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Abstract—Occupancy detection and people counting tech-
nologies have important uses in many scenarios ranging from
management of human resources, optimising energy use in in-
telligent buildings and improving public services in future smart
cities. Wi-Fi based sensing approaches for these applications
have attracted significant attention in recent years because of
their ubiquitous nature, and ability to preserve the privacy of
individuals being counted. In this paper, We present a Passive Wi-
Fi Radar (PWR) technique for occupancy detection and people
counting. Unlike systems which exploit the Wi-Fi Received Signal
Strength (RSS) and Channel State Information (CSI), PWR
systems can directly leverage any environment covered by an
existing WiFi local area network without special modifications to
the Wi-Fi access point. Specifically, we apply Cross Ambiguity
Function (CAF) processing to generate Doppler spectrograms,
and employ a CLEAN algorithm to remove the direct sig-
nal interference. A Convolutional Neural Network (CNN) and
sliding-window based feature selection scheme is then used for
classification. Experimental results collected from a typical office
environment have validated that the proposed PWR system is
able to determine room occupancy with 99.5% accuracy, and
correctly count (98.1%) how many people are present when there
are up to four people.

Index Terms—WiFi Sensing, Occupancy Detection, Crowd
Counting, Passive WiFi Radar, CNN

I. INTRODUCTION

Occupancy detection and people counting are widely re-
quired in many scenarios. For example, tracking queuing and
sitting situations can improve service quantity by rearranging
staff resources in shopping malls or restaurants. In terms of
optimizing energy use, detecting occupancy state can reduce
unnecessary lighting or/and heating cost in an intelligent build-
ing. In public transportation and for safety concern, estimating
the number of passengers at a bus stop or train platform
can make management center adjust schedule to avoid over-
crowding situations. In some security aspects, for instance,
occupancy detection can make sure no one has entered an
area once it has been checked for explosives. Some Infra-
Red and camera-based detectors have been employed in many
application areas, but with large detection errors and privacy
exposure issues, their reliability and performance are limited.
On the contrary, recent WiFi-based system has many unique
advantages to avoid these problems. It directly leverages WiFi
signal which ubiquitously exists in surrounding environments

and has ability to penetrate through objects. As a result, WiFi-
based systems can guarantee large monitoring areas and be
less limited by lighting or light-of-sight conditions, whilst also
preserving privacy.

Common WiFi sensing researches mainly focus on RSS
and/or CSI data. RSS data is an index of the WiFi energy.
With the increase of the distance from WiFi AP, the value of
RSS decreases. Based on this feature, RSS-based systems can
be used for localization[1] and gesture recognition[2][3]. For
occupancy sensing, many studies has proposed. For example,
in[4], they estimate the number of passengers on a bus by
deploying four WiFi sensors to collect RSS data from carried
mobile devices. Researchers in [5] propose a device-free RSS-
based system which uses existing WiFi networks and applies
classifiers to estimate the number of people. They report
98.20% occupancy state detection accuracy but this drops
to 77.20% when attempting to count the number of people
in the crowd. However, because of the presence of multiple
reflection and scattering paths, it cannot distinguish them and
may appear unpredictable fluctuations which makes detection
suffer from large false positive. In this case, RSS-based system
often requires intensive offline training and densely deploys
WiFi communication links which reduces simplicity and con-
venience of the system. On the other hand, for CSI-based
system, it is an upgrade version of RSS which describes each
component in multi-path propagation with the format of CSI
for a clearer understanding of propagation information. As an
Orthogonal Frequency Division Multiplexing(OFDM)-based
transmission, WiFi signals are encoded with a set of orthog-
onal subcarriers with corresponding CSI values. The system
can gather raw CSI values via Network Interface card(NIC).
For example, in [6], using a modified firmware of the IWL
5300 can collect CSI values for 30 OFDM subcarriers. This
superiority made CSI-based system become one of the most
popular WiFi sensing techniques. Studies ave shown its ability
to detect bulk human motions such as walking and sitting[7],
as well as slight movements such as breathing[8], heartbeats[9]
and lip movements. [10][11][12][13] have proposed some CSI-
based device-free crowd counting systems. Nevertheless, most
of CSI-based systems require a laptop or PC with a modified
WiFi NIC to act as a receiver. Meanwhile, some CSI-based
systems require manipulation of WiFi APs to transmit data-rate



signal in order to make use of it’s full allowable bandwidth,
which has real-world implications in terms of how it may
affect the throughput for the users of the communication
network. For implementing occupancy detection system in all
kinds of scenarios and reducing system complexity, we need
an effective strategy leveraging existing WiFi infrastructure
without any additional modifications, as well as maintaining
even improving detection accuracy.

