18 research outputs found

    eXtended Hybridizable Discontinous Galerkin (X-HDG) Method for Linear Convection-Diffusion Equations on Unfitted Domains

    Full text link
    In this work, we propose a novel strategy for the numerical solution of linear convection diffusion equation (CDE) over unfitted domains. In the proposed numerical scheme, strategies from high order Hybridized Discontinuous Galerkin method and eXtended Finite Element method is combined with the level set definition of the boundaries. The proposed scheme and hence, is named as eXtended Hybridizable Discontinuous Galerkin (XHDG) method. In this regard, the Hybridizable Discontinuous Galerkin (HDG) method is eXtended to the unfitted domains; i.e, the computational mesh does not need to fit to the domain boundary; instead, the boundary is defined by a level set function and cuts through the background mesh arbitrarily. The original unknown structure of HDG and its hybrid nature ensuring the local conservation of fluxes is kept, while developing a modified bilinear form for the elements cut by the boundary. At every cut element, an auxiliary nodal trace variable on the boundary is introduced, which is eliminated afterwards while imposing the boundary conditions. Both stationary and time dependent CDEs are studied over a range of flow regimes from diffusion to convection dominated; using high order (p≤4)(p \leq 4) XHDG through benchmark numerical examples over arbitrary unfitted domains. Results proved that XHDG inherits optimal (p+1)(p + 1) and super (p+2)(p + 2) convergence properties of HDG while removing the fitting mesh restriction

    Discontinuous Galerkin approximations in computational mechanics: hybridization, exact geometry and degree adaptivity

    Get PDF
    Discontinuous Galerkin (DG) discretizations with exact representation of the geometry and local polynomial degree adaptivity are revisited. Hybridization techniques are employed to reduce the computational cost of DG approximations and devise the hybridizable discontinuous Galerkin (HDG) method. Exact geometry described by non-uniform rational B-splines (NURBS) is integrated into HDG using the framework of the NURBS-enhanced finite element method (NEFEM). Moreover, optimal convergence and superconvergence properties of HDG-Voigt formulation in presence of symmetric second-order tensors are exploited to construct inexpensive error indicators and drive degree adaptive procedures. Applications involving the numerical simulation of problems in electrostatics, linear elasticity and incompressible viscous flows are presented. Moreover, this is done for both high-order HDG approximations and the lowest-order framework of face-centered finite volumes (FCFV).Peer ReviewedPostprint (author's final draft

    Comparison of high-order continuous and hybridizable discontinuous {G}alerkin methods in incompressible fluid flow problems

    Get PDF
    © 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/The computational efficiency and the stability of Continuous Galerkin (CG) methods, with Taylor–Hood approximations, and Hybridizable Discontinuous Galerkin (HDG) methods are compared for the solution of the incompressible Stokes and Navier–Stokes equations at low Reynolds numbers using direct solvers. A thorough comparison in terms of CPU time and accuracy for both discretization methods is made, under the same platform, for steady state problems, with triangular and quadrilateral elements of degree . Various results are presented such as error vs. CPU time of the direct solver, error vs. ratio of CPU times of HDG to CG, etc. CG can outperform HDG when the CPU time, for a given degree and mesh, is considered. However, for high degree of approximation, HDG is computationally more efficient than CG, for a given level of accuracy, as HDG produces lesser error than CG for a given mesh and degree. Finally, stability of HDG and CG is studied using a manufactured solution that produces a sharp boundary layer, confirming that HDG provides smooth converged solutions for Reynolds numbers higher than CG, in the presence of sharp fronts.Peer ReviewedPostprint (author's final draft

    HDGlab: An Open-Source Implementation of the Hybridisable Discontinuous Galerkin Method in MATLAB

    Get PDF
    This paper presents HDGlab, an open source MATLAB implementation of the hybridisable discontinuous Galerkin (HDG) method. The main goal is to provide a detailed description of both the HDG method for elliptic problems and its implementation available in HDGlab. Ultimately, this is expected to make this relatively new advanced discretisation method more accessible to the computational engineering community. HDGlab presents some features not available in other implementations of the HDG method that can be found in the free domain. First, it implements high-order polynomial shape functions up to degree nine, with both equally-spaced and Fekete nodal distributions. Second, it supports curved isoparametric simplicial elements in two and three dimensions. Third, it supports non-uniform degree polynomial approximations and it provides a flexible structure to devise degree adaptivity strategies. Finally, an interface with the open-source high-order mesh generator Gmsh is provided to facilitate its application to practical engineering problems

