629 research outputs found

    A summary of the published data on host plants and morphology of immature stages of Australian jewel beetles (Coleoptera: Buprestidae) : with additional new records

    Get PDF
    A summary is given of the published host plant and descriptive immature stage morphology data for 671 species and 11 subspecies in 54 genera of Australian jewel beetles (Coleoptera: Buprestidae). New host data for 155 species and 3 subspecies in 17 genera including the first published data for 75 species are included

    Wallum on the Nabiac Pleistocene barriers, lower North Coast of New South Wales

    Get PDF
    Wallum is widespread on coastal dunefields, beach ridge plains and associated sandy flats in northern NSW and southern Queensland. These sand masses contain large aquifers, and the wallum ecosystem is considered to be generally groundwater-dependent. This study describes the floristic composition and environmental relations of wallum on a Pleistocene barrier system at Nabiac (32˚ 09’S 152˚ 26’E), on the lower North Coast of NSW. Despite their minimal elevation and degraded relief, the Nabiac barriers maintain floristic patterns related to topography and hence groundwater relations. Comparative analyses identified the Nabiac wallum as representative of the ecosystem throughout large parts of its range in eastern Australia. The Nabiac wallum and nearby estuarine and alluvial vegetation supports species and communities of conservation significance. A borefield is proposed for development on the Nabiac barriers, thereby providing a valuable opportunity for research into mechanisms of groundwater utilisation by the wallum ecosystem

    Germination responses of a dry sclerophyll forest soil-stored seedbank to fire related cues

    Get PDF
    Fire is an integral component of many ecosystems worldwide. Many plant species require fire-related cues, primarily heat and smoke, to trigger germination. Despite the importance of this process, the responses of many Australian species to these cues are unknown. Without this knowledge fire management strategies may be developed that are inappropriate for individual species and vegetation communities. In this study we examined the responses of a dry sclerophyll forest seed bank to heat and smoke germination cues. Analysis was possible for 48 taxa within the soil seedbank with 34 of these showing a response to one or both of the germination cues. 10 species responded to the heat treatment, 11 species responded to the smoke treatment and 13 species responded to both the heat and smoke treatments. Germination cues acted independently for all species considered. Results in this study were consistent with published reports for most species, although some differences were seen at the species and genus level. The study highlights the importance of fire-related cues in enhancing germination of a large proportion of the species occurring in dry sclerophyll forests

    Aerial albedos of natural vegetation in South-eastern Australia

    Get PDF
    Black-and-white low-level 70mm photography was used to record the track of the aircraft, which was then plotted on conventional 1:80,000 23 cm photogrammetric photographs and referenced against simultaneous measurements of the beam albedos of vegetation. Using stereoscopic pairs of the 70mm photographs, the vegetation was classified into sub-formations. Marked differences in the 'sub-formation' albedos were observed. A two-way table using stand height and crown cover of the sub-formations clearly showed a very distinctive trend of albedos. This finding may be important in other vegetal studies

    Differences in Leaf Flammability Leaf Traits and Flammability-Trait Relationships between Native and Exotic Plant Species of Dry Sclerophyll Forest

    Get PDF
    The flammability of plant leaves influences the spread of fire through vegetation. Exotic plants invading native vegetation may increase the spread of bushfires if their leaves are more flammable than native leaves. We compared fresh-leaf and dryleaf flammability (time to ignition) between 52 native and 27 exotic plant species inhabiting dry sclerophyll forest. We found that mean time to ignition was significantly faster in dry exotic leaves than in dry native leaves. There was no significant native-exotic difference in mean time to ignition for fresh leaves. The significantly higher fresh-leaf water content that was found in exotics, lost in the conversion from a fresh to dry state, suggests that leaf water provides an important buffering effect that leads to equivalent mean time to ignition in fresh exotic and native leaves. Exotic leaves were also significantly wider, longer and broader in area with significantly higher specific leaf area?but not thicker?than native leaves. We examined scaling relationships between leaf flammability and leaf size (leaf width, length, area, specific leaf area and thickness). While exotics occupied the comparatively larger and more flammable end of the leaf size-flammability spectrum in general, leaf flammability was significantly correlated with all measures of leaf size except leaf thickness in both native and exotic species such that larger leaves were faster to ignite. Our findings for increased flammability linked with larger leaf size in exotics demonstrate that exotic plant species have the potential to increase the spread of bushfires in dry sclerophyll forest

    Avian responses to fire regimes in montane dry sclerophyll forests of south-eastern Australia

    Get PDF
    Wildfires are becoming larger and more frequent in forests under climate change, with corresponding increases in area burnt recently and at high-severity. Australian fire regimes are changing rapidly, but the implications for fauna are poorly understood. The first of two overarching aims of this research was to increase understanding of the mechanisms and processes that underpin avian responses to fire regimes in montane dry sclerophyll forests of south-eastern Australia. The second was to investigate the implications of altered fire regimes for birds through evaluation of their responses where fire activity is currently high

    Bioturbation by echidna (Tachyglossus aculeatus) in a forest habitat, south-western Australia

    Get PDF
    Bioturbation by digging animals is important for key forest ecosystem processes such as soil turnover, decomposition, nutrient cycling, water infiltration, seedling recruitment, and fungal dispersal. Despite their widespread geographic range, little is known about the role of the short-beaked echidna (Tachyglossus aculeatus) in forest ecosystems. We measured the density and size of echidna diggings in the Northern Jarrah Forest, south-western Australia, to quantify the contribution echidna make to soil turnover. We recorded an overall density of 298 echidna diggings per hectare, 21% of which were estimated to be less than 1 month old. The average size of digs was 50 ± 25 mm in depth and 160 ± 61 mm in length. After taking into account seasonal digging rates, we estimated that echidnas turn over 1.23 tonnes of soil ha−1 year−1 in this forest, representing an important role in ecosystem dynamics. Our work contributes to the growing body of evidence quantifying the role of these digging animals as critical ecosystem engineers. Given that the echidna is the only Australian digging mammal not severely impacted by population decline or range reduction, its functional contribution to health and resilience of forest ecosystems is increasingly important due to the functional loss of most Australian digging mammals

    Bioturbation by echidna (Tachyglossus aculeatus) in a forest habitat, South-Western Australia

    Get PDF
    Bioturbation by digging animals is important for key forest ecosystem processes such as soil turnover, decomposition, nutrient cycling, water infiltration, seedling recruitment, and fungal dispersal. Despite their widespread geographic range, little is known about the role of the short-beaked echidna (Tachyglossus aculeatus) in forest ecosystems. We measured the density and size of echidna diggings in the Northern Jarrah Forest, south-western Australia, to quantify the contribution echidna make to soil turnover. We recorded an overall density of 298 echidna diggings per hectare, 21 % of which were estimated to be less than 1 month old. The average size of digs was 50 ± 25 mm in depth and 160 ± 61 mm in length. After taking into account seasonal digging rates, we estimated that echidnas turn over 1.23 tonnes of soil ha-1 year-1 in this forest, representing an important role in ecosystem dynamics. Our work contributes to the growing body of evidence quantifying the role of these digging animals as critical ecosystem engineers. Given that the echidna is the only Australian digging mammal not severely impacted by population decline or range reduction, its functional contribution to health and resilience of forest ecosystems is increasingly important due to the functional loss of most Australian digging mammals
    • …
    corecore