1,450 research outputs found

    Electronic thermal conductivity of disordered metals

    Full text link
    We calculate the thermal conductivity of interacting electrons in disordered metals. In our analysis we point out that the interaction affects thermal transport through two distinct mechanims, associated with quantum interference corrections and energy exchange of the quasi particles with the electromagnetic environment, respectively. The latter is seen to lead to a violation of the Wiedemann-Franz law. Our theory predicts a strong enhancement of the Lorenz ratio κ/σT\kappa /\sigma T over the value which is predicted by the Wiedemann-Franz law, when the electrons encounter a large environmental impedance.Comment: 4 page

    Free Magnetic Moments in Disordered Metals

    Full text link
    The screening of magnetic moments in metals, the Kondo effect, is found to be quenched with a finite probability in the presence of nonmagnetic disorder. Numerical results for a disordered electron system show that the distribution of Kondo temperatures deviates strongly from the result expected from random matrix theory. A pronounced second peak emerges for small Kondo temperatures, showing that the probability that magnetic moments remain unscreened at low temperatures increases with disorder. Analytical calculations, taking into account correlations between eigenfunction intensities yield a finite width for the distribution in the thermodynamic limit. Experimental consequences for disordered mesoscopic metals are discussed.Comment: RevTex 4.0, 4.3 pages, 4 EPS figures; typos fixed, reference added, final published versio

    Anomalous Hall effect in ferromagnetic disordered metals

    Full text link
    The anomalous Hall effect in disordered band ferromagnets is considered in the framework of quantum transport theory. A microscopic model of electrons in a random potential of identical impurities including spin-orbit coupling is used. The Hall conductivity is calculated from the Kubo formula for both, the skew scattering and the side-jump mechanisms. The recently discussed Berry phase induced Hall current is also evaluated within the model. The effect of strong impurity scattering is analyzed and it is found to affect the ratio of the non-diagonal (Hall) and diagonal components of the conductivity as well as the relative importance of different mechanisms.Comment: Invited paper for Ann. Physik commemorating Paul Drud

    Ward identities for disordered metals and superconductors

    Full text link
    This article revisits Ward identities for disordered interacting normal metals and superconductors. It offers a simple derivation based on gauge invariance and recasts the identities in a new form that allows easy analysis of the quasiparticle charge conservation (as e.g. in a normal metal) or non-conservation (as e.g. in a d-wave superconductor).Comment: Discussion of decoherence at T=0 remove

    Coherent transport in disordered metals out of equilibrium

    Full text link
    We derive a formula for the quantum corrections to the electrical current for a metal out of equilibrium. In the limit of linear current-voltage characteristics our formula reproduces the well known Altshuler-Aronov correction to the conductivity of a disordered metal. The current formula is obtained by a direct diagrammatic approach, and is shown to agree with what is obtained within the Keldysh formulation of the non-linear sigma model. As an application we calculate the current of a mesoscopic wire. We find a current-voltage characteristics that scales with eV/kTeV/kT, and calculate the different scaling curves for a wire in the hot-electron regime and in the regime of full non-equilibrium.Comment: 16 pages, 13 figure

    Coherent transport in disordered metals: zero dimensional limit

    Full text link
    We consider non-equilibrium transport in disordered conductors. We calculate the interaction correction to the current for a short wire connected to electron reservoirs by resistive interfaces. In the absence of charging effects we find a universal current-voltage-characteristics. The relevance of our calculation for existing experiments is discussed as well as the connection with alternative theoretical approaches

    Spectral statistics in disordered metals: a trajectories approach

    Full text link
    We show that the perturbative expansion of the two-level correlation function, R(ω)R(\omega), in disordered conductors can be understood semiclassically in terms of self-intersecting particle trajectories. This requires the extension of the standard diagonal approximation to include pairs of paths which are non-identical but have almost identical action. The number of diagrams thus produced is much smaller than in a standard field-theoretical approach. We show that such a simplification occurs because R(ω)R(\omega) has a natural representation as the second derivative of free energy F(ω)F(\omega). We calculate R(ω)R(\omega) to 3-loop order, and verify a one-parameter scaling hypothesis for it in 2d. We discuss the possibility of applying our ``weak diagonal approximation'' to generic chaotic systems.Comment: 9 pages in REVTeX two-column format including 4 figures; submitted to Phys.Rev.
    corecore