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Abstract

Numerical solutions to fluid flow problems involve solving the linear systems arising

from the discretization of the Stokes equation or a variant of it, which often have a

saddle point structure and are difficult to solve. Geometric multigrid is a parallelizable

method that can efficiently solve these linear systems especially for a large number of

unknowns. We consider two approaches to solve these linear systems using geometric

multigrid:

First, we use a block preconditioner and apply geometric multigrid as in inner solver

to the velocity block only. We develop deal.II [6] tutorial step-56 [51] to compare the

use of geometric multigrid to other popular alternatives. This method is found to be

competitive in serial computations in terms of performance and memory usage.

Second, we design a special smoother to apply multigrid to the whole linear system.

This smoother is analyzed as a Schwarz method using conforming and inf-sup stable

discretization spaces. The resulting method is found to be competitive to a similar

multigrid method using non-conforming finite elements that were studied by Kanschat

and Mao [65]. This approach has the potential to be superior to the first approach.

Finally, expanding on the research done by Dannberg and Heister [32], we explore

the analysis of a three-field Stokes formulation that is used to describe melt migra-
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tion in the earth’s mantle. Multiple discretizations were studied to find the best

one to use in the ASPECT [12] software package. We also explore improvements

to ASPECT’s linear solvers for this formulation utilizing block preconditioners and

algebraic multigrid.
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Chapter 1

Introduction

Fluid dynamics is a broad and important field encompassing the study of natural

convection within the mantle, the ocean, and the way in which air flows around the

wings of a plane. The study of computational fluid mechanics is a topic of interest

for engineers and mathematicians, since numerical simulation of fluid flow is a critical

task in many applications within the industrial sector. With the need for numerical

computations comes the need for numerical analysis, which gives a mathematical

foundation that provides a way to know if computations are correct as well as insight

on how to improve algorithms.

1.1 The Stokes Equation

The Stokes equation, an equation of top importance within the field of fluid mechanics,

describes a creeping flow and is a prototype for many fluid dynamic computations.

Let Ω ∈ Rd be a bounded, connected domain (with dimension d = 2, 3) with smooth,

piecewise boundary ∂Ω. As in Benzi et al. [16], given a force f : Ω → Rd, we solve
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for a velocity u : Ω→ Rd and a pressure p : Ω→ R where

− η∆u +∇p = f in Ω, (1.1)

∇ · u = 0 in Ω, (1.2)

u = 0 on ∂Ω, (1.3)

with viscosity η > 0. Physically, η can be thought of as frictional force that measures

diffusion of momentum. It is caused by the molecular nature of fluid which creates

resistance to shearing motions, thus taking flow’s kinetic energy and converting it

into heat [37]. Often for simulation of more complex flows such as Navier-Stokes

equations, solving the Stokes problem is an important subproblem. This thesis aims

to understand, analyze and develop efficient solvers for Stokes and is a potential

stepping stone to having major impacts on numerical fluid dynamics computations.

1.2 A Saddle Point System

While using the finite element method, if you discretize and number your unknowns

in a suitable way, then the discretization of the Stokes equation creates a saddle point

system of the form

 A BT

B 0


 x

y

 =

 f

g

 ,

which is what we obtain, as is obtained in Benzi et al. [16], for special cases of the

discretized Stokes system (such as when we use Taylor Hood finite elements) [89].

The solution of saddle point systems of equations can require a large amount of time
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to compute [56]. The size of the systems in realistic computations can become large

enough that applying generic solvers for linear systems is inefficient, and to make it

possible to solve this saddle point problem quickly, we need preconditioners that take

advantage of our system’s properties and structure [56].

In addition to computational fluid dynamics, saddle point problems come up in a va-

riety of fields. For example, in mathematics, they also appear in linear optimization

problems. In economics, it can be seen in solving inter-regional input-output systems

[38]. It also makes an appearance in the elastic analysis and structural dynamics

to determine internal forces, leading to the resulting stresses, strains, and displace-

ments of a finite element model of a structure and a set of external loads in the area

of electrical circuits and networks [17]. It can also be seen in finance [77], image

reconstruction [54] and registration [53], along with many other areas.

1.3 Derivation of Stokes Equation

The Navier-Stokes equations describe the flow of a fluid that is both Newtonian and

incompressible. As in Benzi et al. [16], given a force f : Ω → Rd, we seek a velocity

u : Ω→ Rd and a pressure p : Ω→ R such that

− η∆u + (u · ∇)u +∇p = f in Ω, (1.4)

∇ · u = 0 in Ω, (1.5)

u = 0 on ∂Ω, (1.6)
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where η > 0 is inversely proportional to Reynolds number Re as follows:

Re = ρrefLrefUref

η
,

where ρref, Uref, and Lref, are the reference density, velocity, and length from the

nondimensionalization, respectively [56]. Re can be thought of as a dimensionless

ratio of the driving from the boundary to the dampening from η [37]. When Re is

small, this implies that constrained flows are present [37].

Mathematically, the condition of incompressibility is stated as ∇ · u = 0 and it

is significant simplification that comes with a cost [37]. Physically, this constraint

restricts the application of our model to problems where all of the relevant velocities

occurring in the fluid are much less than the speed of sound (up to about 220 miles per

hour) [37]. In terms of classical physics, the conservation of linear momentum is seen

in Equation 1.4, while the conservation of mass, which is also sometimes called the

incompressibility condition, is seen in Equation 1.5. To determine a unique pressure

p, we also impose ∫
Ω
p dx = 0. (1.7)

In Equation 1.4 lies (u·∇)u which makes the Navier-Stokes system non-linear, but one

popular approach of linearization is based on Picard’s iteration [42], which is outlined

in Benzi et al. [16] with existence and uniqueness proofs in Girault & Raviart [50]

and one can find a proof for convergence of Picard’s iteration in Karakashian [66].

As outlined in Benzi et al. [16], in a Picard iteration, there is an Oseen problem that

4



needs solved:

− η∆u + (b · ∇)u +∇p = f in Ω, (1.8)

∇ · u = 0 in Ω, (1.9)

u = 0 on ∂Ω, (1.10)

where b is known and divergence-free [16]. Discretization of Equations (1.8) through

(1.10) using finite elements (see Elman et al. [42] and Quarteroni & Valli [89]) results

in a saddle point system like in Section 1.2 [16, 89].

Our interest, for this thesis, is the case where b = 0 which yields

− η∆u +∇p = f in Ω, (1.11)

∇ · u = 0 in Ω, (1.12)

u = 0 on ∂Ω, (1.13)

which are collectively known as the Stokes equation. These equations describe a

creeping flow which typically occurs in three settings [74]: small geometries such as

in human capillaries, fluid flow moving through small pores, such as in filtration, and

small velocities and large viscosities, such as in lubricant flow or mantle convection.

The Stokes system is an important stepping stone for more complicated problems.

1.4 Motivation for Parallel Computing

The size of the systems that we are interested in within the research and industry

sectors grows each year and computations with 100+ million unknowns are not un-
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common. Some reasons for this are: complicated geometries that require resolving

small features, turbulent flows that require resolving fine turbulent structures in the

fluid, and large domains (such as in mantle convection). Problem sizes will be con-

tinuing to grow, and thus the memory requirements for solving these problems will

also be increasing.

1.5 Introduction to Parallel Computing

An efficient way to solve these challenging problems is to use parallel computing

which means our algorithms must also be designed to work efficiently in parallel.

Parallel computing can help us by dividing the problem into multiple communicating

subproblems capable of independently solving the problem on different processors.

Due to the size and properties of the problems we are interested in solving, we turn

to multigrid methods for preconditioners for our iterative solvers since they often

scale linearly with respect to the number of unknowns [97, 56]. This is a significant

advantage over other methods and becomes increasingly important as the number of

unknowns becomes very large.

An example of this lies in our interest of geodynamics, particularly with the focus of

melt migration in mantle convection. Without high-performance, massively parallel

implementation, it would simply take too much time to create “high-resolution, 3-

D, compressible, global mantle convection simulations coupled with melt migration”

as done in Dannberg and Heister [32]. The existence of parallel computing allows

research to be done more effectively in this field, as well as many others.

6



1.6 Highlights of Thesis Contributions

A central idea of this work is to provide a stepping stone to revolutionize the way

people solve Stokes for large problems. To do this, we will be applying geometric

multigrid as a preconditioner to the linear system resulting from discretizing the

Stokes equation. We first apply this preconditioner on the velocity block, which is

just a vector valued Laplace operator, and then we compare it to the approach where

we apply it on the entire system matrix. For the latter we use additive Schwarz

smoothers [44], which can be used in the multigrid to create an efficient and easily

parallelizeable code.

In Chapter 3, we compare popular choices of preconditioners for the velocity block

of the Stokes equation to geometric multigrid (GMG) in terms of performance and

memory usage. The former includes UMFPACK [34], ILU, and algebraic multigrid

(AMG) [93]. This has been partially investigated, but to our knowledge no code is

available for the general public that implements GMG for the velocity block of Stokes

so there is room for more detailed comparisons. We address this issue, so others can

use our code as a template or starting point for their own research. The goal is to

show that GMG is at least competitive in serial computations, because this will imply

that it will outperform the other methods (especially UMFPACK and ILU) as our

systems grow larger as well as in parallel computations.

Subtle choices can highly affect algorithm design results, time, and usability such as

the choice of finite element or preconditioner. This, combined with our goal of solving

Stokes as quickly and efficiently as possible, led us to extend the work of Kanschat

and Mao [65] to include conforming inf-sup stable finite elements in Chapter 4. That

is, we used their idea of applying GMG not just to the velocity block, as we do in

7



Chapter 3, but the entire system matrix instead and extended this idea to work with

conforming inf-sup stable finite elements. Our aim is to achieve results that are much

better than those from Chapter 3 in terms of iteration counts.

Finally, we consider an application in geophysics that requires the solution of a related

three-field Stokes equation. The goal is to provide a theoretical foundation and extend

the common preconditioning approaches for Stokes to this problem. Following the

work done by Dannberg and Heister [32], given force f : Ω→ Rd and g : Ω→ Rd, we

seek a velocity u : Ω → Rd, a fluid pressure pf : Ω → R, and a compaction pressure

pc : Ω→ R such that

−∇ · (η∇u) +∇pf +∇pc = f, (1.14)

∇ · u−∇ · (kD∇pf ) = g, (1.15)

∇ · u + 1
ε
pc = 0. (1.16)

where η > 0 is the shear viscosity, kD ≥ 0 is the Darcy coefficient [33], and 1
ε
> 0,

where ε is the bulk viscosity. Parallel computing is required for mantle convection

with melt migration due to the need of high resolution, higher dimension simulations

[32], and this requires stable discretizations and efficient preconditioners that can be

run in parallel.

In Chapter 5, we explore the analysis of three-field Stokes equation and try to improve

existing solvers used in current competitive geoscience codes. Scientists in geoscience

have seemingly been using this formulation without a complete mathematical under-

standing, since, no complete analysis or discussions of its discretization have been

published. We investigate extending the solvers developed in earlier chapters of this

thesis to the three-field Stokes equation. There are numerous researchers in the geo-
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science community that the results of this chapter directly impact, as simulating flows

using the three-field Stokes equation is a fundamental necessity in their research.

1.7 Overview

In Chapter 2, we build up mathematical tools needed to discuss finite element method

(FEM) for the Poisson equation and we then extend this theory to the Stokes equation,

which is the key focus of this thesis. We also introduce here our methods for solving

Stokes-type systems, including linear solvers and Krylov methods [73].

In Chapter 3, we briefly introduce preconditioners and geometric multigrid (GMG)

before explaining the deal.II tutorial step-56 [51] where we use GMG as a precondi-

tioner on the velocity block to create an efficient linear solver for the Stokes equation

and compare it to alternative approaches. In Chapter 4, we apply multigrid method

as a preconditioner to the whole system instead of just the velocity block. In Chapter

5, we explore melt migration, which is an aspect of mantle convection described by

the three-field Stokes equation. In Chapter 6, we make some concluding remarks.

9



Chapter 2

Mathematical Foundations

This chapter serves as a thorough mathematical foundation for this thesis. We build

up mathematical tools needed to discuss finite element method for the Poisson equa-

tion, before applying these same ideas to the Stokes equation. To start, consider the

bounded domain Ω with edge ∂Ω in Rd, where d = 2, 3. Physically, this space Ω is

the space in which our fluid will reside.

2.1 Function Spaces

The conservation laws of mass and momentum are the rules which fluid dynamics are

bound [111]. When we take a step back and look at fluid flow on the “big scale”, it

would appear to an observer that the local differences in velocity are exerting a force

upon the adjacent fluid, which alters flow as well as dissipating energy [74]. The first

natural function space is the space of all velocity fields with finite total kinetic energy,

the Hilbert space L2(Ω), which is the space of functions that are “square integrable”

10



[74, 63]. We define L2(Ω) on a scalar function q : Ω→ R as

L2(Ω) =
{
q : Ω→ R|

∫
Ω
|q|2 dx <∞

}
.

For vector functions, v : Ω→ Rd,v ∈ L2(Ω)d if its components are in L2(Ω), and we

will write this as simply v ∈ L2(Ω). We have yet to show the physical importance of

this L2(Ω) space we have defined, namely that it can be seen as the set of all velocity

fields with finite kinetic energy K. To see this, let ρ be constant density and u a

velocity field, then

K = 1
2 mass× velocity2 = 1

2ρ
∫

Ω
|u|2 dx,

as seen in Layton [74] and further explored in Doering & Gibbon [37]. We define

L2(Ω) norm for a scalar function q : Ω → R as ||q|| := (
∫

Ω |q|2 dx) 1
2 . The norm || · ||

will further always denote the L2(Ω) norm (other norms will have subscripts). For a

vector v : Ω→ Rd, the L2(Ω) norm is written as

||v|| =
∫

Ω

(
|v|2 dx

) 1
2 ,

where v = (v1, . . . , vd) and | · | is the Euclidean norm. Physically, if there are no

outside forces, then the L2(Ω) norm being preserved is equivalent to the physical

property of the total kinetic energy being conserved [37]. Furthermore, the previous

ideas can be generalized for the Lp(Ω) function space, where 0 < p <∞, as

Lp(Ω) =
{
x : Ω→ R

∣∣∣∣∣
∫

Ω
|x|p dx <∞

}
,

11



as seen in Layton [74], with norm

||v||p = (
∫

Ω
|v|p dx)

1
p .

For our analysis, we will also need to define inner products in our function spaces.

The L2(Ω) inner products are defined, as seen in Layton [74], as:

(p, q) :=
∫

Ω
p(x)q(x) dx for p, q ∈ L2(Ω),

(u,v) :=
∫

Ω
u(x)v(x) dx for u,v ∈ L2(Ω)d,

and let subspace L2
0(Ω) ⊆ L2(Ω) be defined, as seen in Layton [74], as

L2
0(Ω) =

{
q : Ω→ R, q ∈ L2(Ω)

∣∣∣∣∣
∫

Ω
q dx = 0

}
.

Complex patterns in fluids are created by large local changes in velocity (the first

derivatives of u) which cause a part of the fluid to exert forces or drags on adjacent

parts of the fluid [74]. This fluid must then move out of the way of other parts of

the fluid and the force required to do so must be finite. Thus, if the velocity is to be

physically relevant, its gradient must be in L2(Ω)d×d [74]. Therefore, we define

H1(Ω) =
{

v : Ω→ Rd

∣∣∣∣∣v ∈ L2(Ω)d,∇v ∈ L2(Ω)d×d
}
,

H1
0 (Ω) =

{
v : Ω→ Rd

∣∣∣∣∣v ∈ H1(Ω),v = 0 on ∂Ω
}
,

where ∇v is the Jacobian of v.

