551 research outputs found

    Integral Admittance Shaping for Exoskeleton Control

    Full text link
    A wide variety of strategies have been developed for assisting human locomotion using powered exoskeletons. Although these strategies differ in their aims as well as the control methods employed, they have the implicit property of causing a virtual modification of the dynamic response of the human limb. We use this property of the exoskeletons action to formulate a unified control design framework called Integral Admittance Shaping, which designs exoskeleton controllers capable of producing the desired dynamic response for the assisted limb. In this framework, a virtual increase in the admittance of the limb is produced by coupling it to an exoskeleton that exhibits active behavior. Specifically, our framework shapes the magnitude profile of the integral admittance (i.e. torque-to-angle relationship) of the coupled human-exoskeleton system, such that the desired assistance is achieved. This framework also ensures that the coupled stability and passivity are guaranteed. This paper presents a formulation of Integral Admittance Shaping for single degree-of-freedom (1-DOF) exoskeleton devices. We also present experimental results on a modified version of Honda’s Stride Management Assist (SMA) device that successfully demonstrate motion amplification of the assisted hip joint during walking

    Active exoskeleton control systems: State of the art

    Get PDF
    To get a compliant active exoskeleton controller, the force interaction controllers are mostly used in form of either the impedance or admittance controllers. The impedance or admittance controllers can only work if they are followed by either the force or the position controller respectively. These combinations place the impedance or admittance controller as high-level controller while the force or position controller as low-level controller. From the application point of view, the exoskeleton controllers are equipped by task controllers that can be formed in several ways depend on the aims. This paper presents the review of the control systems in the existing active exoskeleton in the last decade. The exoskeleton control system can be categorized according to the model system, the physical parameters, the hierarchy and the usage. These considerations give different control schemes. The main consideration of exoskeleton control design is how to achieve the best control performances. However, stability and safety are other important issues that have to be considered. © 2012 The Authors

    Integral admittance shaping: A unified framework for active exoskeleton control

    Full text link
    © 2015 Elsevier B.V. Current strategies for lower-limb exoskeleton control include motion intent estimation, which is subject to inaccuracies in muscle torque estimation as well as modeling error. Approaches that rely on the phases of a uniform gait cycle have proven effective, but lack flexibility to aid other kinds of movement. This research aims at developing a more versatile control that can assist the lower limbs independently of the movement attempted. Our control strategy is based on modifying the dynamic response of the human limbs, specifically their mechanical admittance. Increasing the admittance makes the lower limbs more responsive to any muscle torque generated by the human user. We present Integral Admittance Shaping, a unified mathematical framework for: (a) determining the desired dynamic response of the coupled system formed by the human limb and the exoskeleton, and (b) synthesizing an exoskeleton controller capable of achieving said response. The present control formulation focuses on single degree-of-freedom exoskeleton devices providing performance augmentation. The algorithm generates a desired shape for the frequency response magnitude of the integral admittance (torque-to-angle relationship) of the coupled system. Simultaneously, it generates an optimal feedback controller capable of achieving the desired response while guaranteeing coupled stability and passivity. The potential effects of the exoskeleton's assistance are motion amplification for the same joint torque, and torque reduction for the same joint motion. The robustness of the derived exoskeleton controllers to parameter uncertainties is analyzed and discussed. Results from initial trials using the controller on an experimental exoskeleton are presented as well

    An admittance shaping controller for exoskeleton assistance of the lower extremities

    Full text link
    We present a method for lower-limb exoskeleton control that defines assistance as a desired dynamic response for the human leg. Wearing the exoskeleton can be seen as replacing the leg's natural admittance with the equivalent admittance of the coupled system. The control goal is to make the leg obey an admittance model defined by target values of natural frequency, peak magnitude and zero-frequency response. No estimation of muscle torques or motion intent is necessary. Instead, the controller scales up the coupled system's sensitivity transfer function by means of a compensator employing positive feedback. This approach increases the leg's mobility and makes the exoskeleton an active device capable of performing net positive work on the limb. Although positive feedback is usually considered destabilizing, here performance and robust stability are successfully achieved through a constrained optimization that maximizes the system's gain margins while ensuring the desired location of its dominant poles

    Robotic exoskeleton control for lower limb rehabilitation of knee joint

    Get PDF
    Wearable devices such as exoskeletons are being opted frequently during rehabilitation processes for the post stroke recovery. Such de-vices are playing important role in the development of assistive rehabilitation robotic systems. In this paper three control strategies MPC and LQR and PID are introduced which were applied to knee joint of lower limb exoskeleton model for passive exercise. The two con-trols MPC and LQR are model based control which empowers them for stable responses. In this paper the analysis of robustness of con-trol is done under the noisy and disturbance conditions. The results showed good performance of the exoskeleton model with the applied controls in the provided condition. In the future work the applied controls will be implemented on hardware

