2 research outputs found

    Facilitation stabilizes moisture-controlled alpine juniper shrublines in the central Tibetan Plateau

    Get PDF
    The Tibetan Plateau hosts one of the world's highest undisturbed alpine juniper shrublines. However, little is known about the dynamics of these shrublines in response to climate warming and shrub-to-shrub interactions. Since growth of shrubline junipers is limited more by moisture availability than by low temperatures, we tested if upslope advancement of alpine juniper shrublines was constrained by warmer temperatures and related recent droughts. We also evaluated whether facilitation among neighboring shrubs, as inferred from spatial analyses, influenced shrubline dynamics. Three rectangular plots crossing the Juniperus pingii var. wilsonii shrubline were sampled at elevations from 4810 to 4917. m. a.s.l. near the Nam Co Lake, central Tibetan Plateau. Location of each stem and its diameter at the root collar and age were measured. We reconstructed the spatial and temporal shrubline dynamics during the past 350. years using standard dendrochronological methods. Independent, long-term summer temperature reconstructions also were associated with shrub recruitment. Point-pattern analyses were used to characterize spatial patterns of different size classes of shrubs. The three shrublines showed little long-term changes despite ongoing warming; no upward shift has occurred in the past 100. years. Recruitment was negatively associated with summer temperatures and drought occurrence since the 1920s. Spatial patterns were characterized by clustering at local scales and attraction between the different size classes, suggesting facilitation. We conclude that moisture availability limits the recruitment and elevational advance of junipers in this area of the Tibetan Plateau. Dynamics of alpine shrublines are more contingent on positive interactions and local environmental factors than on regional climatic variability. © 2015 Elsevier B.V.This work was supported by the National Natural Science Foundation of China (41471158), the National Basic Research Program of China (2012FY111400), and the Action Plan for West Development of the Chinese Academy of Science (KZCX2-XB3-08-02). J.J.C. acknowledges funding by ARAID. We appreciate the great support from the Nam Co Monitoring and Research Station for Multisphere Interactions, Chinese Academy of SciencePeer Reviewe
    corecore