63 research outputs found

    A two-stage approach for direct signal and clutter cancellation in passive radar on moving platforms

    Get PDF
    This paper addresses the problem of direct signal interference (DSI) and clutter cancellation for passive radar systems on moving platforms using displaced phase centre antenna (DPCA) approach in the presence of receive channels imbalance. First, we show that using the signal emitted by the illuminator of opportunity as a source for channels calibration might be ineffective when DSI and clutter echoes have different directions of arrival. Then, a calibration approach is presented, based on supervised selection of clutter areas in the range-Doppler map. Finally, a two-stage strategy is presented, composed of an ECA-based DSI removal prior to DPCA clutter cancellation, which doesn’t require supervised selection of the calibration area. The effectiveness of this scheme in the joint suppression of DSI and clutter is shown against real data

    A New Multistatic FMCW Radar Architecture by Over-the-Air Deramping

    Get PDF
    © 2015 IEEE. Frequency modulated continuous wave (FMCW) radar is widely adopted solution for low-cost, short to medium range sensing applications. However, a multistatic FMCW architecture suitable for meeting the low-cost requirement has yet to be developed. This paper introduces a new FMCW radar architecture that implements a novel technique of synchronizing nodes in a multistatic system, known as over-the-air deramping (OTAD). The architecture uses a dual-frequency design to simultaneously broadcast an FMCW waveform on a lower frequency channel directly to a receiver as a reference synchronization signal, and a higher frequency channel to illuminate the measurement scene. The target echo is deramped in hardware with the synchronization signal. OTAD allows for low-cost multistatic systems with fine range-resolution, and low peak power and sampling rate requirements. Furthermore, the approach avoids problems with direct signal interference. OTAD is shown to be a compelling solution for low-cost multistatic radar systems through the experimental measurements using a newly developed OTAD radar system

    Passive radar DPCA schemes with adaptive channel calibration

    Get PDF
    This paper addresses the problem of direct signal interference (DSI) and clutter cancellation for passive radar systems on moving platforms employing displaced phase centre antenna (DPCA) approach. Attention is focused on the development of signal processing strategies able to compensate for the limitations deriving from amplitude and phase imbalances that affect the two channels employed on receive. First, we show that using the signal received from the illuminator of opportunity as a source for channels calibration might be ineffective when DSI and clutter echoes have different directions of arrival, due to the effect of angle-dependent channel imbalance. Then, a two-stage strategy is proposed, consisting of a preliminary DSI removal stage at each receive channel, followed by a clutter-based calibration approach that basically enables an effective DPCA clutter suppression. Different strategies for channel calibration are proposed, aimed at compensating for potential angle and range dependent channel errors, based on the maximization of the cancellation performance. Effectiveness of this scheme is shown against experimental data from a DVB-T based moving passive radar, in the presence of both real and synthetic moving targets

    Occupancy Detection and People Counting Using WiFi Passive Radar

    Get PDF
    Occupancy detection and people counting technologies have important uses in many scenarios ranging from management of human resources, optimising energy use in intelligent buildings and improving public services in future smart cities. Wi-Fi based sensing approaches for these applications have attracted significant attention in recent years because of their ubiquitous nature, and ability to preserve the privacy of individuals being counted. In this paper, we present a Passive Wi-Fi Radar (PWR) technique for occupancy detection and people counting. Unlike systems which exploit the Wi-Fi Received Signal Strength (RSS) and Channel State Information (CSI), PWR systems can directly be applied in any environment covered by an existing WiFi local area network without special modifications to the Wi-Fi access point. Specifically, we apply Cross Ambiguity Function (CAF) processing to generate Range-Doppler maps, then we use Time-Frequency transforms to generate Doppler spectrograms, and finally employ a CLEAN algorithm to remove the direct signal interference. A Convolutional Neural Network (CNN) and sliding-window based feature selection scheme is then used for classification. Experimental results collected from a typical office environment are used to validate the proposed PWR system for accurately determining room occupancy, and correctly predict the number of people when using four test subjects in experimental measurements