A Sobolov space Wm,p(Ω) has derivatives of order up to m in Lp(Ω), with integer m
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and 1 ≤ p ≤ ∞ [107, 78], and norm

||u||Wm,p(Ω) =
 ∑
|j|≤m

||∇ju||pLp(Ω)

 1
p

.

When p = 2, then Wm,2(Ω) = Hm(Ω) with

(u,v)Hm(Ω) =
∑
|j|≤m

(∇ju,∇jv)

and thus H1(Ω) is a Sobolov space and has the following inner product and norm

definitions:

(u,v)H1 = (u,v) + (∇u,∇v)

||u||H1 = (||u||2 + ||∇u||2) 1
2 .

There also exists the Hk norm and semi-norm, which, respectively, are

||u||k = (||u||k−1 +
∑
|j|=k
||∇ju||2) 1

2 ,

|u|k = ||∇ku||.

2.2 The Poisson Equation

Given a force f : Ω→ Rd, we seek a solution u : Ω→ Rd of

−∆u = f in Ω, (2.1)

u = 0 on ∂Ω, (2.2)
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where f ∈ L2(Ω). We require that u vanishes on the boundary of the domain because

we want our boundary to represent fixed walls. Physically, when u is a velocity,

the microscopic interactions occurring between the fluid and the wall are at least as

strong as those between different parts of the fluid themselves, so the velocity vector

field should be continuous at the wall [37].

2.3 Triangulation

Before we move into the discrete case, we need to decompose Ω. We want our trian-

gulation Th ⊂ Rd to be conforming (squares need to be edge to edge), non-degenerate

(the minimum angle of the square must be sufficiently large), and the boundary of

the computational domain needs to be within the targeted error of the boundary of

the real domain [74].

A triangulation Ωh of Ω is made by subdividing Ω into a set Th = {Q1, ..., Qm} of m

non-overlapping quadrilateral cells Qi in two and three dimensions, respectively, such

that

Ωh = ∩
Qi∈Th

Qi = Q1 ∩ ... ∩Qm,

and we define the mesh parameter (or mesh size [95]) to be

h = max
i=1,...,m

D(Qi),

where D(Qi) is the cell Qi’s diameter.
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2.4 Finite Element Spaces

An introduction of various mesh generation algorithms can be found in Ern & Guer-

mond (see [43]) but all of our grid generation is done using deal.II’s GridGenerator

class [6].

Let Qp be the Lagrange FE space with order p on the reference cell K̂ = [0, 1]d as

described by Heister [56]. For each element K ∈ Th, we define the bilinear mapping

from the reference cell K̂ to the cell K as FK : K̂ → K [56]. We let p = 1, 2, . . . and

define the space

Qp := {v ∈ C(Ω)|v|K ◦ FK ∈ Qp, K ∈ Th} .

Continuous along the boundaries of each cell, a finite element function is defined to

be the image of a polynomial function on K̂ on each cell K as in Heister [56].

2.5 Finite Element Method for the Poisson Equa-

tion

In this section we seek to obtain convergence and estimates of the error, which show

asymptotic convergence as h → 0 after we bound the approximate solution in a

physically relevant norm (by the problem data) [74].

The FEM is a numerical method used for solving partial differential equations (PDEs)

in engineering and science and is well-known in for finding numerical solutions of dif-

ferential and integral equations in the fields of math and engineering [63]. It was

introduced in the late 1950s and early 1960s by engineers interested in numerical

solutions of partial differential equations for structural engineering, where they had
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structures subdivided into many small parts with simple behavior, which they named

finite elements [63]. Its main competitors are the finite difference method, which is

good for ”simple” problems on ”simple” geometries (see Wesseling [111]), and spectral

methods [25]; neither of which will be discussed here. FEM is particularly advanta-

geous for complex geometries, more complicated PDEs, and problems with variable or

non-linear material properties [63]. Its solid mathematical foundation offers reliabil-

ity and in many cases makes analyzing and estimating error in approximate solutions

possible. In other methods, obtaining an estimate of such errors can be much harder

[63].

Recalling our Poisson problem (2.1)-(2.2), the first step for finite element method is

creating a variational formulation. This variational formulation is one reason that

the FEM is robust; it is fundamentally different from the classical numerical methods

for partial differential equations [74]. In the finite difference method, one replaces all

derivatives with difference quotients that rely on unknown values at a finite number

of points, to get your discrete problem [63].

To reformulate our differential equation as an equivalent variational problem, we first

multiply both sides “by a test function v ∈ C∞0 (Ω)d and integrate over the domain”

as in Strang and Fix [104], which yields

(−∇ · (∇u),v) = (f,v).

Then, we can use Green’s Theorem, which is derived from the Divergence Theorem

in Johnson [63], to get

(∇u,∇v)−
∫
∂Ω

(∇u · n)vdS = (f,v),
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where n is the unit outward normal, and
∫
∂Ω(∇u · n)vdS = 0 since v = 0 on ∂Ω.

Therfore, we now have: find u ∈ X := H1
0 (Ω) such that

(∇u,∇v) = (f,v) ∀v ∈ X (2.3)

as our variational or weak form. Equation (2.3) is called a weak formulation of

Equations (2.1) and (2.2) and the solution of Equation (2.3) is called a weak solution

of Equations (2.1) and (2.2) [63]. It is important to remember that if u is a weak

solution to Equations (2.1) and (2.2), it is not necessarily also a classical solution

unless u is “sufficiently regular”, where we refer to a solution being “sufficiently

regular” if ∆u is defined in a classical sense. However, the weak formulation has the

mathematical advantage of it being relatively simple to prove existence in the weak

formulation [63].

We want to find u ∈ X := H1
0 (Ω) (note: ||φ||X = ||∇φ|| is a norm on H1

0 (Ω) [74])

such that (∇u,∇v) = (f,v) for all v ∈ X. To do this, we first define the map

a(u,v) : X × X → R to be (∇u,∇v) and note that it is bilinear, symmetric, and

bounded [74, 56].

Theorem: Lax-Milgram [74]

Let a(u,v) : X ×X → R be a bilinear form satisfying continuity

|a (u,v) | ≤ c1||u||X ||v||X ∀u,v ∈ X

and coercivity

a (u,u) ≥ c2||u||X ∀u ∈ X
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and let l : X → R be a linear functional which is continuous as in l(v) ≤ c3||v||X ∀v ∈

X. Then there exists a unique u ∈ X s.t a(u,v) = l(v) ∀v ∈ X, furthermore

||u||X ≤ c3
c2

. A proof of this theorem can be found in Axelsson & Barker [7]. For our

problem, l(v) = (f,v) is linear. So we check the continuity first:

a(u,v) = (∇u,∇v) ≤ ||∇u||||∇v|| = ||u||X ||v||X ,

where the first inequality comes from the Cauchy-Schwarz inequality which is defined

as (u,v) ≤ ||u||||v|| ∀u,v ∈ L2(Ω) [74], and thus we have continuity with c1 = 1.

Now we check coercivity:

a(u,u) = (∇u,∇u) = ||∇u||||∇u|| = ||u||2X ,

and thus we have coercivity of a with c2 = 1. Now we check continuity of l:

l(v) = (f,v) ≤ ||f||||v|| ≤ ||u||XCPF ||∇v|| = CPF ||f||||v||X ,

where CPF > 0, by Cauchy-Schwarz inequality since f ∈ L2(Ω), and thus we have

continuity of l where c3 = CPF ||f ||. Here we used the Poincare-Friedrichs inequality

which states if you let a function space X be defined as X := H1
0 (Ω), then there exists

a positive constant CPF such that ||v|| ≤ CPF ||∇v|| ∀v ∈ X, the proof of which can

be found in Layton [74]. This is said to hold as long as Ω is bounded in some direction

as discussed in Temam [107].

Thus, Lax-Milgram is satisfied and a unique solution to (2.3) exists. And since u ∈ X

exists, we can choose v = u to obtain

||∇u||2 = (f,u) ≤ ||f||CPF ||∇u||,
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which implies ||∇u|| ≤ CPF ||f||.

The next step of the FEM is to combine the Galerkin approximation and a good choice

for finite dimensional space Xh [74]. The Galerkin method begins when we pick a

finite dimensional subspace Xh ⊆ X on Ωh that vanishes on the boundary ∂Ω [95].

Then we want to find a Galerkin approximation uh ∈ Xh such that a(uh,vh) = F (vh)

for all vh ∈ Xh with the hope that uh is an acceptable approximation to u.

We choose values at node points of Th to describe the functions in Xh which will be

called the global degrees of freedom (dofs), as explained in Johnson [63]. We define

uh(x) ∈ Xh to be the nodal interpolation of u(x) which is created by using a set of

basis functions
{
φj
}n

1
(also known as trial functions [104]) where

uh(x) =
n∑
j=1

αjφj(x),

and thus each function of Xh can be written in this way [95], where undetermined

coefficients αj are just point values of uh. Since Xh is a closed subspace of the Hilbert

space X, Xh is also a Hilbert space. Since ||·||Xh
= ||·||X , we can use the Lax-Milgram

theorem for this discrete case with the exact same steps as the continuous case, that

the problem of finding uh ∈ Xh satisfying a(uh,vh) = F (vh) for all vh ∈ Xh is well-

posed. There is a complete convergence theory for the Galerkin method thanks to

Cea’s lemma [74], which states that if a(·, ·) : X ×X → R is a continuous, coercive,

bilinear form, F : X → R is a bounded (continuous) linear functional, and Xh ≤ X

be finite dimensional, then if u ∈ X solves: a(u,v) = F (v) ∀v ∈ X and uh ∈ Xh

solves a(uh,vh) = F (vh) ∀vh ∈ Xh, then

||∇(u− uh)|| < (1 + c1

c2
) inf

vh∈Xh

||∇(u− vh)||,
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of which a proof can be found in Layton [74]. This convergence theory is critical

because we need to understand and analyze how well uh approximates u [97].

An alternate way to view uh provided in Johnson [63] is to view uh as the projection

with respect to our defined H1(Ω) inner product of the exact solution u on Xh.

2.6 Formal Definition of a Finite Element

Now that we have defined many pieces of a finite element, we give a formal definition

of a finite element as a triple (Th, PTh
,Σ), where

• Th is a triangulation,

• PTh
is a finite space of continuous functions defined on Th,

• Σ is a set of linear forms that map from PTh
→ R. The elements of Σ are called

degrees of freedom [85].

such that a function v ∈ PQ is unique and defined from the values of Σ as mentioned

in Johnson [63]. See the work done by Bangerth et al. [11] for more information on

an approach for how to use the FEM in parallel.

2.7 The deal.II Finite Element Library

All numerical simulations in this thesis were performed using deal.II [6]. It is open

source and widely used by people who use finite elements and has been cited in

many projects on many continents [56]. deal.II is coded in C++ and uses template
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programming to make it possible to write unique programs in two-dimensional but

then run them in three-dimensional with little to no extra effort.

Linear algebra libraries (PETSc [9] and Trilinos [58]), solvers, input and output, as

well as MPI-based parallelization [11] all have support within deal.II [56, 6]. This

all comes with an extensive collection of documentation as well as many tutorial

programs (including step-56 [51] which is highlighted in Chapter 3) that incrementally

highlights various aspects of the library while explaining both the mathematics and

the deal.II implementation in detail [56].

Using the definition of finite element space as well as triangulation that was chosen

above, the degrees of freedom need a global numbering, which is done by deal.II’s

DoFHandler class [6]. deal.II will be used to solve our linear systems using specific

solvers and preconditioners (to be discussed in more detail later). Last but not least,

deal.II provides many post processing options, including data output and analysis,

and error estimation of the solution for adaptive mesh refinement [56, 6].

2.8 Finite Element Method of the Stokes Problem

We start with the variational form of the Stokes problem and proceed to show well-

posedness in both continuous and discrete cases, before finishing with velocity and

pressure error bounds. This is based on Layton [74].

To derive the variational formulation of the Stokes problem, let (u, p) be the clas-

sical solution of the Stokes problem and multiply (1.11) and (1.12) by functions

21



v ∈ C∞0 (Ω)d and q ∈ C∞0 (Ω) and integrate:

(−η∆u,v) + (∇p,v) = (f,v)

(∇ · u, q) = 0

We balance derivatives using Green’s Theorem, as we did in Section 2.5, to get

(−η∆u,v) = (η∇u,∇v)−
∫
∂Ω

(∇u · n) · vdS,

(∇p,v) = −(p,∇ · v) +
∫
∂Ω
p(v · n)dS,

and note that both boundary integrals vanish due to boundary conditions. Thus we

have the following: Find u ∈ X = H1
0(Ω), p ∈ Y = L2

0(Ω) such that

(η∇u,∇v)− (p,∇ · v) = (f,v) ∀v ∈ X (2.4)

(∇ · u, q) = 0 ∀q ∈ Y (2.5)

as the weak form.

2.8.1 Continuous Well-posedness

A well-posed problem has a guaranteed existence of a solution and uniqueness of that

solution. This is also based on Layton [74].

Theorem

The problem (2.4) - (2.5) is well-posed if f ∈ H−1(Ω).
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Proof

Define the bilinear form a : X ×X → R by

a(u,v) = (η∇u,∇v)

and also the form b : X × Y → R by

b(v, q) = −
∫

Ω
(∇ · v)q dΩ

Thus, (2.4) and (2.5) can be written as

a(u,v) + b(v, p) = l(v) (2.6)

b(u, q) = m(q) (2.7)

where l : X → R and l(v) = (f, v) and m(q) = 0.

Therefore, appropriate discretization of the Stokes system, including picking Taylor

Hood [106] elements and rearranging the order of the unknowns (described in deal.II

tutorial step-56 [51]), yields a saddle point problem whose form was described in

Section 1.2.

Let us define the space

V = {v ∈ X|b(v, q) = 0 ∀q ∈ Y } ,

and then we decompose X = V ⊕ V ⊥ and u = u0 + u1 where u0 ∈ V and u1 ∈ V ⊥.
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Now restrict q ∈ Y , therefore (2.7) becomes

b(u0 + u1, q) = m(q)

=⇒ b(u0, q) + b(u1, q) = m(q)

=⇒ b(u1, q) = m(q)

since, b(u0, q) = 0 ∀q ∈ Y . Note that when this equation is solved that we will have

u1 uniquely determined since X is the direct sum of V and V ⊥ and we know that for

all x ∈ X, there exists a unique x0 in V and x1 in V ⊥ such that x = x0 + x1. Using

the following inf-sup condition [74, 89, 23], we achieve this:

inf
06=q∈Y

sup
06=v∈X

b(v, q)
||v||X ||q||Y

≥ α > 0 (2.8)

where the X−norm is the standard H1 norm and the Y−norm is the standard L2

norm. Now that we have found u1, we focus on solutions living in V . We want to

find u0 on V such that (2.6) holds. So now we have the new problem

a(u,v) = l(v) (2.9)

where v ∈ V and we need to complete the conditions of Lax-Milgram. Our energy

norm is

||u||V =
√

(η∇u,∇u) (2.10)

The left hand side of Equation (2.9) is

a (u,v) = (η∇u,∇v)
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Now we need to ensure this satisfies Lax-Milgram so we check, continuity, coercivity,

and boundedness of the right hand side as we did for the Poisson problem:

Continuity

Before we do this let’s bound our norm (2.10) as follows:

||u||V ≥ ||
√
η∇u|| (2.11)

Now, applying Cauchy-Schwarz to |a (u,v) | yields

|a (u,v) | ≤ ||√η∇u||||∇v||

≤ ||√η∇u|| 1
√
ηmin
||√η∇v||

≤ 1
√
ηmin
||u||V ||v||V

Therefore, we have that

|a (u,v) | ≤ c1||u||V ||v||V (2.12)

where c1 = 1√
ηmin

, therefore showing continuity.

