2 research outputs found

    Toxicity Mechanisms of the Food Contaminant Citrinin: Application of a Quantitative Yeast Model

    Get PDF
    Mycotoxins are important food contaminants and a serious threat for human nutrition. However, in many cases the mechanisms of toxicity for this diverse group of metabolites are poorly understood. Here we apply live cell gene expression reporters in yeast as a quantitative model to unravel the cellular defense mechanisms in response to the mycotoxin citrinin. We find that citrinin triggers a fast and dose dependent activation of stress responsive promoters such as GRE2 or SOD2. More specifically, oxidative stress responsive pathways via the transcription factors Yap1 and Skn7 are critically implied in the response to citrinin. Additionally, genes in various multidrug resistance transport systems are functionally involved in the resistance to citrinin. Our study identifies the antioxidant defense as a major physiological response in the case of citrinin. In general, our results show that the use of live cell gene expression reporters in yeast are a powerful tool to identify toxicity targets and detoxification mechanisms of a broad range of food contaminants relevant for human nutrition.This work was supported by Ministerio de Economia y Competitividad grant BFU2011-23326. We thank the Fond for Open Access Publication from Consejo Superior de Investigaciones Cientificas for supporting publication costs of this article.Pascual-Ahuir Giner, MD.; Vanacloig Pedrós, ME.; Proft, MH. (2014). Toxicity Mechanisms of the Food Contaminant Citrinin: Application of a Quantitative Yeast Model. Nutrients. 6(5):2077-2087. https://doi.org/10.3390/nu6052077S2077208765Moretti, A., Susca, A., Mulé, G., Logrieco, A. F., & Proctor, R. H. (2013). Molecular biodiversity of mycotoxigenic fungi that threaten food safety. International Journal of Food Microbiology, 167(1), 57-66. doi:10.1016/j.ijfoodmicro.2013.06.033Wu, F., Groopman, J. D., & Pestka, J. J. (2014). Public Health Impacts of Foodborne Mycotoxins. Annual Review of Food Science and Technology, 5(1), 351-372. doi:10.1146/annurev-food-030713-092431Bennett, J. W., & Klich, M. (2003). Mycotoxins. Clinical Microbiology Reviews, 16(3), 497-516. doi:10.1128/cmr.16.3.497-516.2003Flajs, D., & Peraica, M. (2009). Toxicological Properties of Citrinin. Archives of Industrial Hygiene and Toxicology, 60(4). doi:10.2478/10004-1254-60-2009-1992Bouslimi, A., Ouannes, Z., Golli, E. E., Bouaziz, C., Hassen, W., & Bacha, H. (2008). Cytotoxicity and Oxidative Damage in Kidney Cells Exposed to the Mycotoxins Ochratoxin A and Citrinin: Individual and Combined Effects. Toxicology Mechanisms and Methods, 18(4), 341-349. doi:10.1080/15376510701556682El Golli, E., Hassen, W., Bouslimi, A., Bouaziz, C., Ladjimi, M. M., & Bacha, H. (2006). Induction of Hsp 70 in Vero cells in response to mycotoxins. Toxicology Letters, 166(2), 122-130. doi:10.1016/j.toxlet.2006.06.004Kumar, R., Dwivedi, P. D., Dhawan, A., Das, M., & Ansari, K. M. (2011). Citrinin-Generated Reactive Oxygen Species Cause Cell Cycle Arrest Leading to Apoptosis via the Intrinsic Mitochondrial Pathway in Mouse Skin. Toxicological Sciences, 122(2), 557-566. doi:10.1093/toxsci/kfr143Ribeiro, S. M. R., Chagas, G. M., Campello, A. P., & Kluppel, M. L. W. (1997). Mechanism of citrinin-induced dysfunction of mitochondria. V. Effect on the homeostasis of the reactive oxygen species. Cell Biochemistry and Function, 15(3), 203-209. doi:10.1002/(sici)1099-0844(199709)15:33.0.co;2-jChen, C.-C., & Chan, W.-H. (2009). Inhibition of Citrinin-Induced Apoptotic Biochemical Signaling in Human Hepatoma G2 Cells by Resveratrol. International Journal of Molecular Sciences, 10(8), 3338-3357. doi:10.3390/ijms10083338Hsu, L.-C., Hsu, Y.-W., Liang, Y.-H., Lin, Z.-H., Kuo, Y.-H., & Pan, T.-M. (2012). Protective Effect of Deferricoprogen Isolated from Monascus purpureus NTU 568 on Citrinin-Induced Apoptosis in HEK-293 Cells. Journal of Agricultural and Food Chemistry, 60(32), 7880-7885. doi:10.1021/jf301889qIwahashi, H., Kitagawa, E., Suzuki, Y., Ueda, Y., Ishizawa, Y., Nobumasa, H., … Iwahashi, Y. (2007). Evaluation of toxicity of the mycotoxin citrinin using yeast ORF DNA microarray and Oligo DNA microarray. BMC Genomics, 8(1), 95. doi:10.1186/1471-2164-8-95(2012). Scientific Opinion on the risks for public and animal health related to the presence of citrinin in food and feed. EFSA Journal, 10(3). doi:10.2903/j.efsa.2012.2605Dos Santos, S. C. (2012). Yeast toxicogenomics: genome-wide responses to chemical stresses with impact in environmental health, pharmacology, and biotechnology. Frontiers in Genetics, 3. doi:10.3389/fgene.2012.00063Rienzo, A., Pascual-Ahuir, A., & Proft, M. (2012). The use of a real-time luciferase assay to quantify gene expression dynamics in the living yeast cell. Yeast, 29(6), 219-231. doi:10.1002/yea.2905Dolz-Edo, L., Rienzo, A., Poveda-Huertes, D., Pascual-Ahuir, A., & Proft, M. (2013). Deciphering