    Comparison and coupling of continuous and hybridizable discontinuous Galerkin methods : application to multi-physics problems

    Get PDF
    This thesis proposes a coupled continuous and hybridizable discontinuous Galerkin formulation to solve conjugate heat transfer problems. This model is then used to find the thermal response of Glass Fiber Reinforced Polymer (GFRP) tubular cross-section under fire. The first step of this thesis is to compare the computational efficiency of high-order Continuous Galerkin (CG) and Hybridizable Discontinuous Galerkin (HDG) methods for incompressible fluid flow problems in low Reynolds number regimes. Only 2-D examples and direct solvers are considered in the present work. A thoroughly comparison in terms of CPU time and accuracy for both discretization methods is made under the same platform. Various results presented suggests that HDG can be more efficient than CG when the CPU time, for a given degree, is considered. The stability of HDG and CG is studied using a manufactured solution that produces a sharp boundary layer, confirming that HDG provides smooth converged solutions in the presence of sharp fronts whereas, CG failed to converge due to the presence of numerical oscillations. Following, the solution of the coupled Navier-Stokes/convection-diffusion problem, using Boussinesq approximation, is formulated within the HDG framework and analysed using numerical experiments and benchmark problems. A coupling strategy between HDG and CG methods is proposed in the framework of second-order elliptic operators. The coupled formulation is implemented and its convergence properties are established numerically by using manufactured solutions. Finally, the proposed coupled formulation between HDG and CG for heat equation is combined with the coupled Navier--Stokes/convection diffusion equations to formulate a new CG-HDG model for solving conjugate heat transfer problems. Benchmark examples are solved using the proposed model and validated with literature values. The final part of the thesis applies the proposed CG-HDG coupled formulation to predict the thermal response of the GFRP tubular cross-section. The radiosity equation that governs the internal radiation is added to the CG-HDG coupled model. Estimates of the discretization errors are computed in order to establish the confidence intervals for quantities of interest. Results with the geometry having curved corners in the cavity are presented and shown to be within the estimated uncertainty intervals. CPU times for the linear solver suggests that the proposed CG-HDG model is more efficient than CG-CG model in all the cases considered.Neste trabalho é proposta uma formulação para acoplar os modelos continuous e hybridizable discontinuous Galerkin a fim de analisar problemas conjugados de transferência de calor. Este modelo é então usado para estudar a resposta térmica de perfis pultrudidos de secção tubular em polímero reforçado com fibras de vidro (GFRP) sob a acção do fogo. O primeiro passo desta tese é comparar a eficiência computacional dos métodos Continuous Galerkin (CG) e Hybridizable Discontinuous Galerkin (HDG) de elevada ordem para problemas de escoamento de fluidos incompressíveis para valores reduzidos do número Reynolds. Apenas exemplos bidimensionais e métodos directos são considerados no presente trabalho. Uma comparação exaustiva em termos de tempo de CPU e precisão para ambos os métodos de discretização é efectuada sob uma plataforma comum. Os resultados apresentados sugerem que, em termos do tempo de CPU requerido, o HDG pode ser mais eficiente que o CG, para um determinado grau. A estabilidade do HDG e CG é estudada usando uma solução fabricada que produz uma abrupta descontinuidade, confirmando que o HDG fornece soluções convergentes e suaves na presença de descontinuidades, enquanto o CG não conseguiu convergir devido à presença de oscilações numéricas. Em seguida, a solução do problema acoplado Navier-Stokes/convecção-difusão, utilizando a aproximação de Boussinesq, é formulada no contexto HDG e analisada usando soluções de referência. Uma estratégia de acoplamento entre os métodos HDG e CG é proposta no âmbito de operadores elípticos de segunda ordem. A formulação acoplada é implementada e suas propriedades de convergência são estabelecidas numericamente usando soluções fabricadas. Finalmente, a formulação acoplada proposta entre HDG e CG para a equação do calor é combinada com as equações acopladas de Navier-Stokes/convecção-difusão para formular um novo modelo de CG-HDG para resolver problemas de transferência de calor conjugado. Exemplos de referência são resolvidos usando o modelo proposto e validados com valores de literatura. A parte final da tese aplica a formulação proposta CG-HDG acoplada para prever a resposta térmica de uma secção transversal tubular de GFRP. A equação de radiosidade que governa a radiação interna é adicionada ao modelo acoplado CG-HDG. Os erros de discretização são calculados para estabelecer os intervalos de confiança para quantidades de interesse. Resultados considerando a geometria circular dos cantos da