Coercivity

Now, looking at our energy norm once again and letting u = v yields

|a (u,u) | ≥ ||√η∇u||2
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which, thanks to how we picked our norm, can be upper bounded by

|a (u,u) | ≥ c2||u||2V (2.13)

where c2 = 1, therefore showing continuity.

Boundedness of Right Hand Side

Adding the right hand sides of equation (2.6)

l(v) ≤ ||l||H−1||∇v||

= ||l||H−1
1
ηmin
||η∇v||

≤ 1
ηmin
||l||H−1||v||V .

Therefore, we have that

F (v) ≤ c3||v||V (2.14)

where c3 = 1
ηmin
||l||H−1 , therefore showing boundedness of the right hand side as

long as l ∈ H−1(Ω). Since continuity, coercivity, and boundedness of the right hand

side is achieved, Lax-Milgram holds, and then there exists a unique u0 ∈ V s.t

a(u0,v) = l(v) ∀v ∈ V , furthermore ||u0||V ≤ c3
c2

= 1
ηmin
||l||H−1 .
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Finishing the proof

Now that u0 and u1 are known, we can again consider (2.6) as follows

b(v, p) = l(v)− a(u0 + u1,v)

= h(v).

Therefore, our new problem is to find p ∈ Y such that

b(v, p) = h(v).

Note that when this equation is solved that we will have p uniquely determined. Using

the following inf-sup condition, we achieve this:

inf
06=v∈X

sup
06=q∈Y

b(v, q)
||v||X ||q||Y

≥ α2 > 0. (2.15)

Now p is uniquely determined. We now have u0, u1 , and p existing and being uniquely

determined, therefore we have well-posedness as long as l ∈ H−1(Ω), which is true if

f ∈ H−1(Ω).

2.8.2 Discrete Well-posedness

Now, we need to prove the same for the discrete case. The FE discretization needs

FE spaces for both variables, namely Vh ⊂ V and Qh ⊂ Q, and Xh = Vh × Qh.

This is referred to as a mixed finite element method because we seek independent

approximations of both velocity u and pressure p [63].

When the well-posedness of a problem can be studied using the Lax-Milgram theo-
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rem, such as the Poisson problem, the well-posedness of any of its finite dimensional

approximations can also be treated by the Lax-Milgram theorem thanks to Cea’s

Lemma [49]. Unfortunately, additional conditions are required for the discrete well-

posedness proof for Stokes. Intuitively, if (asymptotically) Qh is “too large” compared

to Vh, then we have too many constraints on velocity or velocity does not have enough

degrees of freedom and the discrete solution may not converge [10]. A lot of theory

for the construction of mixed finite element spaces is available (see [98, 23] and the

references within).

Although there are many finite element spaces for the Stokes problem that can be

found in literature, all of them have the same goal, which is satisfying our approxima-

tion properties, our discrete inf-sup condition, and wanting the corresponding linear

systems of equations to be efficiently solved [109]. There is an extensive mathemati-

cal foundation available where the mathematical derivation of stable element pairs is

sufficiently solved (for example, see Brezzi & Fortin [23]). One major result is that,

in general, the discrete velocity space has to have a higher polynomial degree than

the corresponding discrete pressure space [109].

Discrete Inf-Sup Condition (LBB Condition)

We can fulfil the conditions mentioned above by using Taylor Hood elements, where

Xh = Qk+1 and Yh = Qk. Using these finite element spaces, the LBB discrete inf-

sup-condition is written as

inf
06=qh∈Yh

sup
06=vh∈Xh

b(vh, qh)
||vh||Xh

||qh||Yh

≥ c > 0 (2.16)
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where c1 is a constant, the Xh−norm is the standard H1 norm, and the Yh−norm is

the standard L2 norm [10].

Discrete Ellipticity (Coercivity Hypothesis)

If we again use Taylor Hood elements as we did previously for the Laplace problem,

where Xh = Qk+1 and Yh = Qk, the coercivity hypothesis is written as

∀vh ∈ Xh, a(vh,vh) ≥ c2||vh||2X (2.17)

where c2 is a constant [49].

Theorem

If uh ∈ Xh ⊂ X = H1
0 = {uh ∈ H1(Ω),uh|∂Ω = 0} and ph ∈ Yh ∈ Y = L2, then we

have well-posedness of the following system:

(η∇uh,∇vh)− (p,∇ · vh) = (f,vh) ∀vh ∈ Xh

(∇ · uh, q) = 0 ∀qh ∈ Yh

The proof of which is omitted as it is exactly the same as the continuous case except

it requires the above Discrete Inf-Sup Condition and Discrete Ellipticity conditions.

2.8.3 Convergence

Following Layton [74] and using finite element space Qk as defined in Section 2.4,

we will now continue through the analysis picking Taylor-Hood elements (recall this

29



means using Qk ×Qk−1 elements) to satisfy the discrete inf-sup condition.

2.8.3.1 Velocity Bound

The continuous and discretized weak forms of (2.18) become

(η∇u,∇v)− (p,∇ · v) = (f,v) ∀v ∈ X, (2.18)

(η∇uh,∇vh)− (ph,∇ · vh) = 0 ∀vh ∈ Xh. (2.19)

Note that (ph,∇ · vh) = 0. Restrict (2.18) to vh ∈ Xh and subtract (2.19) from (2.18)

and let e = u− uh to get

(η∇e,∇vh)− (p,∇ · vh) = 0 (2.20)

Decompose e = (u−wh) + (wh−uh) = ν +φh, where wh ∈ Xh. Note that our trick

is that vh ∈ Vh and therefore (∇ · vh, qh) = 0 ∀qh ∈ Yh.

Choosing vh = φh, note that

(η∇φh,∇φh) + (η∇ν,∇φh) = (p,∇ · φh),

and that from this we get

(η∇φh,∇φh) = (p,∇ · φh)− (η∇ν,∇φh).
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Therefore, we have

ηmin||∇φh||2 = ηmin(∇φh,∇φh)

≤ (η∇φh,∇φh)

≤ (pf ,∇ · φh)− (η∇ν,∇φh)

≤ |(pf − qh,∇ · φh)|+ |(η∇ν,∇φh)|

≤ c||pf − qh||||∇φh||+ ηmax||∇ν||||∇φh||.

This implies that

ηmin||∇φh|| ≤ c||p− qh||+ ηmax||∇ν||.

Therefore,

||∇(u− uh)|| = ||∇(u−wh)||+ ||∇(wh − uh)||

≤ ||∇(u−wh)||+
1
ηmin

(c||p− qh||+ ηmax||∇(u−wh)||)

≤
(

1 + ηmax

ηmin

)
inf

wh∈Xh

||∇(u−wh)||+
c

ηmin
inf
qh∈Yh

||p− qh||

=
(

1 + ηmax

ηmin

)
inf

wh∈Xh

||∇ν||+ c

ηmin
inf
qh∈Yh

||p− qh||

≤
(

1 + ηmax

ηmin

)
hk|u|k+1 + c

ηmin
hl+1|p|l+1,

where in the last inequality we assume that (Xh, Yh) = (Qk, Ql).
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2.8.3.2 Pressure Bound

We again use the continuous and discretized weak forms of (2.18) to get

− (η∇u,∇vh)− (p,∇ · vh) = (f,vh) ∀vh ∈ Vh, (2.21)

−(η∇uh,∇vh)− (ph,∇ · vh) = (f,vh) ∀vh ∈ Vh. (2.22)

Subtracting the two yields:

−(η∇(u− uh),∇vh)− (p− ph),∇ · vh) = 0. (2.23)

Decompose p− ph = (p− rh) + (rh − ph) where rh ∈ Yh. Then,

(ph − rh),∇ · vh) = (η∇(u− uh),∇vh) + (p− rh,∇ · vh). (2.24)

Divide by ||∇vh|| 6= 0. Then,

(ph − rh),∇ · vh)
||∇vh||

= (η∇(u− uh),∇vh)
||∇vh||

+ (p− rh,∇ · vh)
||∇vh||

≤ ||η∇(u− uh)||||∇vh||
||∇vh||

+ ||p− rh||||∇vh||
||∇vh||

≤ ||η∇(u− uh)||+ ||p− rh||.

We once again use the inf-sup condition (2.8) and take the supremum to get

β||ph − rh|| ≤ ||η∇(u− uh)||+ ||p− rh||.
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By the triangle inequality,

||p− ph|| ≤ ||p− rh||+ ||rh − ph||

≤ ||p− rh||+ β−1||η∇(u− uh)||+ β−1||p− rh||

≤ (1 + β−1)||p− rh||+ β−1||η∇(u− uh)||

≤ (1 + β−1) inf
rh∈Yh

||p− rh||+ β−1ηmax sup
uh∈Xh

||∇(u− uh)||

≤ (1 + β−1)hl+1|p|l+1 + β−1ηmax

((
1 + ηmax

ηmin

)
hk|u|k+1 + c

ηmin
hl+1|p|l+1

)

≤ hl+1|p|l+1

[
(1 + β−1) + β−1ηmax

c

ηmin

]
+ hk|u|k+1

[
β−1ηmax

(
1 + ηmax

ηmin

)]
.

Thus, we have shown convergence for Taylor Hood finite elements.

2.9 Grad-Div Stabilization

If inf-sup stables elements are chosen, the LBB condition mentioned in the previous

section creates a bond between the velocity and pressure unknowns, thus the polyno-

mial degree of the approximation to the pressure is less than the polynomial degree

of the approximation to the velocity which means that the pressure may not get re-

solved when using lower order polynomials and thus an additional term in the model

is required for suppressing the related instability [83].

The grad-div stabilization (see [84]) puts numerical dissipation into the method and

thus, by just adding it to a method, it is possible that problems that were once tur-

bulent become stable [56]. One can think of grad-div stabilization “as a stabilization
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procedure of least-square type” [83]. It results from adding

−τ∇(∇ · u) = 0

to the continuous Stokes equations (1.11), (1.12) and (1.13) yielding the term

τ(∇ · uh,∇ · vh)

in the variational formulation, where τ ≥ 0. The advantage of using this term are

that you are able to penalize the numerical scheme when discrete mass conservation

is not met [75, 114]. The disadvantage is that you are changing the energy balance

of the numerical scheme [114]. This stabilization will be used in Chapter 4.

2.10 Linear Solvers for Stokes

There are many different approaches to solving Stokes-type systems [57] including,

for example, Uzawa type methods, which rely on the Uzawa algorithm as explored in

Bramble et al. [22] as well as Temam [107]. Arrow-Hurwicz type recursive methods are

described in Temam [107]. Guermond et al. [52] used three types of fractional step

(or projection) methods. Volker [110] used finite element discretizations of higher

order and special multigrid methods. Elman [39] introduced a preconditioner for

the linearized Navier-Stokes equations that is particularly useful when the mesh size

or viscosity vanishes. Niet and Wubs [35] compared “two preconditioners for the

saddle point problem: one based on the augmented Lagrangian approach and another

involving artificial compressibility”. Elman et al. [41] examined a preconditioning

operator that was proposed by Kay and Loghin [67], and explored its behavior in the
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Navier-Stokes equations. Numerical aspects of nonlinear and linear iteration schemes

have been studied in detail (see, for example Turek [109]).

2.11 Krylov Methods

We now introduce the Krylov methods [73], which are quick iterative methods that

solve linear systems. Krylov methods solve Ax = b for x ∈ Rn with matrix A ∈ Rn×n

and vector b ∈ Rn [56, 73]. Krylov methods use an iterative process to calculate xm

to approximate x that begins with an initial solution x0 [56, 73]. This approximate

solution is created in the affine subspace x0 +Km of the solution space Rn, where

Km(A,v) = span
{
v, Av, A2v, ..., Am−1v

}
⊆ Rn

is the Krylov space of order m for matrix A and vector v [56]. One of the biggest

advantages of Krylov methods is that they do not require the elements of the A

matrix and instead only need to perform matrix-vector products. Krylov methods

use scalar products and matrix-vector multiplications that are easily parallelized [56].

Note that if you are using a Krylov solver for parallel computing, that you also require

a preconditioner that is able to handle parallel computing [56].

Typical Krylov-space methods are the Conjugate Gradient (CG) method (explained

in Johnson [63] and originally from Hestenes & Stiefel [59]), GMRES (explained in

Saad & Schultz [96]), and BiCGSTAB (explained in Van der Vorst [36]) [109]. Most

of these Krylov-space methods were first introduced in Krylov [73].
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2.11.1 GMRES

The Generalized Minimal RESidual algorithm (GMRES) is an efficient solver that

creates a unique iterate in the affine subspace x0 +Km where the residual’s Euclidean

norm is minimized [102]. The main convergence properties of GMRES can be found

in Silvester et al. [102] and the proofs of them can be found in the resources there-

in. For more intricate information on GMRES, the GMRES method is extensively

compared to many methods in Valli & Quarteroni [89].

The GMRES method has the disadvantage that as the number of iterations k is

increased, the number of necessary stored vectors is scaling with respect to k and the

number of multiplications needed is scaling with respect to 1
2k

2N , where N is the

most steps taken before the process terminates [96]. To remedy this, we can restart

the algorithm every m ∈ Z+ steps. The practical implementation of this is described

in Saad & Schultz [96].

Letting M be a preconditioner, we will describe a GMRES algorithm for a sample

problem AM−1(Mx) = b, but first, it is important to point out that we don’t need

elements of AM−1, and instead can solve Mx = v whenever that operation is required,

as mentioned above. Therefore, it is important when using GMRES that it is simple

to calculate M−1v for any vector v [94]. GMRES with right preconditioning for

AM−1(Mx) = b is defined as follows [94, 87] :

1. Choose x0 and a dimension m of the Krylov space. Define an (m + 1) × m

matrix Hm and initialize all its entries Hi,j to be zero.

2. Arnoldi process:

(a) Compute r0 = b− Ax0, β = ||r0||2, and v1 = r0/β.
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(b) For j = 1, ...,m do

Compute zj := M−1vj

Compute w := Azj

For i = 1, ..., j do

hi,j : (w,vi) and w := w− hi,jvi

Compute hj+1,j = ||w||2 and vj+1 = w/hj + 1, j.

(c) Define Vm := [v1, ...,vm].

3. Compute xm = x0 + M−1Vmym where ym = argminy||βe1 −Hmy||2 and e1 =

[1, 0, ..., 0]T .

4. If satisfied stop, else set x0 ← xm and restart the Arnoldi process.

The Arnoldi process creates an orthogonal basis of the preconditioned Krylov sub-

space using a modified Gram-Schmidt process [94, 95].

2.11.2 FGMRES

Now, we describe the FGMRES algorithm for when one is using preconditioners that

are not linear operators, such as when the precondtioner is using another iterative

solver within [56]. If the preconditioner is redefined as you go such that zj := M−1
j vj

instead of zj := M−1vj, then we would define our approximate solution as xm =

x0 + Zmym, in which Zm = [z1, . . . , zm], instead of xm = x0 + M−1Vmym, where ym

is computed the same in both cases. This is known as the flexible variant of the right

preconditioned algorithm, defined as follows [94, 87]:

1. Choose x0 and a dimension m of the Krylov spaces. Define an (m + 1) × m
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matrix Hm and initialize all its entries Hi,j to zero.

2. Arnoldi process:

(a) Compute r0 = b− Ax0, β = ||r0||2, and v1 = r0/β.

(b) For j = 1, ...,m do

Compute zj := M−1
j vj

Compute w := Azj

For i = 1, ..., j do

hi,j : (w,vi) and w := w− hi,jvi

Compute hj+1,j = ||w||2 and vj+1 = w/hj + 1, j.

(c) Define Zm := [z1, ..., zm].

3. Compute xm = x0 + M−1Zmym where ym = argminy||βe1 −Hmy||2 and e1 =

[1, 0, ..., 0]T .