Dynamic Dose Responses of Natural Promoters and Single cis Elements upon Osmotic and Oxidative Stress in Yeast. Molecular and Cellular Biology, 33(11), 2228-2240. doi:10.1128/mcb.00240-13Garay-Arroyo, A., & Covarrubias, A. A. (1999). Three genes whose expression is induced by stress inSaccharomyces cerevisiae. Yeast, 15(10A), 879-892. doi:10.1002/(sici)1097-0061(199907)15:10a3.0.co;2-qProft, M. (2001). Regulation of the Sko1 transcriptional repressor by the Hog1 MAP kinase in response to osmotic stress. The EMBO Journal, 20(5), 1123-1133. doi:10.1093/emboj/20.5.1123Mamnun, Y. M., Pandjaitan, R., Mahé, Y., Delahodde, A., & Kuchler, K. (2002). The yeast zinc finger regulators Pdr1p and Pdr3p control pleiotropic drug resistance (PDR) as homo- and heterodimers in vivo. Molecular Microbiology, 46(5), 1429-1440. doi:10.1046/j.1365-2958.2002.03262.xChagas, G. M., Campello, A. P., & Klüppel, M. L. W. (1992). Mechanism of citrinin-induced dysfunction of mitochondria. I. Effects on respiration, enzyme activities and membrane potential of renal cortical mitochondria. Journal of Applied Toxicology, 12(2), 123-129. doi:10.1002/jat.2550120209Klarić, M. Š., Želježić, D., Rumora, L., Peraica, M., Pepeljnjak, S., & Domijan, A.-M. (2011). A potential role of calcium in apoptosis and aberrant chromatin forms in porcine kidney PK15 cells induced by individual and combined ochratoxin A and citrinin. Archives of Toxicology, 86(1), 97-107. doi:10.1007/s00204-011-0735-9Yu, F.-Y., Liao, Y.-C., Chang, C.-H., & Liu, B.-H. (2006). Citrinin induces apoptosis in HL-60 cells via activation of the mitochondrial pathway. Toxicology Letters, 161(2), 143-151. doi:10.1016/j.toxlet.2005.08.009Dönmez-Altuntas, H., Dumlupinar, G., Imamoglu, N., Hamurcu, Z., & Liman, B. C. (2007). Effects of the mycotoxin citrinin on micronucleus formation in a cytokinesis-block genotoxicity assay in cultured human lymphocytes. Journal of Applied Toxicology, 27(4), 337-341. doi:10.1002/jat.1209Föllmann, W., Behm, C., & Degen, G. H. (2014). Toxicity of the mycotoxin citrinin and its metabolite dihydrocitrinone and of mixtures of citrinin and ochratoxin A in vitro. Archives of Toxicology, 88(5), 1097-1107. doi:10.1007/s00204-014-1216-8Knasmuller, S., Cavin, C., Chakraborty, A., Darroudi, F., Majer, B. J., Huber, W. W., & Ehrlich, V. A. (2004). Structurally Related Mycotoxins Ochratoxin A, Ochratoxin B, and Citrinin Differ in Their Genotoxic Activities and in Their Mode of Action in Human-Derived Liver (HepG2) Cells: Implications for Risk Assessment. Nutrition and Cancer, 50(2), 190-197. doi:10.1207/s15327914nc5002_9Thust, R., & Kneist, S. (1979). Activity of citrinin metabolized by rat and human microsome fractions in clastogenicity and SCE assays on Chinese hamster V79-E cells. Mutation Research/Genetic Toxicology, 67(4), 321-330. doi:10.1016/0165-1218(79)90028-4Van Loon, A. P., Pesold-Hurt, B., & Schatz, G. (1986). A yeast mutant lacking mitochondrial manganese-superoxide dismutase is hypersensitive to oxygen. Proceedings of the National Academy of Sciences, 83(11), 3820-3824. doi:10.1073/pnas.83.11.3820Delaunay, A., Isnard, A.-D., & Toledano, M. B. (2000). H2O2 sensing through oxidation of the Yap1 transcription factor. The EMBO Journal, 19(19), 5157-5166. doi:10.1093/emboj/19.19.5157Toone, W. M., Morgan, B. A., & Jones, N. (2001). Redox control of AP-1-like factors in yeast and beyond. Oncogene, 20(19), 2336-2346. doi:10.1038/sj.onc.1204384Heider, E. M., Harper, J. K., Grant, D. M., Hoffman, A., Dugan, F., Tomer, D. P., & O’Neill, K. L. (2006). Exploring unusual antioxidant activity in a benzoic acid derivative: a proposed mechanism for citrinin. Tetrahedron, 62(6), 1199-1208. doi:10.1016/j.tet.2005.10.06

    Toxicity Mechanisms of the Food Contaminant Citrinin: Application of a Quantitative Yeast Model

    No full text
    Mycotoxins are important food contaminants and a serious threat for human nutrition. However, in many cases the mechanisms of toxicity for this diverse group of metabolites are poorly understood. Here we apply live cell gene expression reporters in yeast as a quantitative model to unravel the cellular defense mechanisms in response to the mycotoxin citrinin. We find that citrinin triggers a fast and dose dependent activation of stress responsive promoters such as GRE2 or SOD2. More specifically, oxidative stress responsive pathways via the transcription factors Yap1 and Skn7 are critically implied in the response to citrinin. Additionally, genes in various multidrug resistance transport systems are functionally involved in the resistance to citrinin. Our study identifies the antioxidant defense as a major physiological response in the case of citrinin. In general, our results show that the use of live cell gene expression reporters in yeast are a powerful tool to identify toxicity targets and detoxification mechanisms of a broad range of food contaminants relevant for human nutrition
    corecore