cavidade são apresentados. Estes estão dentro do intervalo de incerteza estimado. Os tempos de CPU requeridos para resolver os sistemas de equações lineares sugerem que o modelo proposto CG-HDG é mais eficiente do que o modelo CG-CG em todos os casos considerados.En esta tesis se propone una formulación acoplada del método de los elementos finitos clásico (CG) y el método Hybridizable Discontinuous Galerkin (HDG) para la a solución de problemas térmicos conjugados. El modelo se utiliza para determinar la respuesta al fuego de Polímeros Reforzados con Fibras de Vidrio (GFRP) con sección tubular. El primer paso de la tesis es la comparación de la eficiencia computacional de CG y HDG de alto orden para problemas de flujo incompresible para número de Reynolds (Re) bajo. Se consideran sólo ejemplos 2D y métodos de resolución de sistemas lineales directos. Se presenta una comparación en términos de tiempo de CPU y precisión en la solución para ambas discretizaciones, bajo la misma plataforma de implementación. Los resultados sugieren que HDG puede ser más eficiente computacionalmente que CG en tiempo de CPU, para un grado fijado. La estabilidad de HDG y CG para Re alto se estudia con una solución manufacturada que produce un frente pronunciado, confirmando que HDG proporciona soluciones convergidas suaves en presencia de frentes verticales, en casos en que las oscilaciones numéricas de CG no permiten llegar a convergencia. A continuación, se plantea la solución del problema acoplado Navier-Stokes/convección-difusión, con la aproximación de Boussinesq, en el contexto del método HDG, y se analiza con experimentos numéricos. Se propone una formulación acoplada HDG-CG para la ecuación del calor. Se comprueban numéricamente las propiedades de convergencia del método propuesto. Finalmente, se combina la formulación acoplada propuesta para la ecuación del calor con el acoplamiento con la ecuaciones de Navier-Stokes en el dominio del fluido, creando una nueva formulación CG-HDG para problemas térmicos conjugados. Se consideran tests clásicos para validar los resultados comparando con la literatura existente. La parte final de la tesis aplica la formulación acoplada CG-HDG propuesta a la predicción de la respuesta térmica de secciones tubulares de GFRP, incluyendo radiosidad interna en el modelo. Se calculan estimas de los errores de discretización para determinar intervalos de confianza para las cantidades de interés. Se presentan resultados con geometría con esquinas curvas en la cavidad mostrando resultados dentro de los intervalos de incertidumbre estimados. El tiempo de CPU para la resolución de sistemas sugiere que el modelo CG-HDG propuesto es más eficiente que el clásico método CG-CG en todos los casos considerados.This thesis proposes a coupled continuous and hybridizable discontinuous Galerkin formulation to solve conjugate heat transfer problems. This model is then used to find the thermal response of Glass Fiber Reinforced Polymer (GFRP) tubular cross-section under fire. The first step of this thesis is to compare the computational efficiency of high-order Continuous Galerkin (CG) and Hybridizable Discontinuous Galerkin (HDG) methods for incompressible fluid flow problems in low Reynolds number regimes. Only 2-D examples and direct solvers are considered in the present work. A thoroughly comparison in terms of CPU time and accuracy for both discretization methods is made under the same platform. Various results presented suggests that HDG can be more efficient than CG when the CPU time, for a given degree, is considered. The stability of HDG and CG is studied using a manufactured solution that produces a sharp boundary layer, confirming that HDG provides smooth converged solutions in the presence of sharp fronts whereas, CG failed to converge due to the presence of numerical oscillations. Following, the solution of the coupled Navier–Stokes/convection-diffusion problem, using Boussinesq approximation, is formulated within the HDG framework and analysed using numerical experiments and benchmark problems. A coupling strategy between HDG and CG methods is proposed in the framework of second-order elliptic operators. The coupled formulation is implemented and its convergence properties are established numerically by using manufactured solutions. Finally, the proposed coupled formulation between HDG and CG for heat equation is combined with the coupled Navier–Stokes/convection diffusion equations to formulate a new CG-HDG model for solving conjugate heat transfer problems. Benchmark examples are solved using the proposed model and validated with literature values. The final part of the thesis applies the proposed CG-HDG coupled formulation to predict the thermal response of the GFRP tubular cross-section. The radiosity equation that governs the internal radiation is added to the CG-HDG coupled model. Estimates of the discretization errors are computed in order to establish the confidence intervals for quantities of interest. Results with the geometry having curved corners in the cavity are presented and shown to be within the estimated uncertainty intervals. CPU times for the linear solver suggests that the proposed CG-HDG model is more efficient than CG-CG