1,512 research outputs found

    Development of an Oxygen Saturation Monitoring System by Embedded Electronics

    Get PDF
    Measuring Oxygenation of blood (SaO2) plays a vital role in patient’s health monitoring. This is often measured by pulse oximeter, which is standard measure during anesthesia, asthma, operative and post-operative recoveries. Despite all, monitoring Oxygen level is necessary for infants with respiratory problems, old people, and pregnant women and in other critical situations. This paper discusses the process of calculating the level of oxygen in blood and heart-rate detection using a non-invasive photo plethysmography also called as pulsoximeter using the MSP430FG437 microcontroller (MCU). The probe uses infrared lights to measure and should be in physical contact with any peripheral points in our body. The percentage of oxygen in the body is worked by measuring the intensity from each frequency of light after it transmits through the body and then calculating the ratio between these two intensities

    Solar Panel with Embedded Electronics

    Get PDF
    Currently, inverters are needed to utilize solar panels for applications that require AC power. Unfortunately, these inverters are very costly and decrease power efficiency. In this work, two alternatives to using inverters are explored. The first method combines a buck converter with a buck-boost converter to create a sine output. The second method uses switches to change the connections of the solar cells, producing a stepped AC output. Both methods involve embedding the solar cells along with the additional electronics into a solar panel, thus eliminating the need for a separate inverter. Simulations were performed using SIMPLIS, and both methods were compared with a focus on feasibility and cost. Results of the simulation demonstrated that the DC-DC converter method performs better than the multiple switch method. More specifically, the quality of the sinusoidal output voltage from the DC-DC converter method is better than the stepped sine wave produced by the multiple switches. Furthermore, the use of many switches to produce a sine wave like output makes the multiple switch method not practical due to the complexity of circuit as well as cost. Therefore, through these comparisons, we recommend that future projects should focus on implementing prototypes for the DC-DC converter method using buck buck-boost converter

    Embedded Electronics In Medical Applications

    Get PDF
    Proceedings of"Conference on Recent Advances in Biomaterials Dec 17-18 '10"Held at Saveetha School of Engineering, Saveetha University, Thandalam, Chennai-602 105, Tamilnadu, IndiaTheme 10Embedded Electronics In Medical Application

    Real-cases of electromagnetic immunity and reliability in embedded electronics architectures

    Get PDF
    This papers concerns works about electromagnetic immunity and reliability investigations on electronics devices, combined with different physical impacts as temperature

    Performance of Glass Resistive Plate Chambers for a high granularity semi-digital calorimeter

    Full text link
    A new design of highly granular hadronic calorimeter using Glass Resistive Plate Chambers (GRPCs) with embedded electronics has been proposed for the future International Linear Collider (ILC) experiments. It features a 2-bit threshold semi-digital read-out. Several GRPC prototypes with their electronics have been successfully built and tested in pion beams. The design of these detectors is presented along with the test results on efficiency, pad multiplicity, stability and reproducibility.Comment: 16 pages, 15 figure

    Use of capillary flow to create flexible and embedded electronics

    Get PDF
    Continuous printing processes are attractive for manufacturing electronic devices on flexible substrates and embedding electronically functional materials into polymers. In this presentation, a new method to create flexible electronics based on embedded conductive networks is presented. The route involves creating the electronic architecture in a curable polymer layer on a flexible substrate and then using capillary flow to create the conductive network. In this presentation, the method will be discussed with an emphasis on the role of processing. A key process step is liquid ink flow in channels. Liquid flow in open capillary channels depends on the channel geometry and ink properties, including the drying behavior. The length of travel of a reactive silver ink down an open capillary was measured for a variety of rectangular capillary geometries with widths of ~1 – 100 µm and depths from ~3 – 20 µm1. For a capillary channel of fixed depth, the length of travel of the ink initially increased with the channel width due to a lessening of the flow resistance and then decreased due to a decrease in the capillary pressure driving force and the increased importance of drying, which raises the viscosity and eventually halts flow. To gain a better understanding of these phenomena, scaled up channels with dimensions in the 50 – 250 µm range were created and a long working distance microscope was used to track the velocity of the liquid flowing in the capillary. For non-evaporating liquids (e.g., glycerol), channels with height-to-width ratios close to 1 gave the highest rates of liquid flow. Using polyvinyl alcohol – water solution as a model system2, experiments are underway to determine the influence of concurrent drying on liquid front velocity and extent of travel. The goal of this study is to not only explore the relative importance of drying compared to capillarity, but also to uncover key parameters for ink and capillary design so that the extent of ink travel can be engineered

    Use of capillary flow to create flexible and embedded electronics

    Get PDF
    Continuous printing processes are attractive for manufacturing electronic devices on flexible substrates and embedding electronically functional materials into polymers. In this presentation, a new method to create flexible electronics based on embedded conductive networks is presented. The route involves creating the electronic architecture in a curable polymer layer on a flexible substrate and then using capillary flow to create the conductive network. In this presentation, the method will be discussed with an emphasis on the role of processing. A key process step is liquid ink flow in channels. Liquid flow in open capillary channels depends on the channel geometry and ink properties, including the drying behavior. The length of travel of a reactive silver ink down an open capillary was measured for a variety of rectangular capillary geometries with widths of ~1 – 100 µm and depths from ~3 – 20 µm1. For a capillary channel of fixed depth, the length of travel of the ink initially increased with the channel width due to a lessening of the flow resistance and then decreased due to a decrease in the capillary pressure driving force and the increased importance of drying, which raises the viscosity and eventually halts flow. To gain a better understanding of these phenomena, scaled up channels with dimensions in the 50 – 250 µm range were created and a long working distance microscope was used to track the velocity of the liquid flowing in the capillary. For non-evaporating liquids (e.g., glycerol), channels with height-to-width ratios close to 1 gave the highest rates of liquid flow. Using polyvinyl alcohol – water solution as a model system2, experiments are underway to determine the influence of concurrent drying on liquid front velocity and extent of travel. The goal of this study is to not only explore the relative importance of drying compared to capillarity, but also to uncover key parameters for ink and capillary design so that the extent of ink travel can be engineered

    UltraSwarm: A Further Step Towards a Flock of Miniature Helicopters

    Get PDF
    We describe further progress towards the development of a MAV (micro aerial vehicle) designed as an enabling tool to investigate aerial flocking. Our research focuses on the use of low cost off the shelf vehicles and sensors to enable fast prototyping and to reduce development costs. Details on the design of the embedded electronics and the modification of the chosen toy helicopter are presented, and the technique used for state estimation is described. The fusion of inertial data through an unscented Kalman filter is used to estimate the helicopter’s state, and this forms the main input to the control system. Since no detailed dynamic model of the helicopter in use is available, a method is proposed for automated system identification, and for subsequent controller design based on artificial evolution. Preliminary results obtained with a dynamic simulator of a helicopter are reported, along with some encouraging results for tackling the problem of flocking
    • …
    corecore