3 research outputs found

    Exploring the degradation capability of Trametes versicolor on selected hydrophobic pesticides through setting sights simultaneously on culture broth and biological matrix

    No full text
    Pesticides introduced inadvertently or deliberately into environment by global agricultural practices have caused growing public concern, therefore the search of approaches for elimination of such xenobiotics should be motivated. The degradation of hydrophobic pesticides including chlorpyrifos, dicofol and cypermethrin were assayed with the white-rot fungus Trametes versicolor. Experiments were set at realistic concentration as 5 μg L−1, and both culture medium and biologic matrix were analyzed for pollutants residues. Results showed that the first step was due to a fast adsorption, which also played an important role, accounting for more than 90% removal in average. Then mass balances proposal evidenced the biodegradation of the adsorbed pollutants, demonstrating efficient depletion as 94.7%, 87.9% and 93.1%, respectively. Additionally, the related degradation metabolites were identified using ultra performance liquid chromatography coupled to high resolution mass spectrometry. Two compounds, namely O,O-diethyl thiophosphate and diethyl phosphate were detected as transformation products of chlorpyrifos, whereas dicofol was degraded into benzaldehyde that is first time to be reported. It also confirms the degradation capability of T. versicolor. Our results suggest that T. versicolor is a potential microorganism for bioremediation of hydrophobic pesticide contaminated environments

    Exploring the degradation capability of Trametes versicolor on selected hydrophobic pesticides through setting sights simultaneously on culture broth and biological matrix

    Get PDF
    Pesticides introduced inadvertently or deliberately into environment by global agricultural practices have caused growing public concern, therefore the search of approaches for elimination of such xenobiotics should be motivated. The degradation of hydrophobic pesticides including chlorpyrifos, dicofol and cypermethrin were assayed with the white-rot fungus Trametes versicolor. Experiments were set at realistic concentration as 5 μg L−1, and both culture medium and biologic matrix were analyzed for pollutants residues. Results showed that the first step was due to a fast adsorption, which also played an important role, accounting for more than 90% removal in average. Then mass balances proposal evidenced the biodegradation of the adsorbed pollutants, demonstrating efficient depletion as 94.7%, 87.9% and 93.1%, respectively. Additionally, the related degradation metabolites were identified using ultra performance liquid chromatography coupled to high resolution mass spectrometry. Two compounds, namely O,O-diethyl thiophosphate and diethyl phosphate were detected as transformation products of chlorpyrifos, whereas dicofol was degraded into benzaldehyde that is first time to be reported. It also confirms the degradation capability of T. versicolor. Our results suggest that T. versicolor is a potential microorganism for bioremediation of hydrophobic pesticide contaminated environments.This work has been funded by the Spanish Ministry of Economy and Competitiveness (project CTM 2016-75587-C2-1-R) co-financed by European Union through the European Regional Development Fund (ERDF) and partly supported by the Generalitat de Catalunya (Consolidated Research Group 2017-SGR-14). The Department of Chemical, Biological and Environmental Engineering of the Universitat Autònoma de Barcelona is member of the Xarxa de Referència en Biotecnologia de la Generalitat de Catalunya. K. Hu acknowledges the financial support from Chinese Scholarship Council.Peer reviewe
    corecore