Recent researches in radio-frequency(RF) sensing commu-
nity has shown significant interest in PWR system because
of low cost and ability to covertly detect and track non-
cooperative targets. Many PWR applications have been pro-
posed for example, through-the-wall[14] and indoor sensing
scenarios. Different from RSS and CSI-based systems, PWR
system extract target Doppler information through CAF pro-
cessing. Doppler spectrogram can present meaningful Doppler
information for better visualization and understand the data.
Furthermore, PWR-based system does not require extra mod-
ification and can directly use existing WiFi network and still
has the ability to detect individuals in high-clutter indoor
environments [REFERENCE- CHETTY09] and through walls
[14]. It is also highly sensitive to small motions due to the
long integration times possible and has even been shown to
detect the perturbations of the chest-wall during breathing [15].
However, to the best of our knowledge no work has been
spent to investigate PWR system in the occupancy detection
and people counting. This paper presents our first attempt
of applying PWR system in this important area. Specifically,
we used a CLEAN algorithm to filtering undesired signals to
enhance the detection performance. Afterwards, Convolutional
Neural Networks (CNNs) is adopted to learn a general model
from Doppler spectrogram. Instead of directly feeding CAFs
into CNNs, we employed sliding-window to select features
from Doppler spectrogram which highly improves estimation
accuracy. With these techniques, in this paper, we demonstrate
its ability to outperform aforementioned systems for occu-
pancy sensing and people counting purpose.

In summary, we mainly make the following contributions:

• To the best of author’s knowledge, we are the first to
apply PWR system and use Doppler spectrogram data
for occupancy detection and people counting purposes.

• We proposed new feature selection scheme rather than
directly training a single CAF to increase prediction
accuracy.

• Experimental results have validated that PWR system is
able to achieve maximum 99.53% occupancy detection
accuracy and 98.14% crowd counting accuracy(up to 4
people).

The rest of the paper is organized as follows: Section II
describes the fundamental mechanism of PWR system. Next,
Section III introduces details of experiments including equip-
ment setup, experiment design and data collection. Section IV
presents experimental results and evaluates the performance
of different CNN models. Finally, We conclude this paper and
discuss possible extension for future work in Section V.
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Fig. 1: The common layout for a passive radar system

Fig. 2: Block Diagram of System

II. PASSIVE WIFI RADAR SYSTEM

A. System Architecture

Passive Radar is a kind of bi-static radar system which
uses the RF signal emitted by existing signal sources like
TV signals to achieve detection. Recent applications include
tracking airborne targets, monitoring traffic and sensing human
activities. The passive radar system uses separately located
antennas, named surveillance channel and reference channel
respectively, and cross-correlation techniques to measure vari-
ations between reflected signal from the target and direct
signal from the signal source. It should be noted that two
channels need to be synchronized. Thereby, the corresponding
Doppler strength and range information from the RF source
via the target to the surveillance antenna is determined. A
sketch of passive radar system setup has shown in Fig. 1.
Specially, PWR system is a passive radar system using WiFi
signals. The general concepts are similar with others but with
slight difference because of the characteristic of WiFi signals.
Bandwidth of commercial WiFi signal is fixed at 20 to 40MHz
corresponding to 7.5 to 15 meters range resolution, which is



not enough for indoor environments. As a result, proposed
system focuses on analyzing Doppler strength of CAF results
or Doppler spectrogram. Fig. 2 has shown the block diagram
of proposed system.