    Feasibility and Safety of Bilateral Hybrid EEG/EOG Brain/Neural–Machine Interaction

    Get PDF
    Cervical spinal cord injuries (SCIs) often lead to loss of motor function in both hands and legs, limiting autonomy and quality of life. While it was shown that unilateral hand function can be restored after SCI using a hybrid electroencephalography/electrooculography (EEG/EOG) brain/neural hand exoskeleton (B/NHE), it remained unclear whether such hybrid paradigm also could be used for operating two hand exoskeletons, e.g., in the context of bimanual tasks such as eating with fork and knife. To test whether EEG/EOG signals allow for fluent and reliable as well as safe and user-friendly bilateral B/NHE control, eight healthy participants (six females, mean age 24.1 +/- 3.2 years) as well as four chronic tetraplegics (four males, mean age 51.8 +/- 15.2 years) performed a complex sequence of EEG-controlled bilateral grasping and EOG-controlled releasing motions of two exoskeletons visually presented on a screen. A novel EOG command performed by prolonged horizontal eye movements (>1 s) to the left or right was introduced as a reliable switch to activate either the left or right exoskeleton. Fluent EEG control was defined as average "time to initialize" (TTI) grasping motions below 3 s. Reliable EEG control was assumed when classification accuracy exceeded 80%. Safety was defined as "time to stop" (TTS) all unintended grasping motions within 2 s. After the experiment, tetraplegics were asked to rate the user-friendliness of bilateral B/NHE control using Likert scales. Average TTI and accuracy of EEG-controlled operations ranged at 2.14 +/- 0.66 s and 85.89 +/- 15.81% across healthy participants and at 1.90 +/- 0.97 s and 81.25 +/- 16.99% across tetraplegics. Except for one tetraplegic, all participants met the safety requirements. With 88 +/- 11% of the maximum achievable score, tetraplegics rated the control paradigm as user-friendly and reliable. These results suggest that hybrid EEG/EOG B/NHE control of two assistive devices is feasible and safe, paving the way to test this paradigm in larger clinical trials performing bimanual tasks in everyday life environments

    Hybrid brain/neural interface and autonomous vision-guided whole-arm exoskeleton control to perform activities of daily living (ADLs)

    Full text link
    [EN] Background The aging of the population and the progressive increase of life expectancy in developed countries is leading to a high incidence of age-related cerebrovascular diseases, which affect people's motor and cognitive capabilities and might result in the loss of arm and hand functions. Such conditions have a detrimental impact on people's quality of life. Assistive robots have been developed to help people with motor or cognitive disabilities to perform activities of daily living (ADLs) independently. Most of the robotic systems for assisting on ADLs proposed in the state of the art are mainly external manipulators and exoskeletal devices. The main objective of this study is to compare the performance of an hybrid EEG/EOG interface to perform ADLs when the user is controlling an exoskeleton rather than using an external manipulator. Methods Ten impaired participants (5 males and 5 females, mean age 52 +/- 16 years) were instructed to use both systems to perform a drinking task and a pouring task comprising multiple subtasks. For each device, two modes of operation were studied: synchronous mode (the user received a visual cue indicating the sub-tasks to be performed at each time) and asynchronous mode (the user started and finished each of the sub-tasks independently). Fluent control was assumed when the time for successful initializations ranged below 3 s and a reliable control in case it remained below 5 s. NASA-TLX questionnaire was used to evaluate the task workload. For the trials involving the use of the exoskeleton, a custom Likert-Scale questionnaire was used to evaluate the user's experience in terms of perceived comfort, safety, and reliability. Results All participants were able to control both systems fluently and reliably. However, results suggest better performances of the exoskeleton over the external manipulator (75% successful initializations remain below 3 s in case of the exoskeleton and bellow 5s in case of the external manipulator). Conclusions Although the results of our study in terms of fluency and reliability of EEG control suggest better performances of the exoskeleton over the external manipulator, such results cannot be considered conclusive, due to the heterogeneity of the population under test and the relatively limited number of participants.This study was funded by the European Commission under the project AIDE (G.A. no: 645322), Spanish Ministry of Science and Innovation, through the projects PID2019-108310RB-I00 and PLEC2022-009424 and by the Ministry of Universities and European Union, "fnanced by European Union-Next Generation EU" through Margarita Salas grant for the training of young doctors.Catalán, JM.; Trigili, E.; Nann, M.; Blanco-Ivorra, A.; Lauretti, C.; Cordella, F.; Ivorra, E.... (2023). Hybrid brain/neural interface and autonomous vision-guided whole-arm exoskeleton control to perform activities of daily living (ADLs). Journal of NeuroEngineering and Rehabilitation. 20(1):1-16. https://doi.org/10.1186/s12984-023-01185-w11620
    corecore