232,814 research outputs found

    Rescue of Pressure Overload-Induced Heart Failure by Estrogen Therapy.

    Get PDF
    BackgroundEstrogen pretreatment has been shown to attenuate the development of heart hypertrophy, but it is not known whether estrogen could also rescue heart failure (HF). Furthermore, the heart has all the machinery to locally biosynthesize estrogen via aromatase, but the role of local cardiac estrogen synthesis in HF has not yet been studied. Here we hypothesized that cardiac estrogen is reduced in HF and examined whether exogenous estrogen therapy can rescue HF.Methods and resultsHF was induced by transaortic constriction in mice, and once mice reached an ejection fraction (EF) of ≈35%, they were treated with estrogen for 10 days. Cardiac structure and function, angiogenesis, and fibrosis were assessed, and estrogen was measured in plasma and in heart. Cardiac estrogen concentrations (6.18±1.12 pg/160 mg heart in HF versus 17.79±1.28 pg/mL in control) and aromatase transcripts (0.19±0.04, normalized to control, P<0.05) were significantly reduced in HF. Estrogen therapy increased cardiac estrogen 3-fold and restored aromatase transcripts. Estrogen also rescued HF by restoring ejection fraction to 53.1±1.3% (P<0.001) and improving cardiac hemodynamics both in male and female mice. Estrogen therapy stimulated angiogenesis as capillary density increased from 0.66±0.07 in HF to 2.83±0.14 (P<0.001, normalized to control) and reversed the fibrotic scarring observed in HF (45.5±2.8% in HF versus 5.3±1.0%, P<0.001). Stimulation of angiogenesis by estrogen seems to be one of the key mechanisms, since in the presence of an angiogenesis inhibitor estrogen failed to rescue HF (ejection fraction=29.3±2.1%, P<0.001 versus E2).ConclusionsEstrogen rescues pre-existing HF by restoring cardiac estrogen and aromatase, stimulating angiogenesis, and suppressing fibrosis

    Lifetime Estrogen Exposure, Cumulative Lifetime Stress, and Cognition in Later Life

    Get PDF
    The main goal of this study was to begin to examine how stress and estrogen work together to influence memory and thinking in older women. We looked at how stressful experiences affected memory in older women and how the hormone estrogen influenced the relationship between stress and memory. The relationship between cognition, stress, and hormones was investigated by having 15 women aged 60 and older complete stress and hormone questionnaires and perform two memory tasks. Most likely due to the small sample size, we did not find the hypothesized combined effect of lifetime estrogen exposure and cumulative stress on cognition. Yet, this study showed a relationship between psychiatric wellbeing, estrogen, and stress exposure. Furthermore, participants’ cognitive assessment scores were correlated with estrogen exposure and age. The results suggest that estrogen and stress have individual effects on cognition

    Erythema nodosum as a result of estrogen patch therapy for prostate cancer: a case report.

    Get PDF
    © 2015 Coyle et al.Introduction: Erythema nodosum is often associated with a distressing symptomatology, including painful subcutaneous nodules, polyarthropathy, and significant fatigue. Whilst it is a well-documented side-effect of estrogen therapy in females, we describe what we believe to be the first report in the literature of erythema nodosum as a result of estrogen therapy in a male. Case presentation: A 64-year-old Afro-Caribbean man with locally advanced carcinoma of the prostate agreed to participate in a randomized controlled trial comparing estrogen patches with luteinizing hormone-releasing hormone analogs to achieve androgen deprivation, and was allocated to the group receiving estrogen patches. One month later he presented with tender lesions on his shins and painful swelling of his ankles, wrists, and left shoulder. This was followed by progressive severe fatigue that required hospital admission, where he was diagnosed with erythema nodosum by a rheumatologist. Two months after discontinuing the estrogen patches the erythema nodosum, and associated symptoms, had fully resolved, and to date he remains well with no further recurrence. Conclusion: Trial results may establish transdermal estrogen as an alternative to luteinizing hormone-releasing hormone analogs in the management of prostate cancer, and has already been established as a therapy for male to female transsexuals. It is essential to record the toxicity profile of transdermal estrogen in men to ensure accurate safety information. This case report highlights a previously undocumented toxicity of estrogen therapy in men, of which oncologists, urologists, and endocrinologists need to be aware. Rheumatologists and dermatologists should add estrogen therapy to their differential diagnosis of men presenting with erythema nodosum

    The effect of estrogen and tamoxifen on hepatocyte proliferation in Vivo and in Vitro

    Get PDF
    We have previously shown that changes in estrogen‐hepatocyte interaction occur during liver regeneration. Following 70% hepatectomy, estrogen levels in the blood were elevated, the number of estrogen receptors in the liver was increased and there was an active translocation of estrogen receptors from the cytosol to the nucleus. The injection of tamoxifen, an estrogen antagonist, inhibits hepatocyte proliferation following partial hepatectomy. The administration of 1 μg tamoxifen per gm body weight at zero time or 6 hr after the operation resulted in a significant inhibition both of DNA synthesis and of the number of cells in mitosis. Injections of tamoxifen 12 hr or later after the operation had no effect. Concomitant injections of equimolar amounts of estrogen abolished the inhibition by tamoxifen. The effects of estrogen and tamoxifen were also tested on hepatocytes in primary culture. Estrogens in the presence of 5% normal rat serum stimulated hepatocyte DNA synthesis as determined by [3H]thymidine incorporation and the labeling index, whereas epidermal growth factor‐induced DNA synthesis in the absence of normal rat serum was strongly inhibited. Tamoxifen, in contrast, inhibited DNA synthesis of hepatocytes in the presence of 5% normal rat serum and reversed the stimulatory effect of estrogen in the same system. Attempts to elucidate the mechanism of tamoxifen inhibition in vitro indicated that one effect of tamoxifen is to prevent the amiloride‐sensitive Na+ influx necessary to initiate hepatocyte proliferation. Copyright © 1989 American Association for the Study of Liver Disease