B. Signal Processing for PWR System

In passive radar, signals from surveillance channel and
time-delayed copies of reference signals are cross-correlated
by CAF to extract range and Doppler information. A CAF
mapping equation can be defined as equation (1):

CAF (τ, fd) =

∫ T

0

Ssur(t)S
∗
ref (t− τ)ej2πfdfctdt (1)

where Ssur(t) represents received signal from surveillance
channel, Sref (t − τ) is replicas of time-delayed reference
signals and τ is the delay, fd is the Doppler shift and
fc represents the carrier frequency, [∗] operator denotes the
complex conjugate. Meanwhile, integration time T determines
how long period of signals will be processed. In IEEE 802.11
standard, WiFi signal propagation is modulated by OFDM
scheme[16], so we can define pure reference signals (Sref )
as equation (2):

Sref (t) =
1√
N

N−1∑
n=0

ane
j2πnt (2)

where N is the number of OFDM symbols for each carrier
an, n is the index of a symbol. On the other hand, WiFi
signal propagation has multiple path caused by reflections
from stationary objects or moving people. Compared with their
source signal, they might be attenuated, delayed or have phase
shift. In this case, these signals i.e. Ssur can be received and
described in the form of equation (3):

Ssur(t) =
∑
p

Ape
j2πfdfctx(t− τ) + n(t) (3)

where p represents the number of transmission paths, Ap is
the attenuation factor, and n(t) represents the Additive White
Gaussian Noise(AWGN). Substitute equation (2) and (3) into
(1), CAF values involving range and Doppler information can
be obtained. However, the above processing does not account
impact of noise and there is still some interference which needs
extra processing operations. One of the major interference is
the strong signals directly coming from WiFi AP. Because of
much less attenuation, it will shade other reflected signals and
cause unwanted peaks in the zero Doppler bin. The CLEAN
algorithm can remove this direct signal interference by self-
cancellation, which can be described as (4):
CAF

′
(τ, fd) = CAF (τ, fd)− αCAFself (τ − Tk, fd) (4)

where CAFself (τ, fd) represents the CAF over the reference
channel, α is the maximum absolute value of CAF (τ, fd).
Then, after employing CLEAN algorithm, desired Doppler
information is uncovered.

C. Monitoring occupancy information with Doppler spectro-
gram

PWR system has ability to detect small movements like
breathing. Unlike Infra-Red sensor, as long as there is one
person in the monitoring area, Doppler power will not be
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Fig. 3: An example layout in experimental environment

zero. According to this fact, it is easy to determine occu-
pancy state via analyzing whether Doppler power is zero on
CAF. Nevertheless, for crowd counting task, it becomes much
more complex than previous one. As mentioned before, range
resolution of PWR detection is around 7.5 to 15 meters, for
around 5 meters by 5 meters experimental room, it is not able
to distinguish locations of different people which may cause
underestimation problem. To solve it, the idea is that although
locations of people are unknown, the Doppler power and
density will be varied with changes of the number of people.
For example, one person cannot move towards two directions
at the same time, therefore, if Doppler spectrogram shows
non-zero Doppler power at both directions, it means there
are at least two people in the monitoring area. On the other
hand, the strength of Doppler power for different activities
for one person has a certain range, moreover, the range is
normally quite limited because we do not do fierce movements
very often. As a result, if Doppler power of one bin exceeds
maximum value of the range, it actually indicates that more
than one person existing in the monitoring area. Meanwhile,
human activities have temporal relations. For example, we
can observe a clear sinusoidal waveform while one person
is breathing. Hence, if such the waveform can be recognized,
it will be an index for detection.

Based on one of these characteristics or combination of
them, PWR system can achieve both occupancy state detection
and crowd counting. But due to random movements of people,
patterns of Doppler spectrogram are still hard to extract by
observing or specific mathematical model, we introduced CNN
to automatically learn a general model from dataset.

III. SYSTEM IMPLEMENTATION

In this section, we present the structure of PWR system
in experimental scenarios including required equipment and
example layout. Also, details about experiments and dataset
are introduced in below.

A. System Overview

Fig. 3 shows example system layout in our experimental
environment. There are one Yagi antenna for reference channel
to capture source signals from WiFi AP and one Yagi antenna



for surveillance channel to monitor region of interest. In
addition, two NI USRP-2921 for real-time signals acquisition
are connected with two antennas through a Gigabyte Ethernet,
respectively. Then measured data is delivered to computational
unit which is based on LabVIEW for signal processing steps.
Moreover, a camera system operated by Raspberry Pi has been
deployed, and the video data can be used as the ground truth of
PWR occupancy sensing experiments. Meanwhile, the camera
system has been synchronized with PWR system through an
NTP server.