model in all the cases consideredNeste trabalho é proposta uma formulação para acoplar os modelos continuous e hybridizable discontinuous Galerkin a fim de analisar problemas conjugados de transferência de calor. Este modelo é então usado para estudar a resposta térmica de perfis pultrudidos de secção tubular em polímero reforçado com fibras de vidro (GFRP) sob a acção do fogo. O primeiro passo desta tese é comparar a eficiência computacional dos métodos continuous Galerkin (CG) e Hybridizable Discontinuous Galerkin (HDG) de elevada ordem para problemas de escoamento de fluidos incompressíveis para valores reduzidos do número Reynolds. Apenas exemplos bidimensionais e métodos directos são considerados no presente trabalho. Uma comparação exaustiva em termos de tempo de CPU e precisão para ambos os métodos de discretização é efectuada sob uma plataforma comum. Os resultados apresentados sugerem que, em termos do tempo de CPU requerido, o HDG pode ser mais eficiente que o CG, para um determinado grau. A estabilidade do HDG e CG é estudada usando uma solução fabricada que produz uma abrupta descontinuidade, confirmando que o HDG fornece soluções convergentes e suaves na presença de descontinuidades, enquanto o CG não conseguiu convergir devido à presença de oscilações numéricas. Em seguida, a solução do problema acoplado Navier-Stokes/convecção-difusão, utilizando a aproximação de Boussinesq, é formulada no contexto HDG e analisada usando soluções de referência. Uma estratégia de acoplamento entre os métodos HDG e CG é proposta no âmbito de operadores elípticos de segunda ordem. A formulação acoplada é implementada e suas propriedades de convergência são estabelecidas numericamente usando soluções fabricadas. Finalmente, a formulação acoplada proposta entre HDG e CG para a equação do calor é combinada com as equações acopladas de Navier-Stokes/convecção-difusão para formular um novo modelo de CG-HDG para resolver problemas de transferência de calor conjugado. Exemplos de referência são resolvidos usando o modelo proposto e validados com valores de literatura. A parte final da tese aplica a formulação proposta CG-HDG acoplada para prever a resposta térmica de uma secção transversal tubular de GFRP. A equação de radiosidade que governa a radiação interna é adicionada ao modelo acoplado CG-HDG. Os erros de discretização são calculados para estabelecer os intervalos de confiança para quantidades de interesse. Resultados considerando a geometria circular dos cantos da cavidade são apresentados. Estes estão dentro do intervalo de incerteza estimado. Os tempos de CPU requeridos para resolver os sistemas de equações lineares sugerem que o modelo proposto CG-HDG é mais eficiente do que o modelo CG-CG em todos os casos considerados.En esta tesis se propone una formulación acoplada del método de los elementos finitos clásico (CG) y el método Hybridizable Discontinuous Galerkin (HDG) para la a solución de problemas térmicos conjugados. El modelo se utiliza para determinar la respuesta al fuego de Polímeros Reforzados con Fibras de Vidrio (GFRP) con sección tubular. El primer paso de la tesis es la comparación de la eficiencia computacional de CG y HDG de alto orden para problemas de flujo incompresible para número de Reynolds (Re) bajo. Se consideran sólo ejemplos 2D y métodos de resolución de sistemas lineales directos. Se presenta una comparación en términos de tiempo de CPU y precisión en la solución para ambas discretizaciones, bajo la misma plataforma de implementación. Los resultados sugieren que HDG puede ser más eficiente computacionalmente que CG en tiempo de CPU, para un grado fijado. La estabilidad de HDG y CG para Re alto se estudia con una solución manufacturada que produce un frente pronunciado, confirmando que HDG proporciona soluciones convergidas suaves en presencia de frentes verticales, en casos en que las oscilaciones numéricas de CG no permiten llegar a convergencia. A continuación, se plantea la solución del problema acoplado Navier-Stokes/conveccióndifusión, con la aproximación de Boussinesq, en el contexto del método HDG, y se analiza con experimentos numéricos. Se propone una formulación acoplada HDG-CG para la ecuación del calor. Se comprueban numéricamente las propiedades de convergencia del método propuesto. Finalmente, se combina la formulación acoplada propuesta para la ecuación del calor con el acoplamiento con la ecuaciones de Navier-Stokes en el dominio del fluido, creando una nueva formulación CG-HDG para problemas térmicos conjugados. Se consideran ejemplos clásicos para validar los resultados comparando con la literatura existente. La parte final de la tesis aplica la formulación acoplada CG-HDG propuesta a la predicción de la respuesta térmica de secciones tubulares de GFRP, incluyendo radiosidad interna en el modelo. Se calculan estimas de los errores de discretización para determinar intervalos de confianza para las cantidades de interés. Se presentan resultados con geometría con esquinas curvas en la cavidad mostrando resultados dentro de los intervalos de incertidumbre estimados. El tiempo de CPU para la resolución de sistemas sugiere que el modelo CG-HDG propuesto es más eficiente que el clásico método CG-CG en todos los casos considerados.Postprint (published version