    Physical Activity Sensing via Stand-Alone WiFi Device

    Get PDF
    WiFi signals for physical activity sensing shows promising potential for many healthcare applications due to its potential for recognising various everyday activities, non-invasive nature and low intrusion on privacy. Traditionally, WiFi-based sensing uses the Channel State Information (CSI) from an offthe- shelf WiFi Access Point (AP) which transmits signals that have high pulse repetition frequencies. However, when there are no users on the communication network only beacon signals are transmitted from the WiFi AP which significantly deteriorates the sensitivity and specificity of such systems. Surprisingly WiFi based sensing under these conditions have received little attention given that WiFi APs are frequently in idle state. This paper presents a practical system based on passive radar technique which does not require any special setup or preset firmware and able to work with any commercial WiFi device. To cope with the low density of beacon signal, a modified Cross Ambiguity Function (CAF) has been proposed to reduce redundant samples in the recorded. In addition, an external device has been developed to send WiFi probe request signals and stimulate an idle AP to transmit WiFi probe responses thus generate usable transmission signals for sensing applications without the need to authenticate and join the network. Experimental results prove that proposed concept can significantly improve activity detection and is an ideal candidate for future healthcare and security applications

    Electronic countermeasures applied to passive radar

    Get PDF
    Passive Radar (PR) is a form of bistatic radar that utilises existing transmitter infrastructure such as FM radio, digital audio and video broadcasts (DAB and DVB-T/T2), cellular base station transmitters, and satellite-borne illuminators like DVB-S instead of a dedicated radar transmitter. Extensive research into PR has been performed over the last two decades across various industries with the technology maturing to a point where it is becoming commercially viable. Nevertheless, despite the abundance of PR literature, there is a scarcity of open literature pertaining to electronic countermeasures (ECM) applied to PR. This research makes the novel contribution of a comprehensive exploration and validation of various ECM techniques and their effectiveness when applied to PR. Extensive research has been conducted to assess the inherent properties of the lluminators of Opportunity to identify their possible weaknesses for the purpose of applying targeted ECM. Similarly, potential jamming signals have also been researched to evaluate their effectiveness as bespoke ECM signals. Whilst different types of PR exist, this thesis focuses specifically on ECM applied to FM radio and DVB-T2 based PR. The results show noise jamming to be effective against FM radio based PR where jamming can be achieved with relatively low jamming power. A waveform study is performed to determine the optimal jamming waveform for an FM radio based PR. The importance of an effective direct signal interference (DSI) canceller is also shown as a means of suppressing the jamming signal. A basic overview of counter-ECM (ECCM) is discussed to counter potential jamming of FM based PR. The two main processing techniques for DVB-T2 based PR, mismatched and inverse filtering, have been investigated and their performance in the presence of jamming evaluated. The deterministic components of the DVB-T2 waveform are shown to be an effective form of attack for both mismatched filtering and inverse filtering techniques. Basic ECCM is also presented to counter potential pilot attacks on DVB-T2 based PR. Using measured data from a PR demonstrator, the application and effectiveness of each jamming technique is clearly demonstrated, evaluated and quantified

    FM airborne passive radar

    Get PDF
    The airborne application of Passive Bistatic Radar (PBR) is the latest evolution of the now established international interest in passive radar techniques. An airborne passive system is cheaper to construct, easier to cool, lighter and requires less power than a traditional active radar system. These properties make it ideal for installation on an Unmanned Aerial Vehicle (UAV), especially for the next generation of Low Observable (LO) UAVs, complementing the platforms LO design with an inherently Low Probability of Intercept (LPI) air-to-air and air-to-ground sensing capability. A comprehensive literature review identified a lack of practical and theoretical research in airborne passive bistatic radar and a quantitative model was designed in order to un- derstand the theoretical performance achievable using a hypothetical system and FM as the illuminator of opportunity. The results demonstrated a useable surveillance volume, assuming conservative estimates for the receiver parameters and allowed the scoping and specification of an airborne demonstrator system. The demonstrator system was subsequently designed and constructed and flown on airborne experiments to collect data for both air-to-air and air-to-ground operation analysis. Subsequent processing demonstrated the successful detection of air targets which correlated with the actual aircraft positions as recorded by a Mode-S/ADS-B receiver. This is the first time this has been conclusively demonstrated in the literature. Doppler Beam Sharpening was used to create a coarse resolution image allowing the normalised bistatic clutter RCS of the stationary surface clutter to be analysed. This is the first time this technique has been applied to an airborne passive system and has yielded the first quantitive values of normalised bistatic clutter RCS at VHF. This successful demonstration of airborne passive radar techniques provides the proof of concept and identifies the key research areas that need to be addressed in order to fully develop this technology

