 for all a ∈ A. We addition-
ally assume f to be continuously differentiable, which includes
all cases of interest for us. The f -divergence can be general-
ized to unnormalized distributions. For example, the gener-
alized KL divergence (Zhu and Rohwer, 1995) corresponds to
f1(x) = x log x − (x − 1). The derivations in this paper bene-
fit from employing unnormalized distributions and subsequently
imposing the normalization condition as a constraint.

The α-divergence (Chernoff, 1952; Amari, 1985) is a one-
parameter family of f -divergences generated by the α-function
fα(x) with α ∈ R. The particular choice of the family of func-
tions fα is motivated by generalization of the natural logarithm (Cichocki and Amari, 2010).
The α-logarithm logα(x) , (xα−1 − 1)/(α − 1) is a power function for α 6= 1 that turns
into the natural logarithm for α→ 1. Replacing the natural logarithm in the derivative of
the KL divergence f ′1 = log x by the α-logarithm and integrating f ′α under the condition
that fα(1) = 0 yields the α-function

fα(x) ,
(xα − 1)− α(x− 1)

α(α− 1)
. (1)
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Divergence α f(x) f ′(x) (f∗)′(y) f∗(y) dom f∗

KL 1 x log x− (x− 1) log x ey ey − 1 R
Reverse KL 0 − log x + (x− 1) − 1

x
+ 1 1

1−y
− log(1− y) y < 1

Pearson χ2 2 1
2
(x− 1)2 x− 1 y + 1 1

2
(y + 1)2 − 1

2
y > −1

Neyman χ2 −1
(x−1)2

2x
− 1

2x2 + 1
2

1√
1−2y

−
√

1− 2y + 1 y < 1
2

Hellinger 1
2

2
(√
x− 1

)2 2− 2√
x

4
(2−y)2

2y
2−y

y < 2

Table 1: Function fα, its convex conjugate f∗α, and their derivatives for some values of α

The α-divergence generalizes the KL divergence, reverse KL divergence, Hellinger distance,
Pearson χ2-divergence, and Neyman (reverse Pearson) χ2-divergence. Figure 1 displays
well-known α-divergences as points on the parabola y = α(α − 1). For every divergence,
there is a reverse divergence symmetric with respect to the point α = 0.5, corresponding to
the Hellinger distance.

The convex conjugate of f(x) is defined as f∗(y) = supx∈dom f{〈y, x〉 − f(x)}, where
the angle brackets 〈y, x〉 denote the dot product (Boyd and Vandenberghe, 2004). The
key property (f∗)′ = (f ′)−1 relating the derivatives of f∗ and f yields Table 1, which lists
common functions fα together with their convex conjugates and derivatives. In the general
case (1), the convex conjugate and its derivative are given by

f∗α(y) =
1

α
(1 + (α− 1)y)

α
α−1 − 1

α
,

(f∗α)′(y) = α−1
√

1 + (α− 1) y,

for y(1− α) < 1. (2)

Function fα is convex, non-negative, and attains minimum at x = 1 with fα(1) = 0.
Function (f∗α)′ is positive on its domain with (f∗α)′(0) = 1. Function f∗α has the property
f∗α(0) = 0. The linear inequality constraint (2) on the dom f∗α follows from the require-
ment dom fα = (0,∞). Another result from convex analysis crucial to our derivations is
Fenchel’s equality

f∗(y) + f(x?(y)) = 〈y, x?(y)〉, (3)

where x?(y) = arg supx∈dom f{〈y, x〉 − f(x)}. We will occasionally put the conjugation

symbol at the bottom, especially for the derivative of the conjugate function f ′∗ , (f∗)′.

3. Policy improvement with f-divergence for multi-armed bandits

In order to develop intuition regarding the influence of entropic penalties on policy improve-
ment, we first consider a simplified version of the reinforcement learning problem—namely,
the stochastic multi-armed bandit problem (Bubeck and Cesa-Bianchi, 2012). The resulting
algorithm is closely related to the family of Exp3 algorithms (Auer et al., 2003), which are
extremely good on adversarial bandit problems but have fallen behind the state-of-the-art
for stochastic bandit problems. We nevertheless focus on the stochastic bandit problems
to illustrate crucial effects of entropic penalties on policy improvement in a clean intuitive
way. This section is meant to serve as a foundation for the reinforcement learning section.