4. If satisfied stop, else set x0 ← xm and restart the Arnoldi process.

When compared to the right preconditionfed version, the flexible variant requires the

storage of zj and that the solution update requires zj which effectively doubles the

memory requirement [95, 94].

2.12 Amdahl’s Law

We want to be able to predict the theoretical speed-up of a program when using

multiple processors. Amdahl [3] analyzed parallel scalability and following Heister
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[56] we explain Amdahl’s Law as

speedup(n) = 1
1− Ep + Ep

n

,

which describes the speedup of the serial part Es = 1 − Ep of the program with n

processors where Ep ∈ [0, 1] is a perfectly parallelized fraction [56].
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Chapter 3

Geometric Multigrid for Stokes

There are two main approaches to solving Stokes: you either form the Schur com-

plement [55] (such as in Furuichi et al. [48], Murphy et al. [80] and the references

therein) or attack the block system directly (such as in Silvester and Wathen [103]). If

you choose the latter and wish to use multigrid [108], you have the choice of applying

multigrid on the whole system at once, as we do in Chapter 4, or by only applying

multigrid on the velocity block, as discussed in this chapter which is done in ASPECT

[15] and deal.II step-56 [51].

In this chapter, we compare popular choices of preconditioners for the velocity block

of the Stokes equation to geometric multigrid (GMG) in terms of performance and

memory usage. The former include UMFPACK, ILU, and algebraic multigrid (AMG).

This has been partially investigated, but since (to our knowledge) no code is available

for the general public that implements GMG for the velocity block of Stokes so there

is room for more detailed comparisons. We address this issue, so others can use our

code as a template for their own research. The main objective of this chapter is to

show GMG is at least competitive in serial computations, because this will imply that
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it will outperform the other methods (especially UMFPACK and ILU) as our systems

grow larger and in parallel computations due to the properties that GMG possesses.

In this chapter, we will use FGMRES with geometric multigrid as a preconditioner

for the velocity block, and we will show in the results section that this provides

a better approach than the linear solvers used in the deal.II tutorial step-22 [71].

Fundamentally, this is because only with multigrid it is possible to get O(n) solve

time, where n represents the amount of unknowns in the linear system, as discussed

in Section 3.1.1. Using the Timer class of deal.II [6], we collect some statistics to

compare set-up times, solve times, and number of iterations. We also compute errors

to make sure what we have implemented is correct.

This tutorial was contributed by Ryan Grove and Timo Heister to the deal.II finite

element library [6]. As written in the step-56 tutorial [51], “This material is based

upon work partially supported by National Science Foundation grant DMS1522191

and the Computational Infrastructure in Geodynamics initiative (CIG), through the

National Science Foundation under Award No. EAR-0949446 and The University

of California-Davis. The Isaac Newton Institute for Mathematical Sciences in Cam-

bridge, England deserves special thanks for support and hospitality during the pro-

gramme Melt in the Mantle where work on this tutorial was undertaken. This work

was supported by EPSRC grant no EP/K032208/1.”

The full commented and uncommented programs can be found in the online deal.II

manual under the step-56 tutorial [51].
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3.1 Preconditioner

The number of iterations needed by a Krylov method depends on the eigenvalue

spectrum of the matrix involved [56]. A small number of iterations is required for

eigenvalues clustered away from zero. By preconditioning the linear system for the

matrices where this is not the case with a linear, regular operator P−1, we hope to

create an improved eigenvalue spectrum, where P−1 will be an approximation of A−1.

3.1.1 Geometric Multigrid (GMG)

At the present time, the computer power available to us enables very accurate sim-

ulations using well over a billion degrees of freedom. For problem sizes much larger

than this, we are in need of numerical algorithms having optimal time complexity.

The challenge we face is finding an iterative way of solving high dimensional linear

systems that is efficient. This is achieved by multigrid methods due to their ability

to effectively reduce both the smooth and oscillatory error using a subtle interplay of

smoothing and coarse grid correction steps [97, 60, 24].

A multigrid method is an iterative method where a collection of successively coarser

finite element grids can be either used as a solver or as a preconditioner to an iterative

solver [63]. The motivation behind multigrid comes from noting simple iterative

methods are quite effective at reducing the high frequency error, but do not reduce

the low frequency error very well. These simple iterative methods of which multigrid

is a part of are referred to as smoothers because they smoothen the error’s high

frequency part [1]. If utilized a solver, these methods are optimal as they are able

to compute a discrete solution to a system of PDEs in O(n) work where n is the

number of unknowns. Likewise, multigrid can be applied as a preconditioner of an
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iterative solver and keep its O(n) time, and thus is often paired with O(1) solvers.

For example, in deal.II [6], a multigrid v-cycle is used as a preconditioner for another

iterative solver where the goal is to precondition the system so that the iterative

solver converges in O(1) number of iterations, and thus when it is combined with a

multigrid preconditioner which does O(n) work, an O(n) overall solver is created [29].

In an algebraic multigrid (AMG) scheme, no information about the grid on which

the governing PDEs are discretized is used at all [112]. However, the GMG scheme

creates a hierarchy of meshes that cover the computational domain and coarser grids

are created based upon the geometric location of dofs. Furthermore, the coarser grids

are predetermined which allows the implementer to pick intergrid transfer operators

specifically for his or her problem [112]. A disadvantage of GMG is it must be

implemented differently for each new problem. As stated in Heys et al [60], “the goal

in GMG is to use a relaxation strategy to reduce the oscillatory errors on a given

grid and rely on predetermined interpolation to effectively represent the remaining

smooth error components on coarser levels”.

Let a conforming coarse mesh T0 be given. The mesh hierarchy is defined recursively

in the sense that cells of T` are obtained by taking each cell of T`−1 and splitting it into

congruent children and in this sense we refer to the meshes as being nested, where

the index ` refers to the mesh level. We define the mesh size h` as the maximum of

diameters of the cells of T`. Due to the refinement process, we have h` = 2−`h0 on

quadrilateral cells [65]. These meshes are conforming by construction [65].
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3.1.1.1 Function Spaces for each Level

Following the work of Clevenger [29] and Janssen and Kanschat [62], we let u,v ∈

V ⊆ H1
0 (Ω) and a(u,v) be a bilinear form, and consider finding u for

a(u,v) = (f,v) ∀v ∈ V (3.1)

where f ∈ L2(Ω). Then, consider the discrete space V` ⊂ V to be the set of continuous,

piecewise functions on T` that vanish on ∂Ω. Note that for any level ` ≥ 1, since the

meshes in {T`}`≥0 are nested, we have that V`−1 ⊂ V`. For each `, for u` ∈ V`, we

want to find u` such that

a`(u`,v) = (f,v) ∀v ∈ V` (3.2)

For v, w ∈ V`, the inner product space for level l is (v,w)` = h2
`

∑n`
i=1 v(pi)w(pi),

where the pi are the support points of T`. Let A` : V` → V` s.t. for v, w ∈ V`, then

(A`v,w)` = a`(v,w), where A` is symmetric positive definite operator that represents

the bilinear form a`(·, ·). Denote the energy norm as ‖ · ‖E =
√
a`(·, ·).

We can now write the discretized equation (3.2) as

A`u` = f` (3.3)

where u` ∈ V` and f` ∈ V` s.t. (f`,v)` = (f,v) ∀v ∈ V`. Using a finite basis for V`, we

get a linear system where u` is a coefficient vector of size n`.
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3.1.1.2 The V-cycle Algorithm

The combination of using both a fine grid and a coarse grid in the solution process

requires the definition of transfer operators between the levels [61]. Again following

the work of Clevenger [29] and Janssen and Kanschat [62], we let I``−1 : V`−1 → V` be

the coarse-to-fine grid operators where I``−1v = v ∀v ∈ V`−1 and the fine-to-coarse

grid operators I`−1
` : V` → V`−1 which is defined as the transpose of I``−1 with respect

to (·, ·)`. Using a finite basis for V`, these operators can be expressed as rectangular

matrices and I``−1 is the transpose matrix scaled by a constant.

We can now define our algorithm for `th level of a multigrid v-cycle. Let B−1
` d` be

the approximate solution of A`x` = d`. Let S` be a set of smoothing operators and

let B0 = A0 and set x(0)
` = 0. Define B−1

` in the following way:

(i) After just a few iterations of an iterative method, the error tends to smoothen

by quite a bit, and this observation motivated an idea in multigrid to apply a few

iterations of a simple iterative method on the fine grid in hope to dampen high

frequency errors [61]. Thus, for each level, given an approximate solution, we

apply a series of smoothing steps of a simple iterative method of our choosing

on the residual, since just projecting onto a coarser mesh won’t preserve the

residual well. We call this presmoothing, where first you compute x(m`)
` , for

i = 1, ...,m` you have that x(i)
` = x(i−1)

` + S`
(
d` − A`x(i−1)

`

)
.

(ii) Then, we map the current error out to a coarser grid because an approximation

to the remaining smooth error is able to be more efficiently computed on a

coarser grid than a finer one. We apply the v-cycle operator B−1
`−1 to the residual

on lower level, and this is where the recursion in this method comes in. We

continue this smoothing and mapping to coarser grids recursively, and when we
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arrive at the coarsest mesh we want to arrive at, we directly solve the system at

a much less cost than on the finest level. Afterwards, this smoothened residual

must be interpolated up to the finer grid and then be added to the current fine

grid approximation in order to correct it [61]. This whole step is written as

x(m`+1)
` = x(m`)

` + I``−1B
−1
`−1I

`−1
`

(
d` − A`x(m`)

`

)
.

(iii) We then apply a second series of smoothing steps to reduce the residual. This is

called postsmoothing, where first you compute x(2m`+1)
` , for i = m`+2, ..., 2m`+1

you have that x(i)
` = x(i−1)

` + S`
(
d` − A`x(i−1)

`

)
.

Set B−1
` d` = x(2m`+1)

` . This is known as the multigrid v-cycle, a graphical repre-

sentation of such is visible in Figure 3.1 and the hierarchy of meshes is pictured in

Figure 3.2, where B is called the multigrid preconditioner [29].

To show the convergence of the v-cycle algorithm, it suffices to show the algorithm

is contraction with contraction number less than 1 and independent of the level (see

[29] and [62] for proofs and explanations). A significant factor of the efficiency of the

multigrid method comes within the smoothing step, where the high frequency com-

ponents of the error, which correspond to large eigenvalues, are significantly reduced

[63]. Then, the solution is projected down onto a coarser grid and the low frequency

content of the solution is significantly deflated by the coarse grid correction on the

less expensive coarse grid in the sense that low frequency error is reduced to high

frequency error by the approximate removal of the low frequency components from

the error [1]. In summary, we have significantly reduced the error in each multigrid

step [63].

An overview of the multigrid algorithm and everything needed for multigrid can be
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Figure 3.1: Typical V-Cycle from Clevenger [29]

Figure 3.2: Hierarchy of Meshes from Clevenger [29]
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found in Schöberl [97]. Finally, once again following the work of Clevenger [29] and

Janssen and Kanschat [62], it should be shown the total work of the multigrid v-

cycle with global refinement is O(nL), where L is the maximum level. Let W` be

the amount of work in the `th level v-cycle. Let n` = dim V` and note that for any

level ` ≥ 1, since the meshes in {T`}`≥0 are nested, we have that n`−1 = C`n` where

C` < 1. Let Cmax = max
0≤`≤L

C`. As worked out in Clevenger [29], if we pick smoothers

and level transfers that are each O(n`) we can write

W` ≤ C(2m)n` +W`−1

≤ C(n` + n`−1 + n`−2 + · · ·+ n1)

= C

1 +
`−1∑
i=0

∏̀
j=i+1

Cj

n`
≤ C

(∑̀
i=0

(Cmax)i
)
n`

≤ C
Cmax

1− Cmax
n` since Cmax < 1

≤ Cn`

(3.4)

Thus, W` ∈ O(nL) [29, 62].

3.1.2 Multigrid Methods for Saddle Point Problems

Unfortunately, saddle point problems are typically difficult to solve due to indefinite-

ness and poor spectral properties and thus the multigrid methods discussed above

need to be used cleverly to be efficient in solving saddle point problems [28].
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3.1.2.1 Block Preconditioning

As stated at the beginning of this chapter, our goal here is to compare several solution

approaches. While step-22 [71] solves the linear system using a Schur complement

approach in two separate steps, we instead attack the block system at once using

FMGRES with an efficient preconditioner, in the spirit of the approach outlined in

the Results section of step-22 [71].

As written in the step-56 tutorial [51], “The weak form of the discrete Stokes equations

naturally leads to the following linear system for the nodal values of the velocity and

pressure fields:

 A BT

B 0


 U

P

 =

 F

0

 .

The idea is as follows: if we find a block preconditioner P such that the matrix

 A BT

B 0

P−1

is simple, then an iterative solver with that preconditioner will converge in a few

iterations.” Notice that we are doing right preconditioning here. Using the Schur

complement S = BA−1BT , we find that

P−1 =

 A BT

0 −S


−1
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is a good choice. Let Ã−1 be an approximation of A−1 and S̃−1 of S−1, we see

P−1 =

 A−1 0

0 I


 I BT

0 −I


 I 0

0 S−1

 ≈
 Ã−1 0

0 I


 I BT

0 −I


 I 0

0 S̃−1

 .

Since P is aimed to be a preconditioner only, we shall use the approximations on

the right in the equation above [51]. As discussed in the deal.II tutorial step-22

[71], −M−1
p =: S̃−1 ≈ S−1, where Mp is the pressure mass matrix and is solved

approximately by using CG with ILU as a preconditioner. For our work on deal.II

tutorial step-56 [51], Ã−1 is can be obtained by one of multiple methods: solving a

linear system with CG and ILU as preconditioner, just using one application of an

ILU, solving a linear system with CG and GMG as a preconditioner (as described in

deal.II tutorial program step-16 [64]), or just performing a single V-cycle of GMG.

That means that we only apply GMG to the velocity block which is just a vector

valued Laplace operator analogous to our study of the Poisson problem in Chapter

2. On the contrary, in Chapter 4 we apply the preconditioner to the entire system

matrix instead of just the velocity block!

As a comparison, instead of FGMRES, we also use the direct solver UMFPACK on

the whole system to compare our results with. If you want to use a direct solver (like

UMFPACK), the system needs to be invertible. To avoid the one dimensional null

space given by the constant pressures, we fix the first pressure unknown to zero. This

is not necessary for the iterative solvers.

A vast amount of research is being conducted on block preconditioning. Chan &

Jin [27] investigated the solution of block system by the preconditioned conjugate

gradient method. Elman et al. [40] explored the topic of automatically generat-

ing “a block preconditioner for solving the incompressible Navier–Stokes equations”.
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Notay [82] analyzed bock preconditioners for symmetric saddle point matrices. Bai

[8] constructed “block-counter-diagonal and block-counter-tridiagonal precondition-

ing matrices to precondition Krylov subspace methods”. Cao [26] looked at “applying

preconditioned Krylov subspace methods to the solution of large saddle point-type

systems with singular top-left blocks”. Block preconditioning is also used for mag-

netostatic problems as explored in Perugia & Simoncini [86]. Klawonn [69] used

“block-triangular preconditioners for a class of saddle point problems with a penalty

term”.

3.1.3 Slightly Modified Stokes Problem

Let u ∈ H1
0 = {u ∈ H1(Ω),u|∂Ω = 0} and p ∈ L2

0 = {p ∈ L2(Ω),
∫

Ω p = 0}. The

Stokes equations that we consider are read as follows in non-dimensionalized form as

found in step-56 [51]:

−2div1
2
[
(∇u) + (∇u)T

]
+∇p = f

−∇ · u = 0

Note that we are using the deformation tensor instead of ∆u (a detailed description

of the difference between the two can be found in step-22 [71], but in summary, the

deformation tensor is more physical as well as more expensive).