    Locally adaptive phase-field models and transition to fracture

    Get PDF
    This thesis proposes a new computational model for the efficient simulation of crack propagation, through the combination of a phase-field model in small subdomains around crack tips and a discontinuous model in the rest of the domain. The combined model inherits the advantages of both approaches. The phase-field model determines crack propagation at crack tips, and the discontinuous model explicitly describes the crack elsewhere, enabling to use a coarser discretization and thus reducing the computational cost. In crack-tip subdomains, the discretization is refined to capture the phase-field solution, while in the discontinuous part, sharp cracks are incorporated into the coarse background discretization by the eXtended Finite Element Method (XFEM). As crack-tip subdomains move with crack growth, the discretization is automatically updated and phase-field bands are replaced by sharp cracks in the wake of cracks. The first step is the development of an adaptive refinement strategy for phase-field models. To this end, two alternatives are proposed. Both of them consider two types of elements, standard and refined, which are mapped into a fixed background mesh. In refined elements, the space of approximation is uniformly hh-refined. Continuity between elements of different type is imposed in weak form to handle the non-conformal approximations in a natural way, without spreading of refinement nor having to deal with hanging nodes, leading to a very local refinement along cracks. The first adaptive strategy relies on a Hybridizable Discontinuous Galerkin (HDG) formulation of the problem, in which continuity between elements is imposed in weak form. The second one is based on a more efficient Continuous Galerkin (CG) formulation; a continuous FEM approximation is used in the standard and refined regions and, then, continuity on the interface between regions is imposed in weak form by Nitsche's method. The proposed strategies robustly refine the discretization as cracks propagate and can be easily incorporated into a working code for phase-field models. However, the computational cost can be further reduced by transitioning to the discontinuous in the combined model. In the wake of crack tips, the phase-field diffuse cracks are replaced by XFEM discontinuous cracks and elements are derefined. The combined model is studied within the adaptive CG formulation. Numerical experiments include branching and coalescence of cracks, and a fully 3D test.En aquesta tesi es proposa un nou model computacional per a simular la propagació de fractures de manera eficient, a partir de la combinació d’un model de camp de fase en petits subdominis al voltant dels extrems de les fissures, i d’un model discontinu a la resta del domini. El model combinat manté els avantatges de tots dos tipus de model. El model continu determina la propagació de la fissura, i el model discontinu descriu explícitament la fissura en gairebé tot del domini, amb una discretització més grollera i el conseqüent estalvi en cost computacional. Als subdominis de camp de fase, la discretització es refina per tal d’aproximar bé la solució, mentre que a la part discontínua, les fissures s’incorporen a la discretització grollera a partir de l’eXtended Finite Element Method (XFEM). A mesura que les fissures es propaguen pel domini, la discretització s’actualitza automàticament i, lluny dels extrems, la representació suavitzada de les fissures a partir del camp de fase es reemplaça per una representació discontínua. El primer pas és definir una estratègia de refinament adaptatiu pels models continus de camp de fase. En aquesta tesi es proposen dues alternatives diferents. Totes dues consideren dos tipus d’elements, estàndards i refinats, que es mapen a la malla inicial. Als elements refinats, l’espai d’aproximació es refina uniformement. La continuïtat entre elements de tipus diferent s’imposa en forma feble per facilitar el tractament de les aproximacions no conformes, sense que s’escampi el refinament ni haver d’imposar restriccions als nodes de la interfície, donant lloc a un refinament molt localitzat. La primera estratègia adaptativa es basa en una formulació Hybridizable Discontinuous Galerkin (HDG) del problema, que imposa continuïtat entre elements en forma feble. La segona es basa en una formulació contínua més eficient; es fa servir una aproximació contínua del Mètode dels Elements Finits a les regions estàndards i refinades i, aleshores, a la interfície entre les dues regions s’imposa la continuïtat en forma feble amb el mètode de Nitsche. Les estratègies adaptatives refinen la discretització a mesura que les fissures es propaguen, i es poden afegir a un codi per a models de camp de fase de manera senzilla. No obstant, el cost computacional es pot reduir encara més fent servir el model combinat. Lluny dels extrems de les fissures, la representació suavitzada del camp de fase es substitueix per discontinuïtats en una discretització de XFEM, i els elements es desrefinen. El model combinat es formula a partir de l’estratègia adaptativa contínua. Els exemples numèrics inclouen bifurcació i coalescència de fissures, i un exemple en 3D