At every time step t ∈ {1, . . . , T}, an agent chooses among K actions a ∈ A and after
every choice at = a receives a noisy reward rt = r(at, εt) drawn from a distribution with
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mean Q(a) = Eε[r(a, ε)]. The goal of the agent is to maximize the expected total reward
J , E[

∑T
t=1 rt]. If the agent knew the true value of each action Q(a), the optimal strategy

would be to always choose the action with the highest value, a∗t = arg maxaQ(a). However,
since the agent does not know Q in advance, it faces the exploration-exploitation dilemma
at every time step. It can either pick the best action according to the current estimate of
action values Q̃t or try an exploratory action that may turn out to be better than arg max Q̃t.
A generic way to encode the exploration-exploitation trade-off is by introducing a policy
πt, that is, a distribution over a ∈ A from which the agent draws an action at ∼ πt.
Thus, the question becomes: given the current policy πt and the current estimate of action
values Q̃t, what should the policy πt+1 at the next time step be? Unlike the choice of the
best action under perfect information, such sampling policies are hard to derive from first
principles (Ghavamzadeh et al., 2015).

In this section, we formalize the exploration-exploitation trade-off by choosing the next
stochastic policy to maximize the expectation of Q̃t while regularizing the change in the pol-
icy through the f -divergence. This formalization always yields both a convex optimization
problem and, as its solution, the next stochastic policy. For the α-divergence, we obtain
both classical policy updates (e.g., ε-greedy, softmax, etc.) as well as novel ones resulting
from different α’s. Empirical evaluations on a simulated multi-armed bandit environment
illustrate the differences in policy updates corresponding to various penalty functions.

3.1 f-Divergence constrained policy optimization problem for bandits

A policy improvement at time step t is derived by maximizing the expected return J(π) ,
Ea∼π[Q(a)] while punishing the policy change between the old policy q(a) , πt(a) and the
new policy π(a) , πt+1(a) by an f -divergence as a kind of regularization. This regularization
is added to the objective function weighted by a ‘temperature’ η to trade-off exploration
vs exploitation. For simplicity, the current estimate of action values is denoted by Q(a) ,
Q̃t(a). A policy π that achieves a higher expected return than q is a solution of the following
optimization problem

max
π

Jη(π) =
∑
a

Q(a)π(a)− η
∑
a

q(a)f

(
π(a)

q(a)

)
,

s.t.
∑
a

π(a) = 1,

π(a) ≥ 0, ∀a ∈ A.

(4)

Different formulations of Problem (4) with the KL divergence in place of the f -divergence
have been proposed. An inequality constraint (Peters et al., 2010) bounding the informa-
tion loss by certain fixed amount ε can automatically yield an η as a Lagrange multiplier
found during optimization. Alternating between maximization of the expected return at
fixed information loss and subsequent information loss minimization at constant expected
return (Still and Precup, 2012) yields algorithms that allow for automatic adaptation of ε.
In (4), the divergence is added as a penalty, as suggested by Azar and Kappen (2012). Since
the treatment of these three mathematical problems differs only in the sets of hyperparam-
eters, our results straightforwardly generalize to the other two formulations.
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Differentiating the Lagrangian of problem (4)

Lη(π, λ, κ) =
∑
a

Q(a)π(a)− η
∑
a

q(a)f (π(a)/q(a))− λ
(∑

a

π(a)− 1

)
+
∑
a

κ(a)π(a)

with respect to π(a) and equating the derivative to zero, we find an expression for the
optimal new policy π? through the derivative of the convex conjugate function

π?(a) = q(a)f ′∗

(
Q(a)− λ+ κ(a)

η

)
. (5)

Substituting π? back into the Lagrangian and using Fenchel’s equality (3), we arrive at the
dual problem

min
λ, κ

g(λ, κ) = η
∑
a

q(a)f∗
(
Q(a)− λ+ κ(a)

η

)
+ λ,

s.t. κ(a) ≥ 0, ∀a ∈ A,
arg f∗ ∈ rangex≥ 0 f

′(x), ∀a ∈ A.

(6)

The constraint on the argument of the convex conjugate has a particularly simple linear
form (2) for the α-function fα(y); see Section 2 for the necessary background. In the very
special KL divergence case it completely disappears because range f ′1 = R, see Table 1 for
well-known divergences. In the multi-armed bandit scenario, one is free to choose whether
to solve the optimization problem in the primal form (4) or in the dual form (6). However, as
we will see later, the dual formulation (6) is much better suited for reinforcement learning.

When the Lagrange multipliers κ disappear. When choosing function f , it is impor-
tant to consider whether 0 ∈ dom f ′(x), as it implies that the improved policy can put zero
mass on some actions. Although f is not required to have a finite value at x = 0 by defi-
nition, for many divergences it does (e.g., for any α-divergence for α > 1) or it has a finite
limit (e.g., for the KL divergence). However, even those functions f that are defined at zero
do not necessarily have a finite derivative at zero (e.g., for the KL-divergence f ′1(x) = log x).
If 0 /∈ dom f ′(x), the new policy π cannot put zero probability mass on actions that were
possible under the old policy q. In other words, if q(a) > 0, then π(a) > 0, and the comple-
mentary slackness condition κ(a)π(a) = 0 implies κ(a) = 0. Therefore, we can ignore the
non-negativity constraint if f ′ has a singularity at x = 0. Thereby, one commonly omits
the non-negativity constraint when using the KL divergence or the reverse KL. In general,
κ(a) = 0 for any fα with α ≤ 1. On the other hand, if 0 ∈ dom f ′(x), some actions may get
zero probability under the new policy, and κ(a) 6= 0. This case emerges for fα with α > 1.