    The effect of different types of hepatic injury on the estrogen and androgen receptor activity of liver

    Get PDF
    Mammalian liver contains receptors for both estrogens and androgens. Hepatic regeneration after partial hepatectomy in male rats is associated with a loss of certain male-specific hepatic characteristics. In this study we investigated the effects of lesser forms of hepatic injury on the levels of estrogen and androgen receptor activity in the liver. Adult male rats were subjected to portacaval shunt, partial portal vein ligation, hepatic artery ligation, or two-thirds partial hepatectomy. Another group of animals was treated with cyclosporine. At the time of sacrifice the livers were removed and used to determine the estrogen and androgen receptor activity in the hepatic cytosol. A significant reduction (p < 0.05) in the hepatic cytosolic androgen receptor activity and a slight increase in the estrogen receptor activity occurred following total portosystemic shunting. Partial ligation of the portal vein, which produces a lesser degree of portosystemic shunting, had no effect on the levels of the estrogen and androgen receptor activity present within hepatic cytosol. Cyclosporine-treated animals had significantly greater (p < 0.01) levels of estrogen receptor activity in the hepatic cytosol compared to vehicle-treated control animals. Levels of estrogen and androgen receptor activity within the hepatic cytosol remained unchanged after ligation of the hepatic artery. The reduction in the cytosolic estrogen and androgen receptor activity in the liver after partial hepatectomy was confirmed. In summary, certain types of hepatic injury are associated with profound changes in the estrogen and androgen receptor content within the liver. © 1989 Informa UK Ltd All rights reserved: reproduction in whole or part not permitted

    Catechol estrogens stimulate insulin secretion in pancreatic β-cells via activation of the transient receptor potential A1 (TRPA1) channel

    Get PDF
    Estrogen hormones play an important role in controlling glucose homeostasis and pancreatic β-cell function. Despite the significance of estrogen hormones for regulation of glucose metabolism, little is known about the roles of endogenous estrogen metabolites in modulating pancreatic β-cell function. In this study, we evaluated the effects of major natural estrogen metabolites, catechol estrogens, on insulin secretion in pancreatic β-cells. We show that catechol estrogens, hydroxylated at positions C2 and C4 of the steroid A ring, rapidly potentiated glucose-induced insulin secretion via a nongenomic mechanism. 2-Hydroxyestrone, the most abundant endogenous estrogen metabolite, was more efficacious in stimulating insulin secretion than any other tested catechol estrogens. In insulin-secreting cells, catechol estrogens produced rapid activation of calcium influx and elevation in cytosolic free calcium. Catechol estrogens also generated sustained elevations in cytosolic free calcium and evoked inward ion current in HEK293 cells expressing the transient receptor potential A1 (TRPA1) cation channel. Calcium influx and insulin secretion stimulated by estrogen metabolites were dependent on the TRPA1 activity and inhibited with the channel-specific pharmacological antagonists or the siRNA. Our results suggest the role of estrogen metabolism in a direct regulation of TRPA1 activity with potential implications for metabolic diseases

    Treatment of estrogen-induced dermatitis with omalizumab

    Get PDF
    In 1945, Drs Bernhard Zondek and Yehuda Bromberg demonstrated intradermal treatment with estrone and estradiol benzoate induced urticarial lesions in some patients.1 Fifty years later, Shelley et al,2 who introduced the concept of progesterone dermatitis several decades prior, defined estrogen dermatitis based on studies of 7 women with premenstrual flares of skin eruptions including papulovesicular, urticarial, or eczematous lesions or generalized pruritus. Previously described therapies for estrogen dermatitis include estrogen desensitization, tamoxifen, leuprolide, and oophorectomy.3 Here we report a case of estrogen-induced dermatitis successfully treated with omalizumab

    Estrogen, angiogenesis, immunity and cell metabolism: Solving the puzzle

    Get PDF
    Estrogen plays an important role in the regulation of cardiovascular physiology and the immune system by inducing direct effects on multiple cell types including immune and vascular cells. Sex steroid hormones are implicated in cardiovascular protection, including endothelial healing in case of arterial injury and collateral vessel formation in ischemic tissue. Estrogen can exert potent modulation effects at all levels of the innate and adaptive immune systems. Their action is mediated by interaction with classical estrogen receptors (ERs), ER\u3b1 and ER\u3b2, as well as the more recently identified G-protein coupled receptor 30/G-protein estrogen receptor 1 (GPER1), via both genomic and non-genomic mechanisms. Emerging data from the literature suggest that estrogen deficiency in menopause is associated with an increased potential for an unresolved inflammatory status. In this review, we provide an overview through the puzzle pieces of how 17\u3b2-estradiol can influence the cardiovascular and immune systems
    corecore