    Comparison and coupling of continuous and hybridizable discontinuous Galerkin methods : application to multi-physics problems

    Get PDF
    This thesis proposes a coupled continuous and hybridizable discontinuous Galerkin formulation to solve conjugate heat transfer problems. This model is then used to find the thermal response of Glass Fiber Reinforced Polymer (GFRP) tubular cross-section under fire. The first step of this thesis is to compare the computational efficiency of high-order Continuous Galerkin (CG) and Hybridizable Discontinuous Galerkin (HDG) methods for incompressible fluid flow problems in low Reynolds number regimes. Only 2-D examples and direct solvers are considered in the present work. A thoroughly comparison in terms of CPU time and accuracy for both discretization methods is made under the same platform. Various results presented suggests that HDG can be more efficient than CG when the CPU time, for a given degree, is considered. The stability of HDG and CG is studied using a manufactured solution that produces a sharp boundary layer, confirming that HDG provides smooth converged solutions in the presence of sharp fronts whereas, CG failed to converge due to the presence of numerical oscillations. Following, the solution of the coupled Navier-Stokes/convection-diffusion problem, using Boussinesq approximation, is formulated within the HDG framework and analysed using numerical experiments and benchmark problems. A coupling strategy between HDG and CG methods is proposed in the framework of second-order elliptic operators. The coupled formulation is implemented and its convergence properties are established numerically by using manufactured solutions. Finally, the proposed coupled formulation between HDG and CG for heat equation is combined with the coupled Navier--Stokes/convection diffusion equations to formulate a new CG-HDG model for solving conjugate heat transfer problems. Benchmark examples are solved using the proposed model and validated with literature values. The final part of the thesis applies the proposed CG-HDG coupled formulation to predict the thermal response of the GFRP tubular cross-section. The radiosity equation that governs the internal radiation is added to the CG-HDG coupled model. Estimates of the discretization errors are computed in order to establish the confidence intervals for quantities of interest. Results with the geometry having curved corners in the cavity are presented and shown to be within the estimated uncertainty intervals. CPU times for the linear solver suggests that the proposed CG-HDG model is more efficient than CG-CG model in all the cases considered.Neste trabalho é proposta uma formulação para acoplar os modelos continuous e hybridizable discontinuous Galerkin a fim de analisar problemas conjugados de transferência de calor. Este modelo é então usado para estudar a resposta térmica de perfis pultrudidos de secção tubular em polímero reforçado com fibras de vidro (GFRP) sob a acção do fogo. O primeiro passo desta tese é comparar a eficiência computacional dos métodos Continuous Galerkin (CG) e Hybridizable Discontinuous Galerkin (HDG) de elevada ordem para problemas de escoamento de fluidos incompressíveis para valores reduzidos do número Reynolds. Apenas exemplos bidimensionais e métodos directos são considerados no presente trabalho. Uma comparação exaustiva em termos de tempo de CPU e precisão para ambos os métodos de discretização é efectuada sob uma plataforma comum. Os resultados apresentados sugerem que, em termos do tempo de CPU requerido, o HDG pode ser mais eficiente que o CG, para um determinado grau. A estabilidade do HDG e CG é estudada usando uma solução fabricada que produz uma abrupta descontinuidade, confirmando que o HDG fornece soluções convergentes e suaves na presença de descontinuidades, enquanto o CG não conseguiu convergir devido à presença de oscilações numéricas. Em seguida, a solução do problema acoplado Navier-Stokes/convecção-difusão, utilizando a aproximação de Boussinesq, é formulada no contexto HDG e analisada usando soluções de referência. Uma estratégia de acoplamento entre os métodos HDG e CG é proposta no âmbito de operadores elípticos de segunda ordem. A formulação acoplada é implementada e suas propriedades de convergência são estabelecidas numericamente usando soluções fabricadas. Finalmente, a formulação acoplada proposta entre HDG e CG para a equação do calor é combinada com as equações acopladas de Navier-Stokes/convecção-difusão para formular um novo modelo de CG-HDG para resolver problemas de transferência de calor conjugado. Exemplos de referência são resolvidos usando o modelo proposto e validados com valores de literatura. A parte final da tese aplica a formulação proposta CG-HDG acoplada para prever a resposta térmica de uma secção transversal tubular de GFRP. A equação de radiosidade que governa a radiação interna é adicionada ao modelo acoplado CG-HDG. Os erros de discretização são calculados para estabelecer os intervalos de confiança para quantidades de interesse. Resultados considerando a geometria circular dos cantos da cavidade são apresentados. Estes