3.2 Effects of the exploration-exploitation-tradeoff and the divergence type

The exploration-exploitation parameter η controls the step size, while the divergence type α
affects the search direction.

Greedy policy vs no change: effects of the temperature parameter η. Indepen-
dent of the f -divergence chosen, the temperature parameter η controls the magnitude of
deviation of the new policy from the old one. The optimal Lagrange multiplier λ? plays
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the role of the baseline similar as in policy gradient methods (Sutton et al., 2000; Peters
and Schaal, 2006). For low temperatures η → 0, the policy π?(a) → δ(a, arg maxaQ(a))
tends towards greedy action selection (Sutton and Barto, 1998) with λ? → maxaQ(a).
For η →∞, both the policy π?(a)→ q(a) and the baseline λ? →∑

a q(a)Q(a) do no longer
change. For other values of η, the agent chooses an intermediate solution between focusing
on a single best action and remaining close to the old policy.

From ε-greedy to ε-elimination: effects of α on policy improvement. Given the
functional form of the policy update (5), we can find the Lagrange multipliers λ and κ
and thus obtain a closed-form solution of Problem (4) in two cases: when f ′∗ is expo-
nential or linear, which corresponds to α = 1 and α = 2. For other α’s, we have to

Table 2: Effects of α on
the policy ∀η > 0

Policy π α

greedy −∞
ε-greedy α� 0
ε-soft α ≤ 1
soft-max α = 1
linear α = 2
ε-elimin. α� 1
elimination +∞

solve the optimization problem numerically. Table 2 summarizes the
effects of α on policy improvement. For α � 0, we recover the ε-
greedy action selection method (Sutton and Barto, 1998), which
assigns probability 1−ε to the best action and spreads the remaining
probability mass uniformly among the rest; parameter η is propor-
tional to ε, see Section 3.2. Values of α ≤ 1 correspond to ε-soft poli-
cies (Sutton and Barto, 1998); parameter α controls the distribution
of probability mass among suboptimal actions: large negative values
of α correspond to more uniform distributions, whereas smaller α’s
distribute the probability mass according to values. When α = 1,
we arrive at a form of the soft-max policy (Bridle, 1990) with the log-sum-exp baseline

π?(a) = q(a)e
1
η
(Q(a)−λ?)

=
q(a)e

1
η
Q(a)∑

b q(b)e
1
η
Q(b)

,

with λ? = η log
∑

a q(a) exp(Q(a)/η), where the regular soft-max arises for a uniform dis-
tribution q(a) = U(a) over all arms. That the soft-max policy results from using the KL
divergence as a measure of distance has been suggested several times in the literature (Azar
and Kappen, 2012; Peters et al., 2010; Still and Precup, 2012). Further increasing α to
α = 2, we obtain a linear policy

π?(a) = q(a)

(
Q(a)− λ? + κ(a)

η
+ 1

)
,

λ? =
∑
a

q(a)(Q(a) + κ(a)).

As pointed out in Section 3.1, some actions may get zero probability under π? when α > 1.
Therefore, in general one needs to keep track of the Lagrange multipliers κ. However, we
can simplify analysis by dropping κ for sufficiently large η. Indeed, if q(a) > 0 for all a ∈ A,
there exists a temperature η > ηmin for which π?(a) > 0, and thus the inequality constraints
are inactive. This minimum temperature

ηmin = |minaA(a)|

is defined in terms of the advantage function

A(a) , Q(a)− J(q) = Q(a)−∑b q(b)Q(b)

6
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which measures agent’s gain from taking action a instead of following policy q. The baseline
λ? equals the expected return J(q) under policy q when κ = 0. Thus, for any η > ηmin, we
obtain a linearly advantage-reweighted policy

π?(a) = q(a)

(
1 +A(a)

η

)
.

For α � 1, we obtain a new policy, that we call ε-elimination. Under this policy, all
actions get equal probability except for the set of the worst actions that gets probability
zero; the size of the set depends on α and η.

From Qmax to Qmin: effects of α on the baseline. To complete the picture, we
describe the asymptotic behavior of λ? when the divergence type α is varied. Consider the
limit α → −∞ of large negative α. As established in Section 3.1, Lagrange multipliers κ
vanish for α < 1. For sufficiently large α, the solution hits the inequality constraint in (6),

Table 3: Effects of α on
the baseline ∀η > 0

Baseline λ α

Qmax −∞
(Q̄,Qmax) α ≤ 1
log-sum-exp α = 1
Q̄ α = 2
(Qmin, Q̄] α > 1
Qmin +∞

from which the lower bound on λ?

