75 research outputs found

    Two-field finite element solver for linear poroelasticity, A

    Get PDF
    Includes bibliographical references.2020 Summer.Poroelasticity models the interaction between an elastic porous medium and the fluid flowing in it. It has wide applications in biomechanics, geophysics, and soil mechanics. Due to difficulties of deriving analytical solutions for the poroelasticity equation system, finite element methods are powerful tools for obtaining numerical solutions. In this dissertation, we develop a two-field finite element solver for poroelasticity. The Darcy flow is discretized by a lowest order weak Galerkin (WG) finite element method for fluid pressure. The linear elasticity is discretized by enriched Lagrangian (EQ1EQ_1) elements for solid displacement. First order backward Euler time discretization is implemented to solve the coupled time-dependent system on quadrilateral meshes. This poroelasticity solver has some attractive features. There is no stabilization added to the system and it is free of Poisson locking and pressure oscillations. Poroelasticity locking is avoided through an appropriate coupling of finite element spaces for the displacement and pressure. In the equation governing the flow in pores, the dilation is calculated by taking the average over the element so that the dilation and the pressure are both approximated by constants. A rigorous error estimate is presented to show that our method has optimal convergence rates for the displacement and the fluid flow. Numerical experiments are presented to illustrate theoretical results. The implementation of this poroelasticity solver in deal.II couples the Darcy solver and the linear elasticity solver. We present the implementation of the Darcy solver and review the linear elasticity solver. Possible directions for future work are discussed

    Weak Galerkin finite element methods for elasticity and coupled flow problems

    Get PDF
    Includes bibliographical references.2020 Summer.We present novel stabilizer-free weak Galerkin finite element methods for linear elasticity and coupled Stokes-Darcy flow with a comprehensive treatment of theoretical results and the numerical methods for each. Weak Galerkin finite element methods take a discontinuous approximation space and bind degrees of freedom together through the discrete weak gradient, which involves solving a small symmetric positive-definite linear system on every element of the mesh. We introduce notation and analysis using a general framework that highlights properties that unify many existing weak Galerkin methods. This framework makes analysis for the methods much more straightforward. The method for linear elasticity on quadrilateral and hexahedral meshes uses piecewise constant vectors to approximate the displacement on each cell, and it uses the Raviart-Thomas space for the discrete weak gradient. We use the Schur complement to simplify the solution of the global linear system and increase computational efficiency further. We prove first-order convergence in the L2 norm, verify our analysis with numerical experiments, and compare to another weak Galerkin approach for this problem. The method for coupled Stokes-Darcy flow uses an extensible multinumerics approach on quadrilateral meshes. The Darcy flow discretization uses a weak Galerkin finite element method with piecewise constants approximating pressure and the Arbogast-Correa space for the weak gradient. The Stokes domain discretization uses the classical Bernardi-Raugel pair. We prove first-order convergence in the energy norm and verify our analysis with numerical experiments. All algorithms implemented in this dissertation are publicly available as part of James Liu's DarcyLite and Darcy+ packages and as part of the deal.II library

    Postprocessing of Non-Conservative Flux for Compatibility with Transport in Heterogeneous Media

    Full text link
    A conservative flux postprocessing algorithm is presented for both steady-state and dynamic flow models. The postprocessed flux is shown to have the same convergence order as the original flux. An arbitrary flux approximation is projected into a conservative subspace by adding a piecewise constant correction that is minimized in a weighted L2L^2 norm. The application of a weighted norm appears to yield better results for heterogeneous media than the standard L2L^2 norm which has been considered in earlier works. We also study the effect of different flux calculations on the domain boundary. In particular we consider the continuous Galerkin finite element method for solving Darcy flow and couple it with a discontinuous Galerkin finite element method for an advective transport problem.Comment: 34 pages, 17 figures, 11 table

    Discretizations & Efficient Linear Solvers for Problems Related to Fluid Flow

    Get PDF
    Numerical solutions to fluid flow problems involve solving the linear systems arising from the discretization of the Stokes equation or a variant of it, which often have a saddle point structure and are difficult to solve. Geometric multigrid is a parallelizable method that can efficiently solve these linear systems especially for a large number of unknowns. We consider two approaches to solve these linear systems using geometric multigrid: First, we use a block preconditioner and apply geometric multigrid as in inner solver to the velocity block only. We develop deal.II tutorial step-56 to compare the use of geometric multigrid to other popular alternatives. This method is found to be competitive in serial computations in terms of performance and memory usage. Second, we design a special smoother to apply multigrid to the whole linear system. This smoother is analyzed as a Schwarz method using conforming and inf-sup stable discretization spaces. The resulting method is found to be competitive to a similar multigrid method using non-conforming finite elements that were studied by Kanschat and Mao. This approach has the potential to be superior to the first approach. Finally, expanding on the research done by Dannberg and Heister, we explore the analysis of a three-field Stokes formulation that is used to describe melt migration in the earth\u27s mantle. Multiple discretizations were studied to find the best one to use in the ASPECT software package. We also explore improvements to ASPECT\u27s linear solvers for this formulation utilizing block preconditioners and algebraic multigrid

    A monolithic space-time temporal multirate finite element framework for interface and volume coupled problems

    Full text link
    In this work, we propose and computationally investigate a monolithic space-time multirate scheme for coupled problems. The novelty lies in the monolithic formulation of the multirate approach as this requires a careful design of the functional framework, corresponding discretization, and implementation. Our method of choice is a tensor-product Galerkin space-time discretization. The developments are carried out for both prototype interface- and volume coupled problems such as coupled wave-heat-problems and a displacement equation coupled to Darcy flow in a poro-elastic medium. The latter is applied to the well-known Mandel's benchmark. Detailed computational investigations and convergence analyses give evidence that our monolithic multirate framework performs well.Comment: 34 pages, 14 figures, 7 table
    • …
    corecore