B. Experiments Design

We designed a 45 minutes continuous experiment to verify
the feasibility of PWR system for occupancy sensing. The
whole measurement has four participants and includes nine
sub-experiments (lasting five minutes for each one). Both
camera and PWR systems kept working during the experiment.
The initial state in monitoring area was non-occupied state
i.e. zero people. After the first five minute passed, four
participants successively entered into the monitoring area and
kept randomly walking to simulate a real scenario like people
are walking in a train station. Thereby, the occupancy state
in the monitoring area varied from non-occupied state to
occupied state and the number of people increased from one
person to maximum four people. Then the number of people
continues to change several times to get more data. Finally, the
number of participants in nine sub-experiments are in order of
0,1,2,3,4,3,2,1 and 4.

C. Dataset Explanation and CNNs

The measuring rate of PWR system is 10 CAFs, as known
as 10 frames, per second. At the end, we collected 45 minutes
data resulting in around 27,000 frames, which are labelled
according to recorded video from the camera system. There
are two labelling schemes corresponding to different purposes.
For occupancy state detection, we labelled ’non-occupied’
and ’occupied’ for zero people state and the rest of states,
respectively. For crowd counting, we labelled data according
to the number of people such as ’one person’, ’two people’,
etc. Meanwhile, the CAF strength is normalized within [0, 1]
at the beginning. This is not only for faster gradient descent in
deep neural network, but also for reducing impacts of varied
WiFi signals and different monitoring areas.

One the other hand, as discussed in Section III.C, due to
spatial-temporal relation of movements of multiple people,
rather than learning from one single CAF, combining con-
tinuous frames as one feature, could highly improve estima-
tion accuracy. To verify this guess, we used different sizes
of sliding-window to extract features from spectrogram and
trained them. The width of sliding-window was set to 5, 7 and
10 for each training where we also trained single CAF data
for comparison. Basically, with the increase of window size,
richer information is presented on the Doppler spectrogram.
Besides, the label of a feature is determined by labels of each
frames in the window. For simplicity, we will make sure that

Parameters Non-
occupied

One per-
son

Two
people

Three
people

Four
people

Mean 0.002 0.005 0.011 0.013 0.014
Median 0.000 0.0017 0.002 0.003 0.004
std 0.005 0.018 0.028 0.029 0.032

TABLE I: Mean, Median and Standard deviation values for
different occupancy states

there is only one label type existing in the window. Features
including mixed labels will be not fed into CNNs.

In aspect of deep neural network, we selected CNNs
techniques to train the dataset and leveraged 5-folds cross-
validation method to evaluate models. To determine which
structures more fit to our case, we employed three popular ar-
chitectures including LeNet[17], AlexNet[18] and ZFNet[19]
and slightly modified them according to the demand. The
biggest modification is that we reduced the number of pooling
layers. That is because each pixels on Doppler spectrogram
involves the strength and direction information, but pooling
layers may weaken information of some pixels or make them
lost which is detrimental for the estimation.

IV. EXPERIMENTAL AND NEURAL NETWORK RESULTS

Fig. 4 presents fragments of Doppler spectrogram for differ-
ent occupancy states. Furthermore, Fig. 5 presents examples
of CAF plots for different states. What needs illustration is
that the Doppler spectrogram has 100 Doppler bins in one
frame/column where bins above the middle line represent
positive movement direction while bins below the middle line
is negative direction. Here, positive and negative directions
refer to moving towards and away surveillance antenna, re-
spectively. Furthermore, the color bars have shown the level
of Doppler power. On the other hand, Table I statistically
shows some parameters for different states. Finally, Table II
list results of CNNs.

In Fig. 4, the spectrogram of empty room (a) indicates
low-amplitude (< 0.01) noises still exist but will not make
much difference for results. For spectrogram of one person
(b), we can clearly see a sinusoid-like wave which represents
continuous forward and backward walking. But with the
increase of the number of people (Fig. 4(c)(d)(e)), the strength
and density of Doppler power increased resulting in the entire
Doppler spectrogram also becomes more and more complex.