λ? ≥ Q(a)− ηε, ∀a ∈ A
with ε = 1/(1 − α) can be obtained. Given that it holds for all a,
it also holds for the maximum over a. Since the solution lies at the
constraint, in the limit one obtains

lim
α→−∞

λ? = lim
ε→0

{
max
a

Q(a)− ηε
}

= max
a

Q(a).

Recall from Section 3.2 that for a fixed α the baseline λ? shifts
towards the interior of the feasible set when the temperature η is increased, i.e., limη→∞ λ

? =
Ea∼q[Q(a)] , Q̄. Therefore, the optimal baseline λ? for any divergence α < 1 lies in the
range λ? ∈ (Q̄,Qmax). The same analysis for α > 1 yields λ? ∈ (Qmin, Q̄]. Table 3
summarizes these asymptotic results.

3.3 Empirical evaluation of policy improvement with f-divergence in bandits

The effects of the divergence type are demonstrated on a simulated stochastic multi-armed
bandit problem. Policy improvement in a single iteration as well as regret over a period of
time are compared for different values of α.

Effects of α on policy improvement. Figure 3 shows the effects of α-divergence on
policy update. We consider a 10-armed bandit problem with arm values Q(a) ∼ N (0, 1).
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R
eg
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α = −10

α = 10

α = −20
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Figure 2: Average regret
for various values of α.

The temperature is kept fixed at η = 2 for all values of α. Initial
policy is uniform and the arm values Q(a) are fixed. Several it-
erations are shown in the figure for comparison. Extremely large
positive and negative values of α correspond to ε-elimination and
ε-greedy policies respectively. Small values of α, in contrast,
weigh actions according to their values. Policies for α < 1 are
peaked and heavy-tailed, eventually turning into ε-greedy poli-
cies when α → −∞. Policies for α ≥ 1 are more uniform, but
they put zero mass on bad actions, eventually turning into ε-
elimination policies when α → ∞. For α ≥ 1, policy iteration may spend a lot of time in
the end deciding between two best actions, whereas for α < 1 the final convergence is faster.
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Figure 3: Effects of α on policy improvement. Each row corresponds to a fixed α. First four
iterations of policy improvement together with iteration 25 are shown in each row. Large
positive α’s eliminate bad actions one by one, keeping the exploration level equal among
the rest. Small α’s weigh actions according to their values; actions with low value get zero
probability for α > 1, but remain possible with small probability for α ≤ 1. Large negative
α’s focus on the best action, exploring the remaining ones with equal probability.

Effects of α on regret. Average regret Cn = nQmax−E[
∑n−1

t=0 rt] is shown in Figure 2 for
different values of α as a function of the time step n with 95% confidence error bars. We also
plot performance of the UCB algorithm (Bubeck and Cesa-Bianchi, 2012) for comparison.
The presented results are obtained in a 20-armed bandit environment where rewards have
Gaussian distribution r(a) ∼ N (Q(a), σ2) with variance σ2 = 0.5. Arm values are estimated
from observed rewards and the policy is updated every 20 time steps. The temperature
parameter η is decreased starting from η = 1 after every policy update according to the
schedule η+ = βη with β = 0.8. Results are averaged over 400 runs. In general, extreme α’s
accumulate more regret. However, they eventually focus on a single action and flatten out.
Small α’s accumulate less regret, but they may keep exploring sub-optimal actions longer.
Values of α ∈ [0, 2] perform comparably with UCB after around 400 steps, once reliable
estimates of values have been obtained.
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Figure 4: Regret after a
fixed time as a function of α.

Figure 4 shows the average regret after a given number of
time steps as a function of the divergence type α. Best results
are achieved for small values of α. Large negative α’s correspond
to ε-greedy policies, which oftentimes prematurely converge to a
sub-optimal action, failing to discover the optimal action for a
long time if the exploration probability ε is small. Large positive
α’s correspond to ε-elimination policies, which may by mistake
completely eliminate the best action or spend a lot of time de-
ciding between two options in the end of learning, accumulating
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more regret. The optimal value of α depends on the time horizon for which one wishes to
optimize the policy. The minimum of the curves shifts from slightly negative α’s towards
the range α ∈ [0, 2] with increasing time horizon.