    Space-time adaptive processing techniques for multichannel mobile passive radar

    Get PDF
    Passive radar technology has reached a level of maturity for stationary sensor operations, widely proving the ability to detect, localize and track targets, by exploiting different kinds of illuminators of opportunity. In recent years, a renewed interest from both the scientific community and the industry has opened new perspectives and research areas. One of the most interesting and challenging ones is the use of passive radar sensors onboard moving platforms. This may offer a number of strategic advantages and extend the functionalities of passive radar to applications like synthetic aperture radar (SAR) imaging and ground moving target indication (GMTI). However, these benefits are paid in terms of motion-induced Doppler distortions of the received signals, which can adversely affect the system performance. In the case of surveillance applications, the detection of slowly moving targets is hindered by the Doppler-spread clutter returns, due to platform motion, and requires the use of space-time processing techniques, applied on signals collected by multiple receiving channels. Although in recent technical literature the feasibility of this concept has been preliminarily demonstrated, mobile passive radar is still far from being a mature technology and several issues still need to be addressed, mostly connected to the peculiar characteristics of the passive bistatic scenario. Specifically, significant limitations may come from the continuous and time-varying nature of the typical waveforms of opportunity, not suitable for conventional space-time processing techniques. Moreover, the low directivity of the practical receiving antennas, paired with a bistatic omni-directional illumination, further increases the clutter Doppler bandwidth and results in the simultaneous reception of non-negligible clutter contributions from a very wide angular sector. Such contributions are likely to undergo an angle-dependent imbalance across the receiving channels, exacerbated by the use of low-cost hardware. This thesis takes research on mobile passive radar for surveillance applications one step further, finding solutions to tackle the main limitations deriving from the passive bistatic framework, while preserving the paradigm of a simple system architecture. Attention is devoted to the development of signal processing algorithms and operational strategies for multichannel mobile passive radar, focusing on space-time processing techniques aimed at clutter cancellation and slowly moving target detection and localization. First, a processing scheme based on the displaced phase centre antenna (DPCA) approach is considered, for dual-channel systems. The scheme offers a simple and effective solution for passive radar GMTI, but its cancellation performance can be severely compromised by the presence of angle-dependent imbalances affecting the receiving channels. Therefore, it is paired with adaptive clutter-based calibration techniques, specifically devised for mobile passive radar. By exploiting the fine Doppler resolution offered by the typical long integration times and the one-to-one relationship between angle of arrival and Doppler frequency of the stationary scatterers, the devised techniques compensate for the angle-dependent imbalances and prove largely necessary to guarantee an effective clutter cancellation. Then, the attention is focused on space-time adaptive processing (STAP) techniques for multichannel mobile passive radar. In this case, the clutter cancellation capability relies on the adaptivity of the space-time filter, by resorting to an adjacent-bin post-Doppler (ABPD) approach. This allows to significantly reduce the size of the adaptive problem and intrinsically compensate for potential angle-dependent channel errors, by operating on a clutter subspace accounting for a limited angular sector. Therefore, ad hoc strategies are devised to counteract the effects of channel imbalance on the moving target detection and localization performance. By exploiting the clutter echoes to correct the spatial steering vector mismatch, the proposed STAP scheme is shown to enable an accurate estimation of target direction of arrival (DOA), which represents a critical task in system featuring few wide beam antennas. Finally, a dual cancelled channel STAP scheme is proposed, aimed at further reducing the system computational complexity and the number of required training data, compared to a conventional full-array solution. The proposed scheme simplifies the DOA estimation process and proves to be robust against the adaptivity losses commonly arising in a real bistatic clutter scenario, allowing effective operation even in the case of a limited sample support. The effectiveness of the techniques proposed in this work is validated by means of extensive simulated analyses and applications to real data, collected by an experimental multichannel passive radar installed on a moving platform and based on DVB-T transmission

    Train Monitoring using GSM-R Based Passive Radar

    Get PDF
    Train detection technologies are universal to all modern railway signal and control systems. They are essential for managing the movement of vehicles across entire transport networks, and to ensure their safe operation. In this paper we investigate the feasibility of a new train monitoring capability based on passive radar technology. The system exploits signal transmissions from the railways’ GSM-Railway (GSM-R) radio communications infrastructure, and has the potential to determine the positions and velocities of trains over any section of a railway network where there is GSM-R coverage. A theoretical ambiguity function analysis on directly measured GSM-R waveforms suggest that targets can be detected with axial range resolutions of approximately 850 m, and velocities down to less than 1 mph. To demonstrate proof-of-concept, a series of experiments were carried out using a software-defined GSM-R passive radar system. The results show the first detections of trains at bistatic ranges of just over 1 km moving at various speeds. There are now hundreds of thousands of miles of railway track covered by GSM-R globally, with many more countries planning to rollout systems nationally. The results therefore imply that GSM-R based passive radar technology could be used to develop low-cost train monitoring capabilities worldwide alongside the existing GSM-R radio communications infrastructure
    • …
    corecore