3.1.4 Reference Solution

The test problem is a manufactured solution (see deal.II tutorial step-7 [13] for de-

tails), and we choose u = (u1, u2, u3) = (2 sin(πx),−πy cos(πx),−πz cos(πx)) and
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p = sin(πx) cos(πy) sin(πz). For the velocity, we have Dirichlet boundary conditions

over the whole boundary of the domain Ω = [0, 1] × [0, 1] × [0, 1]. To enforce the

boundary conditions we can just use our reference solution.

If you look up in the deal.II manual [6] what is needed to create a class derived from

Function<dim>, you will find this class has numerous virtual functions, including

Function::value(), Function::vector value(), Function::value list(), etc.,

all of which can be overloaded. Different parts of deal.II will require different ones

of these particular functions. This can be confusing at first, but luckily the only

thing you actually have to implement is value(). The other virtual functions in the

Function class have default implementations inside that will call your implementation

of value by default.

Notice our reference solution fulfills ∇ · u = 0. In addition, the pressure is chosen to

have a mean value of zero. For the Method of Manufactured Solutions of step-7

[13], we need to find f such that:

f = −2div1
2
[
(∇u) + (∇u)T

]
+∇p.

Using the reference solution above, we obtain:

f = (2π2 sin(πx),−π3y cos(πx),−π3z cos(πx))

+(π cos(πx) cos(πy) sin(πz),−π sin(πy) sin(πx) sin(πz), π cos(πz) sin(πx) cos(πy))
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3.1.5 Computing Errors

Because we do not enforce the mean pressure to be zero for our numerical solution in

the linear system, we need to post process the solution after solving. To do this we

use the VectorTools::compute mean value() function to compute the mean value

of the pressure to subtract it from the pressure.

3.1.6 DoFHandlers

The way we implement geometric multigrid here only executes it on the velocity vari-

ables (i.e., the A matrix described above) but not the pressure. One could implement

this in different ways, including one in which one considers all coarse grid operations

as acting on 2× 2 block systems where we only consider the top left block. Alterna-

tively, we can implement things by considering a linear system on the velocity part

of the overall finite element discretization. The latter is the way we want to use here.

To implement this, we created a separate, second DoFHandler for just the velocities.

We then built linear systems for the multigrid preconditioner based on only this

second DoFHandler, and simply transferred the first block of (overall) vectors into

corresponding vectors for the entire second DoFHandler. To make this work, we had

to assure the order that the velocity dofs are ordered in the two DoFHandler objects

is the same. This is in fact the case by first distributing degrees of freedom on both,

and then using the same sequence of DoFRenumbering operations on both.
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3.1.7 Differences from Step-22

The main difference between step-56 [51] and step-22 [71] is the utilization of block

solvers instead of the Schur Complement approach used in step-22 [71]. Details of

this approach can be found under the Block Schur complement preconditioner

subsection of the Possible Extensions section of step-22 [71]. For the precondi-

tioner of the velocity block, we borrow a class from ASPECT [72] called BlockSchur←↩

Preconditioner that has the option to solve for the inverse of A or just apply one

preconditioner sweep for it instead, which provides us with an expensive and cheap

approach, respectively.

3.2 Results

We now examine convergence rates, timings, and memory usage and discuss our

findings before making some conclusions about this chapter. All calculations were

made using step-56 [51] unless otherwise stated.

3.2.1 Errors

We first run the code and confirm the finite element solution converges with the

correct rates as predicted by the error analysis of mixed finite element problems.

Given sufficiently smooth exact solutions u and p, the errors of the Taylor-Hood

element Qk ×Qk−1 should be

‖u− uh‖0 + h(‖u− uh‖1 + ‖p− ph‖0) ≤ Chk+1(‖u‖k+1 + ‖p‖k)
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Table 3.1: Errors for 3D Computations

L2 Velocity Reduction L2 Pressure Reduction H1 Velocity Reduction
3 global refinements 0.000670888 - 0.0036533 - 0.0414704 -
4 global refinements 8.38E-005 8.0 0.00088494 4.1 0.0103781 4.0
5 global refinements 1.05E-005 8.0 0.000220253 4.0 0.00259519 4.0

Table 3.2: Timing Results for 3D Computations

General GMG ILU UMFPACK
Timings Timings Iterations Timings Iterations Timings

Cycle DoFs Setup Assembly Setup Solve Outer IA IS Setup Solve Outer IA IS Setup Solve
0 15468 0.1s 0.3s 0.3s 1.3s 21 67 22 0.3s 0.6s 21 180 22 2.65s 2.8s
1 112724 1.0s 2.4s 2.6s 14s 21 67 22 2.8s 15.8s 21 320 22 236s 237s
2 859812 9.0s 20s 20s 101s 20 65 21 27s 268s 21 592 22 - -

see for example Ern & Guermond [43], Section 4.2.5 p195. This is indeed what we

observe in table 3.1, using the Q2 × Q1 element as an example (this is what is done

in the code, but is easily changed in main() ).

3.2.2 Timing Results

Let us compare the direct solver approach using UMFPACK to the two methods in

which we choose Ã−1 = A−1 and S̃−1 = S−1 by solving linear systems with A, S using

CG. The preconditioner for CG is then either ILU or GMG. Table 3.2 summarizes

solver iteration and timings (where IA, IS are the number of inner solves for A, S,

respectively), while table 3.4 summarizes virtual memory (VM) peak usage.

Additional timing results were found using the file Files / step-56 amg.prm from

the Github repository named dissertation of user rrgrove6. The only difference

between this and the standard step-56 is the additional implementation of AMG so

comparisons can be made between GMG and AMG.

Similar to the results written in the step-56 tutorial [51], we can see from tables 3.2

and 3.4 that:
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Table 3.3: Additional Timing Results

AMG
Timings Iterations

DoFs Setup Solve Outer IA IS
15468 .307s 5.67s 21 330 22

112724 2.95s 47s 21 265 22
859812 26.73s 549s 20 353 21

Table 3.4: Virtual Memory Peak (kB)

DoFs GMG ILU UMFPACK
15468 4805 4783 5054

112724 5441 5125 11288
859812 10641 8307 -

1. UMFPACK uses large amounts of memory, especially in 3d. Also, UMFPACK

timings do not scale favorably with problem size.

2. Because we are using inner solvers for A and S, ILU, AMG, and GMG require

the same number of outer iterations.

3. The number of inner iterations for A increases for ILU with refinement, leading

to worse than linear scaling in solve time. In contrast, the number of inner

iterations for A stays constant with GMG leading to nearly perfect scaling in

solve time.

4. Although the number of inner iterations for A appear constant for both AMG

and GMG with refinement, the number of inner iterations for A for AMG is

about 5 times that of GMG.

5. Although the number of inner iterations for A appear constant for both AMG

and GMG with refinement, the number of inner iterations for A for AMG is

about 5 times that of GMG.
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6. As the number of unknowns increases, it can already be seen that GMG has

smaller solve times (and comparable setup times) compared to the other meth-

ods.

3.2.3 Conclusions

In this chapter, we have shown that applying GMG to the velocity block while solving

Stokes is competitive in serial computations in terms of performance and memory

usage to UMFPACK, ILU, and AMG. This implies that it will outperform the other

methods (especially UMFPACK and ILU) as our systems grow larger and in parallel

computations. Additionally, GMG can be parallelized like AMG so it is much more

competitive than UMFPACK or ILU for bigger problems.

This work is in a good state to serve as a template or starting point for the research of

others, as everything has been well documented and the code has been made available

to everyone.
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Chapter 4

Schwarz smoothers for conforming

inf-sup stable discretizations of the

Stokes equations

As in Benzi et al. [16], let Ω ∈ Rd be a bounded, connected domain (with dimension

d = 2, 3) with smooth, piecewise boundary ∂Ω. Given a force f : Ω → Rd, we solve

for a velocity u : Ω→ Rd and a pressure p : Ω→ R where

− η∆u +∇p = f in Ω (4.1)

∇ · u = 0 in Ω (4.2)

u = 0 on ∂Ω, (4.3)

with viscosity η > 0. The analysis and numerical results for a multigrid method with

subspace correction smoother that performs very efficiently on divergence-conforming

discretizations with interior penalty is considered in Kanschat & Mao [65]. For their
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multigrid method for the Stokes system, Kanschat and Mao [65] used Raviart-Thomas

(RT) elements [90] where:

1. ∇ · Vh = Qh

2. V div
h,0 ⊂ V div

h,1 ⊂ · · · ⊂ V div
h,L.

where V div
h,l = {uh ∈ V l, (∇ · uh, qh) = 0 ∀qh ∈ Ql}. We wish to extend this work

to include conforming inf-sup stable elements including Taylor Hood and Qk+1 ×

DGPk elements [5]. A DGPk finite element is a discontinuous finite element based on

Legendre polynomials of degree k that we plan to use so that we have a discontinuous

pressure in order to achieve cell-wise mass conservation [14].

The DGPk finite element implements (p+1)(p+2)
2 polynomials of degree p in 2D. For

example, in 2D, the element DGP1 would represent the span of the functions {1, x, y},

which is in contrast to the element DGQ1 that is formed by the span of {1, x, y, xy}

and thus it is immediately clear that the DGPk element can not be continuous on

quadrilaterals [14]. More information about them can be found in Arndt [5].

The work in this chapter, unlike the work in Chapter 3, will apply the GMG pre-

conditioner to the entire system matrix of the discretized Stokes equation. The goal

of this work is to get better iteration counts than we did when we just applied the

GMG preconditioner to the velocity block in Chapter 3. If we do see smaller iteration

counts, and if someone in future work finds an efficient way to handle patch-based

smoothers, then this work could be a stepping stone towards revolutionizing fluid flow

solvers.

This chapter, in its entirety, was jointly done with Daniel Arndt from Heidelberg

University in Heidelberg, Germany.
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4.1 Smoothers

The smoothers that concern us for a given space are defined to be the additive or

multiplicative iterative schemes that depend on the decomposition of the space [21].

4.1.1 New Function Spaces and Finite Elements

As described in Arnold et al. [30], the Hilbert space Hdiv(Ω) consists of square-

integrable vector fields on a domain Ω with square-integrable divergence. In a variety

of variational formulations of systems of PDEs, the Hdiv(Ω) function space naturally

arises [30]. It is defined as

Hdiv(Ω) =
{
v ∈ L2(Ω)d|∇ · v ∈ L2(Ω)

}
,

as seen in Kanschat & Mao [65]. The inner product in Hdiv(Ω) is given by

Λ(u,v) = (u,v) + (∇ · u,∇ · v),

where (·, ·) is used to denote the inner product in L2(Ω) as it is in Arnold et al. [30].

We now want to associate our inner product Λ with a linear operator Λ that maps

Hdiv(Ω) isometrically onto its dual space. Thus, Λ is defined as it is in Arnold et al.

[30] as

(Λu,v) = Λ(u,v) for all v ∈ Hdiv.

More information about Hdiv(Ω), Λ, and Λ can be found in Arnold, Falk, & Winther

[30]. We now use Raviart-Thomas elements as they conform in this function space

as well as the fact that Kanschat & Mao [65] use them in their paper. Also, in
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subsequent sections we will use Raviart-Thomas elements to explain the additive

Schwarz smoother.

Raviart-Thomas elements are not the only elements that are commonly used while

solving Stokes; Crouzeix-Raviart elements are used in multigrid for the Stokes problem

in Braess & Verfürth [19]. They have become quite popular as they are able to

overcome the difficulty of the construction of suitable prolongation and restriction

operators for the transfer from coarse to fine grids and vice versa by constructing

easily computable L2-projections based on suitable quadrature rules [19].

4.1.2 The Additive Schwarz Smoother

In [100], Schwarz created an iterative method to solve classical BVPs for harmonic

functions consisting of successively solving a similar problem in subdomains while

alternating from one to the other (see also [76]).

As is done in Arnold et al. [30], given a finite element subspace Vh of Hdiv(Ω), we

determine a positive-definite symmetric operator Λh : Vh → Vh by

(Λhu,v) = Λ(u,v) for all v ∈ Vh.

Then for any f ∈ Vh, the equation

Λhu = f

admits a unique solution u ∈ Vh [30]. Now we want to “define a v-cycle preconditioner

Θh for the operator Λh using an additive Schwarz smoother formed by summing

solutions to local problems in a neighborhood of each mesh vertex” as is done in
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Arnold et al. [30].

Let TH = {Ωj}Jj=1 be a triangulation of our domain Ω that has mesh size H, and let

Th be the refined TH with mesh size h < H [30]. Let
{

Ω′j
}J
j=1

cover Ω where for each

j we have that Ω′j is a union of squares in Th and Ωj ⊂ Ω′j [30]. For j = 1, 2, . . . , J ,

set V j =
{
v ∈ V : v ≡ 0 on Ω \ Ω′j

}
[30].

Let V h be the Raviart-Thomas space with respect to Th where the discrete Helmholtz

Decomposition is satisfied. Following the work in Arnold et al. [30], the decomposition

V h =
J∑
j=0
V j leads us to the definiton of an additive Schwarz preconditioner Θh :

V h → V h. Θh is defined as

Θh =
J∑
j=0
P jΛ−1

h , (4.4)

where P j : V h → V j is the Hdiv(Ω) orthogonal projection (see [30] for more infor-

mation, as well as proofs on the effectiveness of the preconditioner and bounds on

P := ΘhΛh =
J∑
j=0
P j).

Additive Schwarz smoothers require damping for model problems [1]. The advantage

of additive smoothers is that they are easily parallelizeable since the sum in Equation

4.4 can be done in parallel.

4.2 Background

There has been a great amount of research done that relates to this work. Mo-

tivated by the index reduction technique of minimal extension, a remodelling of

the Navier Stokes flow equations is proposed and analyzed using Taylor Hood and

Crouzeix-Raviart finite elements in Altmann & Heiland [2]. A GMG method us-

ing a constrained Braess–Sarazin smoother, using only partial regularity assumption,
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for saddle point systems using stable finite element pairs is analyzed in Chen [28]. A

“p-Multigrid solution of high-order discontinuous Galerkin discretizations of the com-

pressible Navier–Stokes equations” using a Jacobi smoother is presented in Fidkowsi

et al. [46]. For the compressible Euler equations, solutions of “high-order accurate

discontinuous Galerkin discretizations of non-linear systems of conservation laws on

unstructured grids” are found using the spectral hp-multigrid method in Nastase &

Mavriplis [81]. Algebraic multigrid with higher-order finite elements for elliptic par-

tial differential equations, including Stokes, are explored in Heys et al. [60]. The

“performance of the multigrid method applied to spectral element discretizations of

the Poisson and Helmholtz equations using smoothers based on finite element dis-

cretizations, overlapping Schwarz methods, and point-Jacobi are considered in con-

junction with conjugate gradient and GMRES acceleration techniques” in Fischer

& Lottes [47]. An algorithm for parallelizing the Gauss-Seidel multigrid smoother

for distributed memory computers is analyzed in Adams [1]. A coupled multigrid

method for generalized Stokes flow problems using Taylor Hood elements is explored

in Takacs [105]. Additive Schwarz-type iteration methods for saddle point problems

as smoothers in a multigrid method including looking into Crouzeix-Raviart mixed

finite element for the Stokes equations is done in Schöberl & Zulehner [99]. “A com-

parison of overlapping Schwarz methods and block preconditioners for saddle point

problems” is presented in Klawonn & Pavarino [70].

A significant amount of the literature on domain decomposition Schwarz methods

are on SPD problems in Hilbert spaces which methods rely on the SPD properties

of the underlying problem and the Hilbert space structures. Feng & Lorton [45]

have introduced additive Schwarz methods “for nonsymmetric and indefinite linear

systems arising from continuous and discontinuous Galerkin approximations of general
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nonsymmetric and indefinite elliptic partial differential equations” and use convection-

diffusion equations to show that their framework is successful. Their framework allows

applications of Schwarz methods to “general nonsymmetric and indefinite elliptic

partial differential equations”, such as Stokes [45].