4. Policy iteration with state-action f-divergence for ergodic MDPs

The methodology described in the previous section can be generalized from the bandit
scenario to reinforcement learning. We focus on the average-reward setting (Sutton and
Barto, 1998). At every time step, an agent finds itself in a state s ∈ S and takes an
action a ∈ A drawn from a stochastic policy π(a|s). Subsequently, the agent transitions
from state s to state s′ with probability p(s′|s, a) and receives a reward r(s, a) ∈ R. The
fraction of time the agent spends on average in each state s as a result of following policy π
is given by the steady state distribution µ(s), which satisfies the stationarity condition

µ(s′) =
∑
s,a

µ(s)π(a|s)p(s′|s, a). (7)

The steady state distribution is sometimes denoted by µπ(s) to emphasize its dependence
on the policy. The agent seeks a policy π that maximizes the expected return

J(π) ,
∑
s,a

µ(s)π(a|s)r(s, a) (8)

subject to the constraint (7), provided that both π and µ are probability distributions.

4.1 f-Divergence constrained policy optimization for ergodic MDPs

We can generalize the bandit problem (4) by adding a single additional constraint here—
namely, the stationarity condition (7). This constraint directly yields the value function (Pe-
ters et al., 2010), i.e., the policy evaluation step, as the corresponding dual variable. How-
ever, for a more straightforward Lagrangian, we rewrite (7) in terms of both policy and
state distribution. Assuming we have the state-action distribution q(s, a) = µπ0(s)π0(a|s)
under the old policy π0(a|s) to which we aim to stay similar to with the new distribution
µ(s)π(a|s) while achieving a higher expected return, we obtain the following optimization
problem

max
µ,π

Jη(µ, π) =
∑
s,a

µ(s)π(a|s)r(s, a)− η
∑
s,a

q(s, a)f

(
µ(s)π(a|s)
q(s, a)

)
s.t.

∑
a′

µ(s′)π(a′|s′) =
∑
s,a

µ(s)π(a|s)p(s′|s, a), ∀s′ ∈ S,∑
s,a

µ(s)π(a|s) = 1,

µ(s)π(a|s) ≥ 0, ∀s ∈ S, ∀a ∈ A.

(9)

A similar Lagrangian as for problem (4) can be obtained where the value function v arises
as an additional Lagrangian multiplier.

9
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The Lagrangian of problem (9) can be written as

L(µ, π, v, λ, κ) =
∑
s,a

µ(s)π(a|s)Av(s, a)− η
∑
s,a

q(s, a)f

(
µ(s)π(a|s)
q(s, a)

)

− λ
(∑

s,a

µ(s)π(a|s)− 1

)
+
∑
s,a

κ(s, a)µ(s)π(a|s),

where A is a function of the dual variables v corresponding to the stationarity constraint (7)

Av(s, a) , r(s, a) +
∑
s′

p(s′|s, a)v(s′)− v(s). (10)

We note that v can be identified with the value function and A with the advantage function.
The solution of Problem (9) can be expressed as a function of the dual variables

µ?(s)π?(a|s) = q(s, a)f ′∗

(
Av(s, a)− λ+ κ(s, a)

η

)
, (11)

which allows extracting the optimal next policy by Bayes’ rule

π?(a|s) =
q(s, a)f ′∗ ((Av(s, a)− λ+ κ(s, a)) /η)∑
b q(s, b)f

′
∗ ((Av(s, b)− λ+ κ(s, b)) /η)

. (12)

The optimal values of the dual variables {v, λ, κ} are found by solving the dual problem

min
v,λ, κ

g(v, λ, κ) = η
∑
s,a

q(s, a)f∗
(
Av(s, a)− λ+ κ(s, a)

η

)
+ λ

s.t. κ(s, a) ≥ 0, ∀s ∈ S, ∀a ∈ A,
arg f∗ ∈ rangex≥ 0 f

′(x), ∀s ∈ S, ∀a ∈ A.

(13)

The constraint on arg f∗ is linear because derivative of a convex function is monotone (Boyd
and Vandenberghe, 2004). Problem (13) altogether is a convex optimization problem, there-
fore can be solved efficiently.

A generic policy iteration algorithm employing an f -divergence penalty proceeds in two
steps. Policy evaluation: the dual problem (13) is solved for a given q. Policy improvement:
the analytic solution (12) of the primal problem (9) is used to update π. In the following
subsection we consider several particular choices of the divergence function in more detail.

4.2 Two important special cases: α = 1 and α = 2

Similar to the bandit scenario (see Section 3.2), there are two special choices of the f -
divergence for which we can analytically find the Lagrange multipliers λ and κ and thus
obtain the policy evaluation and policy improvement steps in the simplest form.