estão dentro do intervalo de incerteza estimado. Os tempos de CPU requeridos para resolver os sistemas de equações lineares sugerem que o modelo proposto CG-HDG é mais eficiente do que o modelo CG-CG em todos os casos considerados.En esta tesis se propone una formulación acoplada del método de los elementos finitos clásico (CG) y el método Hybridizable Discontinuous Galerkin (HDG) para la a solución de problemas térmicos conjugados. El modelo se utiliza para determinar la respuesta al fuego de Polímeros Reforzados con Fibras de Vidrio (GFRP) con sección tubular. El primer paso de la tesis es la comparación de la eficiencia computacional de CG y HDG de alto orden para problemas de flujo incompresible para número de Reynolds (Re) bajo. Se consideran sólo ejemplos 2D y métodos de resolución de sistemas lineales directos. Se presenta una comparación en términos de tiempo de CPU y precisión en la solución para ambas discretizaciones, bajo la misma plataforma de implementación. Los resultados sugieren que HDG puede ser más eficiente computacionalmente que CG en tiempo de CPU, para un grado fijado. La estabilidad de HDG y CG para Re alto se estudia con una solución manufacturada que produce un frente pronunciado, confirmando que HDG proporciona soluciones convergidas suaves en presencia de frentes verticales, en casos en que las oscilaciones numéricas de CG no permiten llegar a convergencia. A continuación, se plantea la solución del problema acoplado Navier-Stokes/convección-difusión, con la aproximación de Boussinesq, en el contexto del método HDG, y se analiza con experimentos numéricos. Se propone una formulación acoplada HDG-CG para la ecuación del calor. Se comprueban numéricamente las propiedades de convergencia del método propuesto. Finalmente, se combina la formulación acoplada propuesta para la ecuación del calor con el acoplamiento con la ecuaciones de Navier-Stokes en el dominio del fluido, creando una nueva formulación CG-HDG para problemas térmicos conjugados. Se consideran tests clásicos para validar los resultados comparando con la literatura existente. La parte final de la tesis aplica la formulación acoplada CG-HDG propuesta a la predicción de la respuesta térmica de secciones tubulares de GFRP, incluyendo radiosidad interna en el modelo. Se calculan estimas de los errores de discretización para determinar intervalos de confianza para las cantidades de interés. Se presentan resultados con geometría con esquinas curvas en la cavidad mostrando resultados dentro de los intervalos de incertidumbre estimados. El tiempo de CPU para la resolución de sistemas sugiere que el modelo CG-HDG propuesto es más eficiente que el clásico método CG-CG en todos los casos considerados.This thesis proposes a coupled continuous and hybridizable discontinuous Galerkin formulation to solve conjugate heat transfer problems. This model is then used to find the thermal response of Glass Fiber Reinforced Polymer (GFRP) tubular cross-section under fire. The first step of this thesis is to compare the computational efficiency of high-order Continuous Galerkin (CG) and Hybridizable Discontinuous Galerkin (HDG) methods for incompressible fluid flow problems in low Reynolds number regimes. Only 2-D examples and direct solvers are considered in the present work. A thoroughly comparison in terms of CPU time and accuracy for both discretization methods is made under the same platform. Various results presented suggests that HDG can be more efficient than CG when the CPU time, for a given degree, is considered. The stability of HDG and CG is studied using a manufactured solution that produces a sharp boundary layer, confirming that HDG provides smooth converged solutions in the presence of sharp fronts whereas, CG failed to converge due to the presence of numerical oscillations. Following, the solution of the coupled Navier–Stokes/convection-diffusion problem, using Boussinesq approximation, is formulated within the HDG framework and analysed using numerical experiments and benchmark problems. A coupling strategy between HDG and CG methods is proposed in the framework of second-order elliptic operators. The coupled formulation is implemented and its convergence properties are established numerically by using manufactured solutions. Finally, the proposed coupled formulation between HDG and CG for heat equation is combined with the coupled Navier–Stokes/convection diffusion equations to formulate a new CG-HDG model for solving conjugate heat transfer problems. Benchmark examples are solved using the proposed model and validated with literature values. The final part of the thesis applies the proposed CG-HDG coupled formulation to predict the thermal response of the GFRP tubular cross-section. The radiosity equation that governs the internal radiation is added to the CG-HDG coupled model. Estimates of the discretization errors are computed in order to establish the confidence intervals for quantities of interest. Results with the geometry having curved corners in the cavity are presented and shown to be within the estimated uncertainty intervals. CPU times for the linear solver suggests that the proposed CG-HDG model is more efficient than CG-CG model in all the cases consideredNeste