4.3 Assumptions and Definitions

Following Kanschat and Mao [65], we consider for the domain Ω an admissible parti-

tion Th defining a hierarchical partitioning (Tl)0≤l≤L where Tl consists of the cells on

level l.

As written in Dallmann et al. [31], for a simplex T ∈ Th or a quadrilateral/hexa-

hedron T in Rd, let T̂ be the reference unit simplex or the unit cube (−1, 1)d. The

bijective reference mapping FT : T̂ → T is affine for simplices and multi-linear for

quadrilaterals/hexahedra [31]. Let Pk and Qk with k ∈ N0 be the set of polynomials

of degree ≤ k and of polynomials of degree ≤ k in each variable respectively [31].

Moreover, we set

Rk(T̂ ) :=


Pk(T̂ ) on simplices T̂

Qk(T̂ ) on quadrilaterals/hexahedra T̂ ,

as was done in Dallmann et al. [31]. Although our analysis holds for all of the above,

we will only be interested in quadrilaterals in this thesis. Define

Yl,−k(Tl) := {vh ∈ L2(Ω) : vh|T ◦ FT ∈ Rk(T̂ ) ∀T ∈ Tl},

Yl,k(Tl) := Yh,−k ∩W 1,2(Ω).
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For convenience, we write V l = Rku(Tl) instead of V l = [Yh,ku ]d∩V and Ql = R±kp(Tl)

instead of Ql = Yh,±kp(Tl) ∩Q. Furthermore, we define

Vh := Rku(Th) =
⋃

0≤l≤L
V l, Qh := R±kp(Th) =

⋃
0≤l≤L

Ql.

and use the notation Xl = V l ×Ql.

4.3.1 Inf-Sup Stability (LBB Condition) with levels

Following Kanschat and Mao [65], we let V l and Ql be finite element spaces satisfying

a discrete inf-sup-condition

inf
q∈Ql\{0}

sup
v∈Vl\{0}

(∇ · v, q)
‖∇v‖Vl

‖q‖Ql

≥ β > 0 (4.5)

with a constant β independent of l [65].

In particular, this means by the closed range theorem that the space of weakly

divergence-free solutions is not trivial:

V div
l := {vh ∈ V l : (∇ · vh, qh) = 0 ∀qh ∈ Ql} 6= {0}

Assumption 1 (Interpolation Operators). There are quasi-interpolation operators ju : V →

V l and jp : Q → Ql such that for all T ∈ Tl, for all w ∈ V ∩ [W s,2(Ω)]d with

1 ≤ s ≤ ku + 1:

‖w − juw‖0,M + hl‖∇(w − juw)‖0,M ≤ Chsl ‖w‖W s,2(ωM ), (4.6)
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Figure 4.1: A patch Ωl,v of cells Tl,v sharing an inner vertex

where M is a cell and for all q ∈ Q ∩Hs(T ) with 1 ≤ s ≤ kp + 1:

‖q − jpq‖0,M + hl‖∇(q − jpq)‖0,M ≤ Chsl ‖q‖W s,2(ωM ), (4.7)

on a suitable patch ωM ⊃ T . Moreover, let

‖v − juv‖L∞(M) ≤ Chl|v|W 1,∞(M) ∀v ∈ [W 1,∞(M)]d.

4.3.2 Patches

Let Nl be the set of inner vertices in the triangulation Tl and let Tl,v be the set of

cells in Tl sharing the vertex v [65]. The set of cells around a particular inner vertex

is called a patch Ωl,v as seen in Figure 4.1 [65]. For Raviart-Thomas elements, all

boundary patch dofs are set to zero [65]. For the conforming inf-sup stable elements,

we use homogeneous Dirichlet boundary conditions for the velocity and nothing for

the pressure [65].
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4.3.3 Discrete Spaces on Patches

The discrete spaces we will be using are defined to be

V l,v = {uh ∈ [Qk+1(K)]d∀K ∈ Ωl,v,uh ∈ C(Ωl,v),uh|∂Ωl,v
= 0},

Ql,v = {ph ∈ Qk(K)∀K ∈ Ωl,v, ph ∈ C(Ωl,v)},

X l,v = V l,v ×Ql,v.

Furthermore, V div
l,v is the space of weakly divergence-free functions on that patch:

V div
l,v = {uh ∈ Vl,v : (∇ · uh, qh) = 0 ∀qh ∈ Ql,v}.

4.4 Stokes, Perturbed Primal and Perturbed Dual

Problem

Following Kanschat and Mao [65], our plan is to eliminate the pressure by considering

a perturbed, discrete Stokes problem in weak formulation

α(ul, vh) + ν(∇ul,∇vh) + τgd(∇ · uh − εph,∇ · vh − εqh)

−(pl,∇ · vh) + (∇ · ul, qh)− ε(pl, qh) = (f ,vh)
(4.8)

where α(ul, vh) is a reaction term. Defining the operator Al : X ×X → X∗ by

Al((ul, pl), (vh, qh)) :=α(ul, vh) + ν(∇ul,∇vh)

+ τgd(∇ · ul − εpl,∇ · vh − εqh)

+ (pl,∇ · vh) + (∇ · ul, qh)− ε(pl, qh).
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This problem can be written asAl((ul, pl), (vh, qh)) = (f ,vh) for all (vh, qh) ∈ V l×Ql.

Testing the perturbed Stokes problem with (0, ql), we observe

−τgd(∇ · ul − εpl, εqh) + (∇ · ul, qh)− ε(pl, qh) = 0.

and therefore εpl = πQh
∇ · ul.

Hence, for ε > 0 the Stokes problem can be rewritten as

Al(ũl,vh) := α(ũl,vh) + ν(∇ũl,∇vh)

+ τgd(∇ · π⊥Qh
(∇ · ũl),∇ · π⊥Qh

(vh))

+ 1
ε
(πQh
∇ · ũl, πQh

∇ · vh).

Al(ũl,vh) = (f ,vh)

for all vh ∈ V l.

Lemma 1. Let (ul, pl) be the solution to the perturbed problem in two variables and

ũl the solution to the perturbed problem in one variable, Equation 4.8. Then it holds

ul = ũl and εpl = πQh
(∇ · ul) = πQh

(∇ · ũl)

Proof. Following Kanschat and Mao [65], testing the two variable solution with (0, ql)
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gives

0 = Al


ul
pl

 ,
0

ql




= −(∇ · ul, ql) + ε(pl, ql)− ετgd(∇ · ul − εpl, ql)

= −(1 + ετgd)(∇ · ul − εpl, ql)

and hence εpl = πQh
(∇ · ul). Testing the two variable solution with (vl, 0) gives

(f,vl) = Al


ul
pl

 ,
vl

0




= α(ul,vl) + ν(∇ul,∇vl) + (∇ · vl, pl) + τgd(∇ · ul − εp,∇ · vl)

= α(ul,vl) + ν(∇ul,∇vl) + ε−1(πQh
(∇ · ul),∇ · vl)

+ τgd(πQh
(∇ · ul − εp),∇ · vl)

= α(ul,vl) + ν(∇ul,∇vl) + ε−1(πQh
(∇ · ul), πQh

(∇ · vl))

+ τgd(π⊥Qh
(∇ · ul),∇ · vl − πQh

(∇ · vl))

= α(ul,vl) + ν(∇ul,∇vl) + ε−1(πQh
(∇ · ul), πQh

(∇ · vl))

+ τgd(π⊥Qh
(∇ · ul), π⊥Qh

(∇ · vl)).

and therefore ul = ũl.

Testing the perturbed Stokes problem with ũl gives

(f , ũl) = α‖ũl‖2
0 + ν‖∇ũl‖2

0 + τgd‖π⊥Qh
(∇ · ũl)‖2

0 + ‖πQh
(∇ · ũl)‖2

0
ε

. (4.9)

Hence, the perturbed bilinear form is Xl-elliptic.

69



4.5 Estimates

The bilinear form al that represents the weak Laplace operator is defined as

al(u,v) := ν(∇u,∇v)

For ul ∈ V l define u0
l ∈ V div

l as projection of ul onto V div
l with respect to al, i.e.

al(u0
l ,vl) = al(ul,vl) ∀vl ∈ V div

l .

Then define u⊥l by u⊥l := ul − u0
l .

Lemma 2.

α

d
‖∇ · u⊥l ‖2

0 ≤ al(u⊥l ,u⊥l ) ≤ ν

γ2
l

‖πQh
(∇ · u⊥l )‖2

0

Proof. We proof the inequalities separately:

1. Due to ellipticity of the bilinear form al(·, ·) there exists β satisfying

β‖∇u⊥l ‖2
0 ≤ al(u⊥l , u⊥).

And this gives

‖∇ · u⊥l ‖2
0 ≤ d‖∇u⊥l ‖2

0 ≤
d

β
al(u⊥l ,u⊥l ).

since you can bound the squared norm of the divergence by d times the squared

norm of the gradient.

2. Choose q = πQh
(∇ ·u⊥l ), then the inf-sup stability implies that there is vl ∈ V l
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satisfying

γl‖∇vl‖ ≤ ‖q‖0, q = ∇ · vl.

Then we have

(∇ · u⊥l , qh) = (∇Qh
∇ · u⊥l , qh) = (q, qh) = (∇ · vl, qh).

Let vl = v0
l + v⊥l be the local Helmholtz decomposition. We then see

(∇ · v, qh) = (∇ · v⊥l , qh) = (∇ · u⊥l , qh)

and v⊥l = u⊥l + a for some a ∈ V div
l . We can conclude

al(v,v) = al(v0, v0) + al(v⊥l ,v⊥l )

≥ al(v⊥l ,v⊥l ) = al(u⊥l ,u⊥l ) + al(a, a)

≥ al(u⊥l ,u⊥l ).

Finally, the inequality we want to prove holds due to

al(u⊥l ,u⊥l ) ≤ al(v,v) = ν‖∇v‖2
0 ≤

ν

γ2
l

‖q‖2
0 ≤

ν

γ2
l

‖πQh
(∇ · u⊥l )‖2

0.
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4.6 Convergence of the Perturbation

Let (u, p) be the solution to the continuous Stokes problem and (uε, pε) the solution

to the continuous perturbed problem. Similarly, (uh, ph) and (ul, pl) are the solutions

to the discretized problem and its perturbation.

Lemma 3. It holds

α‖u− ul‖2
0 + ν‖∇(u− ul)‖2

0 + ‖p− pl‖2
0 . ε2 + h2kp+2 + h2ku . (4.10)

Proof. Use [101] for the continuous and discrete part separately to get

α‖uh − ul‖2
0 + ν‖∇(uh − ul)‖2

0 + ‖ph − pl‖2
0 . ε2.

Furthermore, standard theory yields

α‖u− uh‖2
0 + ν‖∇(u− uh)‖2

0 + ‖p− ph‖2
0 . h2kp+2 + h2ku

and finally

α‖u− ul‖2
0 + ν‖∇(u− ul)‖2

0 + ‖p− pl‖2
0

. α‖u− uh‖2
0 + ν‖∇(u− uh)‖2

0 + ‖p− ph‖2
0

+ α‖uh − ul‖2
0 + ν‖∇(uh − ul)‖2

0 + ‖ph − pl‖2
0

. ε2 + h2kp+2 + h2ku .
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4.7 Definition of Multigrid Algorithms and the Smoothers

Recalling our previously defined patches, the subspace X`,v = V`,v × Q`,v consists of

the functions in X` with support in Ω`,v. As written in Kanschat and Mao [65], “note

that this implies homogeneous slip boundary conditions on ∂Ω`,v for the velocity

subspace V`,v and zero mean value on Ω`,v for the pressure subspace Q`,v .”

Using our operator A, we define its patchwise counterpart Al,v by

Al,v := ITl,vAlIl,v

where Il,v : V l,v → V l denotes the embedding of V l,v into V l and ITl,v : V l → V l,v the

L2 projection into V l,v. Finally, the smoothing operator Rl : Vl 7→ Vl,v on level l is

given by

Rl := η
∑
v

Il,vA
−1
l,v I

T
l,v

where η ∈ (0, 1] is a scaling factor, and Rl is L2 symmetric and positive definite [65].

We define the operator Pl,v : Vl → Vl,v by

Pl,v := A−1
l,v I

T
l,vAl.
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Due to Pl,vv ∈ Vl,v and

Al(Il,vPl,vv, Il,vPl,vv) = Al(Il,vA−1
l,v I

T
l,vAlv, Il,vA

−1
l,v I

T
l,vAlv)

= vTAlIl,vA
−1
l,v I

T
l,vAlIl,vA

−1
l,v I

T
l,vAlv

= vTAlIl,vA
−1
l,vAl,vA

−1
l,v I

T
l,vAlv

= vTAlIl,vA
−1
l,v I

T
l,vAlv

= Al(Il,vPl,vv, v),

Pl,v is an orthogonal projection to Vl,v w.r.t to Al.

Now, we are prepared to define the multigrid preconditioner Bl : V l × Ql → V l ×

Ql, (fl, gl) 7→ Bl(fl, gl) we want to use: We define B0,ε = A−1
0,ε and for l ≥ 1 we consider

the algorithm analogous to Section 3.1.1.2 and the formulas of Kanschat and Mao

[65] as follows

1. Pre-smoothing: Begin with (u0, p0) = (0, 0) and let

ui
pi

 =

ui−1

pi−1

+Rl


fl
gl

− Al
ui−1

pi−1


 , i = 1, . . . ,m(l) (4.11)

where m(l) is the number of smoothing steps.

2. Coarse grid correction:

um(l)+1

pm(l)+1

 =

um(l)

pm(l)

+ ITl−1Bl−1Il


fl
gl

− Al
um(l)

pm(l)


 (4.12)
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3. Post-smoothing:

ui
pi

 =

ui−1

pi−1

+Rl


fl
gl

− Al
ui−1

pi−1


 , i = m(l) + 2, . . . , 2m(l) + 1

(4.13)

4. Assign:

Bl

fl
gl

 =

u2m(l)+1

p2m(l)+1

 (4.14)

The V-cycle algorithm is then given by

uk+1

pk+1

 =

uk
pk

+BL


f

0

− AL,ε
uk
pk


 . (4.15)

For the standard V-cycle, m(l) per level l is constant

mstandard(l) = m(L) = k,

while for the variable V-cycle, m(l) is halved per level

mvariable(l) = k · 2l−L,

as done in Kanschat & Mao [65].
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4.8 Equivalence of Smoothers for the Perturbed

Primary and the Dual Problem

Again following the work of Kanschat and Mao [65], we seek to show the equivalence

of smoothers for our perturbed primary and dual problems.

Theorem 2. Xl := {(u, p) ∈ V l ×Ql : πQh
(∇ · u) = εp}

1. Rl preserves Xl. For

ûl
p̂l

 := Rl

ul
pl



it holds

ûl = Rlul.

2. Il : Xl−1,ε → Xl−1,ε. For

ûl
p̂l

 := ITl Il−1

ul−1

pl−1



it holds

ûl = ITl Il−1ul−1.
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3. The coarse grid solution operator maps Xl into Xl−1,ε:

Xl−1,ε 3

ûl−1

p̂l−1

 := A−1
l−1,εITl−1IlAl

ul
pl



and it holds

ûl−1 = A−1
l−1,εITl−1IlAlul.