KL divergence (α = 1). With f = f1, policy evaluation (13) turns into

min
v

g(v) = λ?(v) = η log
∑
s,a

q(s, a) exp

(
Av(s, a)

η

)
(14)

10
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where g(v) , L(µ?, π?, v, λ?, κ?) is the Lagrangian upon substitution of all variables except
for v. Remarkably, the baseline λ? equals the Lagrangian dual function g, which is only
true in the KL divergence case. The policy improvement step (12) takes the form

π?(a|s) =
q(s, a) exp (Av?(s, a)/η)∑
b q(s, b) exp (Av?(s, b)/η)

. (15)

Note that the baseline λ? cancels out in the policy but would be included in the state-action
distribution.

Pearson χ2 divergence (α = 2). When f = f2, one needs to be careful with the dual
variables κ ensuring the non-negativity of probabilities because they are not necessarily all
zero (see Section 3.1). For notational simplicity, we employ differential advantage Ãv(s, a)
defined as a difference between the advantage (10) and the expected return (8)

Ãv(s, a) = Av(s, a)− J(π0),

following Sutton and Barto (1998). It is straightforward to check that if the temperature
η is bigger than the absolute value of the minimum differential advantage, η > ηmin =
|mins,a Ãv(s, a)|, then the non-negativity constraint is satisfied and κ ≡ 0. The baseline λ?

turns into the average return

λ? =
∑
s,a

q(s, a)Av(s, a) = J(π0),

becoming independent of v, in contrast to the KL divergence case. The policy evaluation
step (13) corresponds to minimization of the squared differential advantage (scaled by 2η)

min
v

g(v) =
1

2η

∑
s,a

q(s, a)Ã2
v(s, a) + J(π0), (16)

and the policy improvement step (12) corresponds to the linear in the differential advantage
reweighting of the old policy

π?(s, a) =
q(s, a)

(
1 + Ãv?(s, a)/η

)
∑

b q(s, b)
(

1 + Ãv?(s, b)/η
) . (17)

A careful reader shall notice that the solution for the Pearson χ2-divergence (16, 17) can
be obtained as the first-order approximation of the KL divergence solution (14, 15) in
the high-temperature limit η → ∞. It turns out, an even more general statement holds.
Solution (12, 13) with any f -divergence turns into the linear-quadratic Pearson χ2 solution
in the limit of high temperatures (small policy update steps). The underlying reason for this
is that the Pearson χ2-divergence is a quadratic approximation of any f -divergence around
unity. Since pushing η towards infinity puts more weight on the divergence penalty in the
optimization objective (9), the distance between the old state-action distribution and the
new one becomes smaller, justifying the Taylor expansion. Therefore, one should expect
to see pronounced differences between various f -divergence penalties either for big update
steps or when approximations of the value function and the policy are used.

11
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4.3 Practical algorithm: sample-based policy iteration with f-divergence

Solving problem (13) and computing the optimal next policy (12) would require full knowl-
edge of the environment {p(s′|s, a), r(s, a)}. In practice, a reinforcement learning agent
would need to estimate p and r from experience, which is prohibitively expensive in large
state-action spaces. Fortunately, we can rephrase the algorithm entirely in terms of sample
averages, thus side-stepping model estimation. We replace expectations by sample averages
using the transitions (si, ai, s

′
i, ri) gathered under the current policy. The agent does not

need to visit all states—local information under the current policy suffices to compute the
averages. Algorithm 1 summarizes the main steps of the f -divergence constrained policy
iteration.

Function approximation. If the dimensionality of the state space is large, one can resort
to function approximation methods. We note that relaxing the steady state constraint (7)
to a “steady features constraint”∑

s′
µ(s′)φ(s′) =

∑
s,a,s′

µ(s)π(a|s)p(s′|s, a)φ(s′). (18)

naturally introduces a linear function approximation vθ(s) = θTφ(s) with fixed features
φ : S → Rm while the parameters θ are the new Lagrangian multipliers (Peters et al., 2010).
To our knowledge, such a constraint is the only way to introduce function approximation in
the same way into the primal optimization problem (9), the next policy (12), and the dual
optimization problem (13).

Implementation details. Several practical improvements make Algorithm 1 faster and
robuster. First, the temperature parameter η should be decayed with iterations in order to
guarantee convergence to a solution of the original non-penalized problem. In our exper-
iments, simple exponential decay was sufficient; however, more complex adaptive schemes
can be devised. Second, for α-divergences with α ≤ 1, one can omit the dual variables
κ(s, a) because they are all equal to zero (see Section 3.1). Moreover, one can omit κ(s, a)
even for α > 1 if η is sufficiently big. The exact value of ηmin above which κ can be ignored
depends on the scale of the rewards; in the special case α = 2, there is an explicit condition
on ηmin (see Section 4.2). Third, the estimate of the advantage Av?(s, a) for actions that
were not sampled under the current policy can be set to the baseline λ?, which serves as
a proxy for the expected reward; in our experiments this strategy performed best. Fourth,
introducing a little slack in the linear constraint on the domain of the convex conjugate
function improves robustness and helps the optimizer.