trabalho é proposta uma formulação para acoplar os modelos continuous e hybridizable discontinuous Galerkin a fim de analisar problemas conjugados de transferência de calor. Este modelo é então usado para estudar a resposta térmica de perfis pultrudidos de secção tubular em polímero reforçado com fibras de vidro (GFRP) sob a acção do fogo. O primeiro passo desta tese é comparar a eficiência computacional dos métodos continuous Galerkin (CG) e Hybridizable Discontinuous Galerkin (HDG) de elevada ordem para problemas de escoamento de fluidos incompressíveis para valores reduzidos do número Reynolds. Apenas exemplos bidimensionais e métodos directos são considerados no presente trabalho. Uma comparação exaustiva em termos de tempo de CPU e precisão para ambos os métodos de discretização é efectuada sob uma plataforma comum. Os resultados apresentados sugerem que, em termos do tempo de CPU requerido, o HDG pode ser mais eficiente que o CG, para um determinado grau. A estabilidade do HDG e CG é estudada usando uma solução fabricada que produz uma abrupta descontinuidade, confirmando que o HDG fornece soluções convergentes e suaves na presença de descontinuidades, enquanto o CG não conseguiu convergir devido à presença de oscilações numéricas. Em seguida, a solução do problema acoplado Navier-Stokes/convecção-difusão, utilizando a aproximação de Boussinesq, é formulada no contexto HDG e analisada usando soluções de referência. Uma estratégia de acoplamento entre os métodos HDG e CG é proposta no âmbito de operadores elípticos de segunda ordem. A formulação acoplada é implementada e suas propriedades de convergência são estabelecidas numericamente usando soluções fabricadas. Finalmente, a formulação acoplada proposta entre HDG e CG para a equação do calor é combinada com as equações acopladas de Navier-Stokes/convecção-difusão para formular um novo modelo de CG-HDG para resolver problemas de transferência de calor conjugado. Exemplos de referência são resolvidos usando o modelo proposto e validados com valores de literatura. A parte final da tese aplica a formulação proposta CG-HDG acoplada para prever a resposta térmica de uma secção transversal tubular de GFRP. A equação de radiosidade que governa a radiação interna é adicionada ao modelo acoplado CG-HDG. Os erros de discretização são calculados para estabelecer os intervalos de confiança para quantidades de interesse. Resultados considerando a geometria circular dos cantos da cavidade são apresentados. Estes estão dentro do intervalo de incerteza estimado. Os tempos de CPU requeridos para resolver os sistemas de equações lineares sugerem que o modelo proposto CG-HDG é mais eficiente do que o modelo CG-CG em todos os casos considerados.En esta tesis se propone una formulación acoplada del método de los elementos finitos clásico (CG) y el método Hybridizable Discontinuous Galerkin (HDG) para la a solución de problemas térmicos conjugados. El modelo se utiliza para determinar la respuesta al fuego de Polímeros Reforzados con Fibras de Vidrio (GFRP) con sección tubular. El primer paso de la tesis es la comparación de la eficiencia computacional de CG y HDG de alto orden para problemas de flujo incompresible para número de Reynolds (Re) bajo. Se consideran sólo ejemplos 2D y métodos de resolución de sistemas lineales directos. Se presenta una comparación en términos de tiempo de CPU y precisión en la solución para ambas discretizaciones, bajo la misma plataforma de implementación. Los resultados sugieren que HDG puede ser más eficiente computacionalmente que CG en tiempo de CPU, para un grado fijado. La estabilidad de HDG y CG para Re alto se estudia con una solución manufacturada que produce un frente pronunciado, confirmando que HDG proporciona soluciones convergidas suaves en presencia de frentes verticales, en casos en que las oscilaciones numéricas de CG no permiten llegar a convergencia. A continuación, se plantea la solución del problema acoplado Navier-Stokes/conveccióndifusión, con la aproximación de Boussinesq, en el contexto del método HDG, y se analiza con experimentos numéricos. Se propone una formulación acoplada HDG-CG para la ecuación del calor. Se comprueban numéricamente las propiedades de convergencia del método propuesto. Finalmente, se combina la formulación acoplada propuesta para la ecuación del calor con el acoplamiento con la ecuaciones de Navier-Stokes en el dominio del fluido, creando una nueva formulación CG-HDG para problemas térmicos conjugados. Se consideran ejemplos clásicos para validar los resultados comparando con la literatura existente. La parte final de la tesis aplica la formulación acoplada CG-HDG propuesta a la predicción de la respuesta térmica de secciones tubulares de GFRP, incluyendo radiosidad interna en el modelo. Se calculan estimas de los errores de discretización para determinar intervalos de confianza para las cantidades de interés. Se presentan resultados con geometría con esquinas curvas en la cavidad mostrando resultados dentro de los intervalos de incertidumbre estimados. El tiempo de CPU para la resolución de sistemas sugiere que el modelo CG-HDG propuesto es más eficiente que el clásico método CG-CG en todos los casos considerados
    corecore