Proof. 1. (u, p) ∈ Xl is equivalent to

Al


u
p

 ,
0

q


 = 0 ∀q ∈ Ql (4.16)

Therefore, we check this property for the smoothed pair for all qw that have

support on just one cell w:

Al

Rl

u
p

 ,
 0

qw




= η
∑
v

Il,w
 0

qw



T

AlIl,vA−1
l,v ITl,v

u
p



= η
∑

v∩N(w) 6=∅
v 63w

Il,w
 0

qw



T

AlIl,vA−1
l,v ITl,v

u
p



+ η
∑
v3w

Il,w
 0

qw



T

AlIl,vA−1
l,v ITl,v

u
p

 .

77



For the second term, we get

η
∑
v3w

Il,w
 0

qw



T

AlIl,vA−1
l,v ITl,v

u
p



= η
∑
v3w

Il,vITl,vIl,w
 0

qw



T

AlIl,vA−1
l,v ITl,v

u
p



= η
∑
v3w

 0

qw


T

ITl,wIl,v ITl,vAlIl,v︸ ︷︷ ︸
Al,v

A−1
l,v ITl,v

u
p



= η
∑
v3w

 0

qw


T

ITl,wIl,vITl,vIl,vITl,v

u
p

 = η
∑
v3w

 0

qw


T

ITl,wIl,vITl,v

u
p



= η
∑
v3w

 0

qw


T

ITl,w

u
p

 = η
∑
v3w

(qw, p).

For the first term, we have in case of discontinuous ansatz spaces that ITl,wAlITl,w
just contains face terms and only the velocity-velocity block contain these. In

particular, we have

η
∑

v∩N(w) 6=∅
v 63w

Il,w
 0

qw



T

AlIl,vA−1
l,v ITl,v

u
p



= η
∑

v∩N(w)6=∅
v 63w

(
0 Il,w,pqw

)? 0

0 0

 Il,vA−1
l,v ITl,v

u
p

 = 0.
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Similarly, we have for discontinuous ansatz spaces (∑vIl,vITl,v = I))

0 = Al


u
p

 ,
 0

qw


 = η

∑
v

Il,w
 0

qw



T

AlIl,vITl,v

u
p



= η
∑

v∩N(w)6=∅
v 63w

Il,w
 0

qw



T

AlIl,vITl,v

u
p



+ η
∑
v3w

Il,w
 0

qw



T

AlIl,vITl,v

u
p



= η
∑
v3w

Il,w
 0

qw



T

AlIl,vITl,v

u
p



= η
∑
v3w

Il,w
 0

qw



T

Il,vAl,vITl,v

u
p

 .

Provided the first property holds, we want to prove ûl = Rlul:

(Alûl, w) =

Al
ûl
p̂l

 , Il,w
w

0




= η

Al∑
v

Il,vA−1
l,v ITl,v

ul
pl

 , Il,w
w

0




= η
∑

v∩N(w) 6=∅
v 63w

AlIl,vA−1
l,v ITl,v

ul
pl

 , Il,w
w

0




+ η
∑
v3w

AlIl,vA−1
l,v ITl,v

ul
pl

 , Il,w
w

0
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The second term gives

η
∑
v3w

AlIl,vA−1
l,v ITl,v

ul
pl

 , Il,w
w

0




= η
∑
v3w

AlIl,vA−1
l,v ITl,v

ul
pl

 , Il,vITl,vIl,w
w

0




= η
∑
v3w

ITl,vAlIl,vA−1
l,v ITl,v

ul
pl

 , ITl,vIl,w
w

0




= η
∑
v3w

ITl,v
ul
pl

 , ITl,vIl,w
w

0




= η
∑
v3w

(ITl,vul, ITl,vIl,ww)

= η
∑
v3w

(ITl,vAlIl,vA−1
l,v ITl,vul, ITl,vIl,ww)

= η
∑
v3w

(AlIl,vA−1
l,v ITl,vul, Il,ww)

2. Define the prolongated variables by

ûl
p̂l

 := ITl Il−1

ul−1

pl−1

 and since this is

just an inclusion mapping we have

ûl
p̂l

 =

ul−1

pl−1

 and in particular

Al


ûl
p̂l

 ,
0

ql


 = Al


ul−1

pl−1

 ,
0

ql




= (∇ · ul−1, ql)− (εpl−1, ql).
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This means Al


ûl
p̂l

 ,
0

ql


 = 0 for all ql ∈ Ql−1. What about ql ∈ Ql \Ql−1?

Next, we want to show ûl = Il(ul−1):

3. For the first property, we calculate

Al−1,ε

A−1
l−1,εITl−1IlAl

ul
pl

 ,
 0

ql−1




=

ITl−1Il−1ITl−1IlAl

ul
pl

 ,
 0

ql−1




=

ITl−1IlAl

ul
pl

 ,
 0

ql−1




=

Al
ul
pl

 , ITl Il−1

 0

ql−1


︸ ︷︷ ︸

∈0×Ql

 = 0.

Finally, we show ûl−1 = A−1
l−1,εITl−1IlAlul.
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We first notice

(Al−1,εûl−1,vl−1) =

Al−1,ε

ûl−1

p̂l−1

 ,
vl−1

0




=

Al−1,εA−1
l−1,εITl−1IlAl

ul
pl

 ,
vl−1

0




=

ITl−1IlAl

ul
pl

 ,
vl−1

0




=


Al

ul
pl

 , ITl Il−1

vl−1

0


︸ ︷︷ ︸

∈(V l×0)


= (Alul, ITl Il−1vl−1)

= (ITl−1IlAlul, vl−1).

This means Al−1,εûl−1 = ITl−1IlAlul and therefore

ûl−1 = A−1
l−1,εITl−1IlAlul.

4.9 Smoother Properties

In this section we rely heavily on the work of Widlund and Toselli [113] and Feng and

Karakashian [44].
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Proposition 1. If Rl satisfies the conditions

Al((Il −RlAl)w,w) ≥ 0, ∀w ∈ V l

and

(R−1
l [Il − Pl−1]w, [I − Pl−1)w) ≤ βlAl([Il − Pl−1]w, [Il − Pl−1]w), ∀w ∈ V l

where βl = O(γ−1
l ), then it holds

0 ≤ Al([Il − BlAl)w,w) ≤ δAl(w,w), ∀w ∈ V l

where δ = Ĉ
1+Ĉ and Ĉ is defined below.

The proof of which is omitted as it is standard multigrid theory [18, 20].

Lemma 4. Let η ≤ 2−dim, then

Al((Il −RlAl)w,w) ≥ 0, ∀w ∈ V l.

Proof. Following Kanschat & Mao [65], consider w ∈ V l with support on a single cell

K. We can decompose the term in question into

Al((Il −RlAl)w,w)

= Al(w,w)− Al((RlAl)w,w)

= Al(w,w)− η
∑
v

Al(Il,vA−1
l,v I

T
l,vAlw,w)

= Al(w,w)− η
∑
v

Al(Il,vP T
l,vw,w)
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Using the projection property of Pl,v, we notice for the first part

(AlIl,vPl,vw,w) = Al(Il,vPl,vw, Il,vPl,vw)

= Al(Il,vPl,vw, Il,vPl,vw)|V l,v

= (AlIl,vPl,vw,w)|V l,v

due to the fact that the support of both arguments is restricted to V l,v.

With this, we observe

Al(Il,vA−1
l,v I

T
l,vAlw, Il,vA

−1
l,v I

T
l,vAlw)|V l,v

= Al(Il,vA−1
l,v I

T
l,vAlw,w)

= Al(Il,vA−1
l,v I

T
l,vAlw,w)|V l,v

≤ (Al(w,w)|V l,v
) 1

2 (Al(Il,vA−1
l,v I

T
l,vAlw, Il,vA

−1
l,v I

T
l,vAlw)|V l,v

) 1
2

For the last term, we can estimate

(Al − Al)(Il,vP T
l,vw, Il,vP

T
l,vw) + Al(Il,vP T

l,vw, Il,vP
T
l,vw)

= (π⊥Qh
(∇ · Il,vP T

l,vw), π⊥Qh
(∇ · Il,vP T

l,vw)) + Al(Il,vP T
l,vw, Il,vP

T
l,vw)

≤ (π⊥Qh
(∇ · Il,vP T

l,vw), π⊥Qh
(∇ · Il,vP T

l,vw)) + Al(Il,vP T
l,vw, Il,vP

T
l,vw)

≤ Al(Il,vP T
l,vw, Il,vP

T
l,vw)

and hence

Al(Il,vA−1
l,v I

T
l,vAlw,w) ≤ Al(w,w)|V l,v
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Therefore, it holds

Al((Il −RlAl)w,w) ≥ Al(w,w)− η
∑
v

Al(w,w)|V l,v
.

A vertex is part of a maximum of 2dim cells and hence the last term is non-negative

for η ≤ 2−dim.

The point of the next lemma is that it provides us with easier way to prove Lemma

6 (namely, the first inequality in the proof of Lemma 6). We only have to bound the

sum of the local (energy) norms of a decomposition (we can choose) by the global

(energy) norm.

Lemma 5. It holds

η
∑
v

(R−1
l u,u) = inf

uv∈V l,v∑
v
Il,vuv=u

∑
v

Al(Il,vuv, Il,vuv)
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Proof. Following Kanschat & Mao [65], we compute

η(R−1
l u,u) = η

∑
v

(R−1
l u, Il,vuv) = η

∑
v

(Al,vA−1
l,v I

T
l,vR

−1
l u,uv)

= η
∑
v

(ITl,vAlIl,vA−1
l,v I

T
l,vR

−1
l u,uv) = η

∑
v

(AlIl,vA−1
l,v I

T
l,vR

−1
l u, Il,vuv)

≤ η
1
2

(
η
∑
v

(AlIl,vA−1
l,v I

T
l,vR

−1
l u, Il,vA

−1
l,v I

T
l,vR

−1
l u)

) 1
2
(∑

v

(AlIl,vuv, Il,vuv)
) 1

2

= η
1
2

(
η
∑
v

(Il,vA−1
l,vAl,vA

−1
l,v I

T
l,vR

−1
l u, R

−1
l u)

) 1
2
(∑

v

(AlIl,vuv, Il,vuv)
) 1

2

= η
1
2

(
η
∑
v

(Il,vA−1
l,v I

T
l,vR

−1
l u, R

−1
l u)

) 1
2
(∑

v

(AlIl,vuv, Il,vuv)
) 1

2

= η
1
2 (RlR

−1
l u, R

−1
l u) 1

2

(∑
v

(AlIl,vuv, Il,vuv)
) 1

2

= η
1
2 (u,R−1

l u) 1
2

(∑
v

(AlIl,vuv, Il,vuv)
) 1

2

≤
∑
v

(AlIl,vuv, Il,vuv).

For uv = ηA−1
l,v I

T
l,vR

−1
l u it holds

∑
v

Il,vuv =
∑
v

ηIl,vA
−1
l,v I

T
l,vR

−1
l u = RlR

−1
l u = u

and

∑
v

(AlIl,vuv, Il,vuv) =
∑
v

(AlIl,vηA−1
l,v I

T
l,vR

−1
l u, Il,vηA

−1
l,v I

T
l,vR

−1
l u)

= η
∑
v

(Il,vA−1
l,v I

T
l,vAlIl,vηA

−1
l,v I

T
l,vR

−1
l u, R

−1
l u)

= η(Il,vA−1
l,v I

T
l,vAlu,R

−1
l u) = η(u,R−1

l u).
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Lemma 6.

(R−1
l [Il − Pl−1]w, [I − Pl−1)w) ≤ βlAl([Il − Pl−1]w, [Il − Pl−1]w), ∀w ∈ V l

Proof. Using Lemma 5 we are left with showing

∑
v

(AlIl,vuv, Il,vuv) ≤ βlAl([Il − Pl−1]w, [Il − Pl−1]w)

for a decomposition (uv)v of [Il − Pl−1]w, i.e.

u := [Il − Pl−1]w =
∑
v

Il,vuv.

We choose the decomposition defined in Section 4.10 and note

u0 = Pl−1u = Pl−1[Il − Pl−1]w

= [Pl−1Il − P 2
l−1]w = 0.

Therefore it holds uj ∈ V l,j, j = 1, . . . , J and Theorem 3 gives

J∑
j=1

al(uj,uj) =
J∑
j=0

al(uj,uj) . al(u,u).
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Now, for the problem in one variable, we get

∑
v

AL(uv,uv)

=
∑
v

al(uv,uv) + α(uv,uv) + ε−1‖πQh
(∇ · uv)‖2

0 + τgd‖π⊥Qh
(∇ · uv)‖2

0

≤ Cal(u,u) + Cα(u,u) +
∑
v

ε−1‖πQh
(∇ · uv)‖2

0 + τgd‖π⊥Qh
(∇ · uv)‖2

0

= Cal(u,u) +
∑
v

ε−1‖πQh
(∇ · u⊥v )‖2

0 + τgd‖∇ · u⊥v ‖2
0

≤ Cal(u,u) +
∑
v

ε−1al(u⊥v ,u⊥v ) + τgd‖∇ · u⊥v ‖2
0

≤ Cal(u,u) + Cε−1al(u⊥l ,u⊥l ) +
∑
v

τgd‖∇ · u⊥v ‖2
0

≤ Cal(u,u) + Cε−1 ν

γ2
l

‖πQh
(∇ · u⊥l )‖2

0 + C
τgd
ν
al(u,u)

≤ C
τgd
ν
AL(uv,uv)

For the step

∑
v

al(u⊥v ,u⊥v ) ≤ Cal(u⊥l ,u⊥l )

we need to have some justification. This is the main difficulty and the reason we follow

Feng and Karakashian [44], and although progress has been made, this analysis is not

yet complete.
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4.10 Domain Decomposition for Continous Lagrange

Elements

Following Widlund and Toselli [113] and Feng and Karakashian [44], we attempt to

find a suitable domain decomposition for the proof of Lemma 6. For a Cartesian mesh

on level l, i,e. Tl, consider the (inner) patches (Ωl,j)j=1,...,J . Then, we can decompose

the space V l as follows: Let (xj,i)i=1...k be the support points of Vl,j, Assume that

there exist non-negative C1-functions {θj}Jj=1 such that

• ∑
jθj ≡ 1 in Tl \ ∂Tl

• θj = 0 in Tl \ Ωl,j

• ‖∇θj‖L∞ ≤ 1
hl

where N(xi,j) is the number of patches that contain the support point xj,i

N(xi,j) := |{(Ωl,j)j=1,...,J : xi,j ∈ Ωl,j \ ∂Ωl,j}| .

Let ΠVl,j
be the Lagrange interpolation operator onto Vl,j and define for vl ∈ V l

vl,0 := ITl,vPl−1Il,vvl vl,j := ΠVl,j
(θjvl − vl,0 ∈ Vl,j.

By construction, it holds ∑jvl,j = vl and vl,j defines a decomposition of vl.
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4.10.1 Estimates

Following Feng and Karakashian [44] and Widlund and Toselli [113], we prove the

following error projection

Lemma 7.

al(Pl−1u, Pl−1u) ≤ al(u,u), (4.17)

‖u− Pl−1u‖2
0,Ω . al(u,u)h2

l−1

(
ν + τgd
τgd

)2

. (4.18)

Proof. Due to the fact that Pl−1 is a projection operator with respect to al, which is

the same for each level, the first claim holds true. For the second claim, consider the

auxiliary problem:

Find (φu, φp) ∈ H1
0 (Ω)× L2(Ω) such that

ν(∇φu,∇ψu)− (∇ · φu, ψp)− (∇ ·ψu, φp)− ε(φp, ψp) = (u− Pl−1u,ψu)

for all (ψu, ψp) ∈ H1
0 (Ω)× L2(Ω).