4.4 Empirical results on ergodic MDPs

We evaluate our policy iteration algorithm with f -divergence on standard grid-world rein-
forcement learning problems from OpenAI Gym (Brockman et al., 2016). The environments
that terminate or have absorbing states are restarted during data collection in order to en-
sure ergodicity. Figure 5 demonstrates learning dynamics on different environments for
various choices of the divergence function. Parameter settings and other implementation
details can be found in Appendix A. In summary, one can either promote risk averse be-
havior by choosing α < 0, which may, however, result in suboptimal exploration, or one can

12
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Algorithm 1: Policy iteration with any type of f -divergence

Input: Initial policy π0(a|s), divergence function f , temperature η
define Dual Function ĝ(v, λ, κ):

for every sample i← 1 to N do

Â(si, ai)← Â(si, ai) + (ri + v(s′i)− v(si))
n(si, ai)← n(si, ai) + 1

for every state-action pair (s, a) ∈ D do

Â(s, a)← Â(s, a)/n(s, a)

ŷ(s, a)← (Â(s, a)− λ+ κ(s, a))/η

return η
N

∑N
i=1 f

∗(ŷ(si, ai)) + λ
foreach policy update k do

Sampling: Gather D = {(si, ai, s′i, ri), i = 1, N} under current policy πk(a|s)
Policy Evaluation: Minimize dual function ĝ defined above
{v?, λ?, κ?} ← arg minv,λ,κ ĝ(v, λ, κ) s.t. κ(s, a) ≥ 0, ŷ(s, a) ∈ rangex≥ 0 f

′(x)

Policy Improvement: for every state-action pair (s, a) ∈ D do

πk+1(a|s)← πk(a|s)f ′∗(ŷ(s,a; v?,λ?,κ?))∑
b πk(b|s)f ′∗(ŷ(s,b; v?,λ?,κ?))

Output: Optimal policy π?(a|s)

promote risk seeking behavior with α > 1, which may lead to overly aggressive elimination
of options. Our experiments suggest that the optimal balance should be found in the range
α ∈ [0, 1]. It should be pointed out that the effect of the α-divergence on policy iteration
is not linear and not symmetric with respect to α = 0.5, contrary to what one could have
expected given the symmetry of the α-divergence as a function of α pointed out in Sec-
tion 2. That is, switching from α = −3 to α = −2 may have little effect on policy iteration,
whereas switching from α = 3 to α = 4 may have a much more pronounced influence on
the learning dynamics.

4.5 Relation to the mean squared Bellman error minimization

We have seen in Section 4.2 that policy evaluation with the Pearson χ2-divergence penalty,
corresponding to the dual optimization problem (16), is equivalent to minimization of the
mean squared differential advantage (MSDA). Here, we establish the relation between the
MSDA objective and the classical mean squared Bellman error (MSBE) minimization (Sut-
ton and Barto, 1998).

In order to state precisely how the MSDA and MSBE objectives are related, we need
to recall several definitions. Assume that the value function v : S → R is parameterized by
a vector θ as discussed in Section 4.3, and let an agent follow a policy π0 which yields a
state-action distribution q(s, a) = µπ0(s)π0(a|s). In discounted infinite horizon setting, one
defines the temporal difference (TD) error as δθ(s, a, s

′) = r(s, a) + γvθ(s
′) − vθ(s) where

γ ∈ (0, 1) is a discount factor. In the average-reward setting, this TD error is typically
replaced by the differential TD error

δ̃θ(s, a, s
′) = r(s, a)− r̄ + vθ(s

′)− vθ(s)
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Figure 5: Effects of α-divergence on policy iteration. Each row corresponds to a given
environment. Results for different values of α are split into three subplots within each row,
from the more extreme α’s on the left to the more refined values on the right. In all cases,
more negative values α < 0 initially show faster improvement because they immediately
jump to the mode and keep the exploration level low; however, after a certain umber of
iterations they get overtaken by moderate values α ∈ [0, 1] that weigh advantage estimates
more evenly. Positive α > 1 demonstrate high variance in the learning dynamics because
they clamp the probability of good actions to zero if the advantage estimates are overly
pessimistic, never being able to recover from such a mistake. Large positive α’s may even
fail to reach the optimum altogether, as exemplified by α = 10 in the plots. The most stable
and reliable α-divergences lie between the reverse KL (α = 0) and the KL (α = 1), with the
Hellinger distance (α = 0.5) outperforming both of them on the FrozenLake environment.

that differs from the “usual” TD error in two ways: first, there is no discount factor, and
second, the expected reward under the current policy

r̄ =
∑
s,a

q(s, a)r(s, a) =
∑
s,a

µπ0(s)π0(a|s)r(s, a) = J(π0)

is subtracted in order to ensure that the mean of the differential TD error is zero

∑
s,a

µπ0(s)π0(a|s)p(s′|s, a)δ̃θ(s, a, s
′) = 0.
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In the following, we only consider differential versions of the errors. By averaging over the
next states s′ in the differential TD error, one obtains the differential advantage

Ãθ(s, a) =
∑
s′

p(s′|s, a)δ̃θ(s, a, s
′).