One the other hand, in Fig. 5, the CAF of empty room
still has slight noises but with much less amplitude than other
results of occupied states. Furthermore, different from CAFs
in Fig. 5(c)(d)(e), the CAF of one person only has strength
in one direction which is consistent with analysis in Section
III.C.

In TableI, we calculated mean, median and standard devia-
tion parameters for different people states. As can be seen, dif-
ferences between each states accord with changes on Doppler
spectrogram. On the other hand, results of CNNs have been
listed in TableII, whilst example confusion matrices of ZFNet
results with different window sizes is shown in Fig. 6. TableII
counts estimation accuracy of both occupancy state detection
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(b) Two People
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(d) Three People
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(e) Four People
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Fig. 4: Doppler spectrogram fragment of different occupancy states

(a) CAF of Empty Room

10 20 30

Range(m)

-40

-20

0

20

40

D
o

p
p

le
r 

(H
z
)

0

0.01

0.02

0.03

0.04

0.05

0.06

(e) CAF of Four People
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(d) CAF of Three People
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Fig. 5: CAF results of different occupancy states

Neural Network Window Size Classes Accuracy(%)

LeNet

CAF occupancy sensing 91.5
people counting 83.4

5 occupancy sensing 96.6
people counting 95.6

7 occupancy sensing 98.2
people counting 96.9

10 occupancy sensing 99.5
people counting 98.8

AlexNet

CAF occupancy sensing 91.2
people counting 84.1

5 occupancy sensing 96.9
people counting 93.2

7 occupancy sensing 97.23
people counting 96.1

10 occupancy sensing 98.6
people counting 98.3

ZFNet

CAF occupancy sensing 92.4
people counting 85.2

5 occupancy sensing 95.9
people counting 94.3

7 occupancy sensing 96.4
people counting 95.3

10 occupancy sensing 98.7
people counting 97.3

TABLE II: Experimental Results

and people counting. We can find that with the increase of
window size, estimation accuracy highly improved, especially
from using a single CAF (i.e. window size = 1) to using a
short period of Doppler spectrogram (i.e. window size ¿ 1).
Overall, PWR occupancy sensing system can finally achieve
maximum 99.54% accuracy for occupancy state detection task
(using the modified LeNet with window size equals 10) and
maximum 98.14% accuracy for crowd counting task (using the
modified ZFNet with window size equals 10).

(a) window size is 1 i.e. CAF (b) window size is 5

(c) window size is 7 (d) window size is 10

Fig. 6: Confusion matrix ZFNet with different window sizes,
where labels represents the number of people

V. CONCLUSION AND FUTURE WORK

In this paper, we demonstrate that a PWR system is able
to achieve occupancy state detection and crowd counting.
Different from other WiFi sensing systems, the PWR system
does not require any extra modifications or devices like NIC
on WiFi networks and can directly leverage any commercial
WiFi AP for detection. Moreover, instead of measuring RSS
and CSI data, a PWR system cross-correlates received signals
from two channels with CAF method and removes the strong



direct signal with CLEAN algorithm to generate time-varied
Doppler spectrogram. Compared with RSS and CSI data,
the Doppler spectrogram is more meaningful in which we
can roughly observe waveform of movements. Finally, by
training with CNNs, we obtain general models for occupancy
sensing which can achieve quite good estimation accuracy.
Besides, we also have summarized some aspects needed to
be noticed for training Doppler spectrogram data including
applying sliding-window method with relative bigger window
size, more complex CNN and reducing pooling layers in
the earlier layers. In the end, it is envisioned that a PWR
occupancy sensing system can be extensively applied in many
scenarios because of its low-cost, simplicity and convenience,
more importantly having quite high detection accuracy.

For our future’s plan, because this paper mainly focused on
exploring the feasibility of using PWR system for occupancy
sensing, the number of participants and the diversity of experi-
mental scenarios are not so much. In the future, we are going to
carry out more experiments with more participants in various
environments so that we can further verify the reliability of
the system. We believe that based on the current results, PWR
system will perform well in future’s experiments as well.
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