By integrating out the action a in the differential advantage, one obtains the differential
Bellman error

ε̃θ(s) =
∑
a

π0(a|s)Ãθ(s, a).

In total, there are three different error signals: differential TD error (DTDE), differential
advantage (DA), and the differential Bellman error (DBE). Each of them can be used for
learning. Creating a mean squared (MS) objective out of each of them, we obtain three
objective functions:

MSDTDE(θ) =
∑
s,a,s′

µπ0(s)π0(a|s)p(s′|s, a)
[
δ̃θ(s, a, s

′)
]2
,

MSDA(θ) =
∑
s,a

µπ0(s)π0(a|s)
[∑
s′

p(s′|s, a)δ̃θ(s, a, s
′)

]2
,

MSDBE(θ) =
∑
s

µπ0(s)

∑
a,s′

π0(a|s)p(s′|s, a)δ̃θ(s, a, s
′)

2

.

Thus, the novel MSDA objective fits in-between the TD error and the Bellman error mini-
mization. Performing stochastic gradient descent (SGD) on these objectives leads to various
flavors of the residual gradient (RG) algorithm (Baird, 1995), recently surveyed by Dann
et al. (2014). Curiously, all three objectives result in the naive residual gradient algo-
rithm (Sutton and Barto, 1998) when expectations are “naively” replaced by one-sample
estimates.

We realize that the dual for α = 2, i.e., (16) is exactly the MSDA objective. Interest-
ingly, since the dual objective (13) tends towards the MSDA objective in the limit of high
temperatures η →∞ for any choice of the divergence function f , dual minimization can be
viewed as a continuous generalization of the MSDA minimization to finite temperatures;
therefore, SGD on the dual objective (13) is a continuous generalization of the RG algorithm
to finite temperatures.

5. Conclusion

In this paper, we have developed a framework for deriving new and established policy
improvement and policy iteration algorithms by constraining policy change using the f -
divergence. First, we described the key idea in the bandit scenario. Looking at the smooth
curve of α-divergences in the space of f -divergences, we were able to see the connection
between many classical action selection strategies as well as discover several new ones.
The optimal choice of α depends on the time horizon, since different α’s corresponds to
different exploration strategies. The soft-max policy update rule, employed by the Exp3
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algorithm (Bubeck and Cesa-Bianchi, 2012) and the gradient bandit algorithm (Sutton
and Barto, 1998), is a special case of the f -divergence constrained policy improvement
corresponding to the KL divergence.

After the bandit case, we considered the average-reward reinforcement learning problem,
for which we found both (i) an efficient sample-based solution and (ii) the important new
insight that the choice of the f -divergence does not only imply the type of policy improve-
ment step but also the compatible policy evaluation step. In particular, we have shown that
employing the soft-max policy for the actor implies that the log-sum-exp function is used for
policy evaluation by the critic (somewhat similar to REPS (Peters et al., 2010)). Similarly,
in our framework, policy evaluation by minimizing the mean squared differential advantage,
which is closely related to the mean squared Bellman error, results from the choice of the
α = 2-divergence and comes along with a new, compatible policy update rule. Thus, it is
likely that this approach will still yield a larger number of new policy improvements along
with their compatible critics derived by just choosing another f -divergence.
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Appendix A.

In all experiments, the temperature parameter η is exponentially decayed ηi+1 = η0a
i in

each iteration i = 0, 1, . . . . The choice of η0 and a depends on the scale of the rewards
and the number of samples collected per policy update. Tables for each environment list
these parameters along with the number of samples per policy update, the number of
policy iteration steps, and the number of runs for averaging the results. Where applicable,
environment-specific settings are also listed.

Parameter Value

Number of states 8
Action success probability 0.9
Small and large rewards (2.0, 10.0)
Number of runs 10
Number of iterations 30
Number of samples 800
Temperature parameters (η0, a) (15.0, 0.9)

Table 4: Chain environment.

Parameter Value

Punishment for falling from the cliff -10.0
Reward for reaching the goal 100
Number of runs 10
Number of iterations 40
Number of samples 1500
Temperature parameters (η0, a) (50.0, 0.9)

Table 5: CliffWalking environment.

Parameter Value

Action success probability 0.8
Number of runs 10
Number of iterations 50
Number of samples 2000
Temperature parameters (η0, a) (1.0, 0.8)

Table 6: FrozenLake environment.
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