This problem has a unique solution (φu, φp) ∈ H2(Ω)×H1(Ω) (provided Ω is convex)

and it holds

ν‖φu‖2
2,Ω + ‖φp‖2

1,Ω . ‖u− Pl−1u‖2
0,Ω.
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Now, we can conclude

‖u− Pl−1u‖2
0,Ω = al(φ,u− Pl−1u)

≤ inf
v∈Xl−1

al(φ− v,u− Pl−1u)

≤ al(u− Pl−1u,u− Pl−1u) 1
2 inf
v∈Xl−1

al(φ− v, φ− v) 1
2

. al(u,u) 1
2hl−1((ν + τgd)‖φu‖2,Ω + ‖φp‖1,Ω)

. al(u,u) 1
2hl−1

ν + τgd
ν
‖u− Pl−1u‖0,Ω

. al(u,u)h2
l−1

(
ν + τgd
ν

)2
.

Theorem 3. For any vl ∈ V l consider the decomposition vl,j defined above. For this

decomposition it holds

J∑
j=0

al(vl,j,vl,j) . al(vl, vl)

provided τgd . min{ν, ε−1}.

Proof. wu := u− u0 wp := p− p0

al(vl,j,vl,j) =
∑

Ki∈Ωl,j

ν‖∇vl,j‖2
0,Ki

+ τgd‖∇ · vl,j − εpl,j‖2
0,Ki

+ ε‖pl,j‖2
0,Ki

≤
∑

Ki∈Ωl,j

ν‖∇vl,j‖2
0,Ki

+ 2τgd‖∇ · vl,j‖2
Ki

+ 2(τgdε2 + ε)‖pl,j‖2
0,Ki

Let θi,j be the average of θj over Ki. It holds that

‖θj − θi,j‖L∞(Kj) ≤ chjh
−1
l .
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Using this inequality we can bound the first term by

‖∇vl,j‖2
0,Ki
≤ 2‖∇ΠKi

(θi,jwu)‖2
0,Ki

+ 2‖∇ΠKi
(θi − θi,j)wu‖2

0,Ki

≤ 2‖∇wu‖2
0,Ki

+ ch−2
j ‖ΠKi

(θi − θi,j)wu‖2
0,Ki

and the last one by

‖pl,j‖2
0,Ki
≤ 2‖ΠKi

(θi,jwp)‖2
0,Ki

+ 2‖∇ΠKi
(θi − θi,j)wp‖2

0,Ki

≤ 2‖wp‖2
0,Ki

+ c‖ΠKi
(θi − θi,j)wp‖2

0,Ki
.

Now,

‖ΠKi
(θi − θi,j)wu‖2

0,Ki
≤ chdj‖θi − θi,j‖2

L∞(Ki)‖wu‖
2
L∞(Ki)

≤ c‖θi − θi,j‖2
L∞(Ki)‖wu‖

2
0,Ki

‖ΠKi
(θi − θi,j)wp‖2

0,Ki
≤ chdj‖θi − θi,j‖2

L∞(Ki)‖wp‖
2
L∞(Ki)

≤ c‖θi − θi,j‖2
L∞(Ki)‖wp‖

2
0,Ki

.

and this gives

‖∇vl,j‖2
0,Ki
≤ 2‖∇wu‖2

0,Ki
+ ch−2

l ‖wu‖2
0,Ki

‖pl,j‖2
0,Ki
≤ c‖wp‖2

0,Ki
.

Since the divergence-free subspaces are not nested we here cannot do more than using

the same estimate for the divergence stabilization and we have

al(vl,j,vl,j) .
∑

Ki∈Ωl,j

(ν + τgd)(‖∇wu‖2
0,Ki

+ h−2
l ‖wu‖2

0,Ki
) + (τgdε2 + ε)‖wp‖2

0,Ki
.
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Finally, using Lemma 7 we estimate

∑
j

al(vl,j,vl,j)

.
∑
j

∑
Ki∈Ωl,j

[
(ν + τgd)(‖∇wu‖2

0,Ki
+ h−2

l

(
ν + τgd
ν

)2
h2
l−1al(u,u))

+ (τgdε2 + ε)‖wp‖2
0,Ki

]
.

(
1 +

(
ν + τgd
ν

)2 h2
l−1
h2
l

+ τgdε
2 + ε

ε

)
al(u,u)

.

(
ν + τgd
ν

+ (ν + τgd)3

ν2
h2
l−1
h2
l

+ τgdε

)
al(u,u)

. al(u,u).

provided τgd ≤ min{ν, ε−1}.

4.11 Numerical Results

• We use GMRES with the Bl,ε preconditioner we defined.

• Instead of an additive smoother Rl,ε := η
∑
v Il,vA−1

l,v ITl,v, we show the use of a

multiplicative smoother Rl,ε := η
∏
v Il,vA−1

l,v ITl,v. The multiplicative smoother,

unlike the additive smoother, cannot be used in parallel.

• We use the file Files/polynomial.prm from the Github repository named

dissertation of user rrgrove6.

The test problem that we used is

− η∆u +∇p = −η∆uref +∇pref (4.19)

∇ · u = 0 (4.20)
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with the reference solution u(x, y) = (sin2(πx) sin(2πy),− sin2(πy) sin(2πx)) and

p(x, y) = sin(πx) cos(πy) in 2D and a similar one in 3D.

In the following tables, QBubble refers to the “implementation of a scalar Lagrange

finite element that yields the finite element space of continuous, piecewise polynomials

of degree p in each coordinate direction plus some bubble enrichment space spanned

by (2xj − 1)p−1Πdim−1
i=0 (xi(1− xi))” as described in the deal.II manual [6].

Table 4.1: Iteration counts in 2D with ν = 1e-6 and nondistorted mesh using additive
smoother with smoother relaxation term of .25 for all elements

Q2 ×Q1 Q2 ×DGP1 QBubble ×Q1 Q2 ×Q1 +DG0
γ γ γ γ

GR 0.0 1.e-6 1.0 0.0 1.e-6 1.0 0.0 1.e-6 1.0 0.0 1.e-6 1.0
0 2 2 2 2 2 2 3 4 4 2 2 2
1 15 14 28 13 12 24 31 30 62 15 15 28
2 54 49 281 18 18 70 90 88 1000f 53 50 193
3 1000f 1000f 1000f 19 19 236 1000f 1000f 1000f 1000f 1000f 1000f
4 1000f 1000f 1000f 20 18 459 1000f 1000f 1000f 1000f 1000f 1000f

Table 4.2: Iteration counts in 2D with ν = 1e-6 and nondistorted mesh using additive
smoother with smoother relaxation term of .25 for Q2 × DGP1 elements and .0625
for all other elements

Q2 ×Q1 Q2 ×DGP1 QBubble ×Q1 Q2 ×Q1 +DG0
γ γ γ γ

GR 0.0 1.e-6 1.0 0.0 1.e-6 1.0 0.0 1.e-6 1.0 0.0 1.e-6 1.0
0 2 2 2 2 2 2 3 4 4 2 2 2
1 20 20 41 13 12 24 37 37 79 24 21 43
2 33 34 254 18 18 70 69 65 1000f 49 47 265
3 53 47 1000f 19 19 236 189 175 1000f 98 83 1000f
4 62 52 1000f 20 18 459 263 244 1000f 182 166 1000f

4.11.1 Interpretation of Numerical Results

From these numerical results, it is clear that local Schwarz smoothers are appli-

cable for inf-sup conforming elements and that we achieve comparable results to
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Table 4.3: Iteration counts in 2D with ν = 1e-6 and nondistorted mesh using multi-
plicative smoother with smoother relaxation term of 1.0 for all elements

Q2 ×Q1 Q2 ×DGP1 QBubble ×Q1 Q2 ×Q1 +DG0
γ γ γ γ

GR 0.0 1.e-6 1.0 0.0 1.e-6 1.0 0.0 1.e-6 1.0 0.0 1.e-6 1.0
0 1 1 1 1 1 1 1 1 1 1 1 1
1 6 6 16 3 3 9 18 17 38 7 6 16
2 9 8 49 5 5 32 28 34 97 21 19 58
3 10 9 138 6 5 89 37 40 553 65 60 381
4 11 9 282 6 5 195 38 41 - - - -

Table 4.4: Iteration counts in 2D with ν = 1e-6 and nondistorted mesh using additive
smoother with smoother relaxation term of .25 for Q3 × DGP2 elements and .0625
for all other higher order elements

Q3 ×Q2 Q3 ×DGP2 QBubble(3)×Q2 Q3 ×Q2 + (DG0?)
γ γ γ γ

GR 0.0 1.e-6 1.0 0.0 1.e-6 1.0 0.0 1.e-6 1.0 0.0 1.e-6 1.0
0 2 2 2 2 2 2 9 9 8 2 2 2
1 25 24 21 16 16 12 43 44 70 30 28 22
2 42 39 43 18 17 19 81 78 276 58 53 45
3 46 42 60 18 17 30 154 139 1000f 93 84 72
4 48 43 65 28 16 39 167 148 1000f 163 143 94

Table 4.5: Iteration counts in 2D with ν = 1e-6 and nondistorted mesh using multi-
plicative smoother with smoother relaxation term of 1.0 for all higher order elements

Q3 ×Q2 Q3 ×DGP2 QBubble(3)×Q2 Q3 ×Q2 + (DG0?)
γ γ γ γ

GR 0.0 1.e-6 1.0 0.0 1.e-6 1.0 0.0 1.e-6 1.0 0.0 1.e-6 1.0
0 1 1 1 1 1 1 1 1 1 1 1 1
1 5 5 5 3 3 3 16 16 27 7 8 6
2 9 9 10 4 4 6 32 35 44 17 16 12
3 12 11 18 4 3 8 39 41 76 31 28 22
4 13 11 31 3 3 8 46 44 156 57 50 37
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Table 4.6: Iteration counts in 2D with ν = 1 and nondistorted mesh using additive
smoother with smoother relaxation term of .25 for all elements

Q2 ×Q1 Q2 ×DGP1 QBubble ×Q1 Q2 ×Q1 +DG0
γ γ γ γ

GR 0.0 1.e-6 1.0 0.0 1.e-6 1.0 0.0 1.e-6 1.0 0.0 1.e-6 1.0
0 2 2 2 2 2 2 4 4 4 2 2 2
1 14 14 14 11 11 10 35 35 35 14 14 13
2 52 52 48 13 13 12 150 150 193 40 40 41
3 1000f 1000f 488 14 14 13 1000f 1000f 1000f 1000f 1000f 1000f
4 1000f 1000f 1000f 15 15 14 1000f 1000f 1000f 1000f 1000f 1000f

Table 4.7: Iteration counts in 3D with ν = 1e-6 and nondistorted mesh using additive
smoother with smoother relaxation term of .25 for all elements

Q2 ×Q1 Q2 ×DGP1 QBubble ×Q1 Q2 ×Q1 +DG0
γ γ γ γ

GR 0.0 1.e-6 1.0 0.0 1.e-6 1.0 0.0 1.e-6 1.0 0.0 1.e-6 1.0
0 2 2 2 2 2 2 2 5 2 2 2 2
1 35 34 477 21 20 72 183 177 1000f 38 32 194
2 1000f 1000f 1000f 30 38 426 1000f 1000f 1000f 1000f 1000f 1000f

the Raviart-Thomas elements studied in Kanschat & Mao [65]. We also see that

Qk ×DGPk−1 elements perform better than Qk ×Qk−1 elements.

4.12 Conclusions

Our goal was to extend Kanschat’s work to include include Qk+1 × DGPk elements

but we also look at numerical results for Taylor Hood (Qk+1×Qk), QBubble(k+1)×Qk,

and Qk+1×Qk+DG0 elements, that is, we wanted to show that Schwarz methods can

be used as multigrid smoother for the Stokes equations using conforming and inf-sup

stable discretization spaces, and that the iteration counts are sufficiently small. We

have strong numerical evidence to support that we can do this for the Qk ×DGPk−1
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elements, but the analysis is not complete, as we need justification for the step

∑
v

al(u⊥v ,u⊥v ) ≤ Cal(u⊥l ,u⊥l )

which is the main difficulty. By applying the GMG preconditioner to the entire

system matrix for Stokes, we hoped to get much better numbers for our iteration

counts than we did when we just applied the GMG preconditioner to the velocity

block of Stokes in Chapter 3. This seems to be the case, and if someone, in the

future, finds an efficient way to handle patch-based smoothers (as right now there it

is just too expensive build all of the local inverses), then this work could be a stepping

stone towards revolutionizing fluid flow solvers.
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Chapter 5

Three-field Stokes

5.1 Introduction

Inspired from the work of Keller et al [68], Rhebergen et al [92, 91] and Dannberg and

Heister [32], we explore the analysis of the three-field Stokes equations (5.1), (5.2),

and (5.3), as described in Chapter 1. Scientists in geoscience have seemingly been

using this formulation without a complete mathematical understanding, since, no

complete analysis or discussions of its discretization have been published. We investi-

gate extending the solvers developed in earlier chapters of this thesis to the three-field

Stokes equation to try to improve existing solvers used in current competitive geo-

science codes. There are numerous researchers in the geoscience community that the

results of this chapter directly impact, as simulating flows using the three-field Stokes

equation is a fundamental necessity in their research.
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5.2 ASPECT

The Open Source code ASPECT (Advanced Solver for Problems in Earth’s Convec-

Tion) [12] implements “state of the art algorithms for high-Rayleigh number flows

such as those in the Earth’s mantle” [72]. While working on this thesis we provided

numerous contributions to the ASPECT library including the implementation of an

advection only solver.

5.3 Introduction to Melt

As said by Dannberg and Heister [32], “mantle convection and melt migration are

important processes for our understanding of the physics of Earth’s interior and how

it is linked to observations at the surface”. It is important to have a simple physical

model that can be solved by standard methods which can describe the generation

of a partially molten rock, and the separation of the melt from this rock [79]. In

other words, when a heated porous rock rises and the pressure on the rock reduces,

this allows melt to generate in its pores. That is why Dannberg and Heister [32]

use the original formulation of the partial differential equations that model the two-

phase flow of the Earth’s mantle that were derived by McKenzie [79], which addresses

the compressibility of both individual phases making this formulation consistent for

higher pressures as well.
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5.4 Strong Form

Given forces f : Ω → Rd and g : Ω → Rd, we seek a velocity u : Ω → Rd, a fluid

pressure pf : Ω→ R, and a compaction pressure pc : Ω→ R where pc = (1−φ)(ps−pf )

such that

−∇ · (η∇u) +∇pf +∇pc = f (5.1)

∇ · u−∇ · (kD∇pf ) = g (5.2)

∇ · u + 1
ε
pc = 0 (5.3)

where η > 0 is the shear viscosity, kD ≥ 0 is the Darcy coefficient, and 1
ε
> 0 (so that

we recover Stokes if kD = 0), where ε is the bulk viscosity. Note that although η, ε > 0

are not constants, they are bounded, and thus we assume that 0 < ηmin ≤ η ≤ ηmax

and 0 < εmin ≤ ε ≤ εmax, respectively.

5.5 Assumptions

For our analysis, we need u to be 0 on the boundary

u|∂Ω = 0, (5.4)

pf to be mean zero throughout the domain

∫
pf dΩ = 0, (5.5)
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as well as a boundary condition for pf (there are multiple ways to do this; we pick it

to make the analysis easier):

∇pf · n = 0. (5.6)

5.6 The kD Cases

In our analysis of the three-field form, we found that vanishing kD changes the nature

of the PDE, so we will split our analysis up into three cases: kD = 0, kD > 0, and

kD ≥ 0.

5.7 Case 1: kD = 0 everywhere

The first case we look at is when kD = 0 everywhere (that is, there is no melt),

and in this case, we want to recover Stokes flow of the solid both analytically and

computationally.

5.7.1 Wellposedness (Continuous)

Let u ∈ X = H1
0 = {u ∈ H1(Ω),u|∂Ω = 0} and pf ∈ Y = L2(Ω). Letting φ = kD =

0, we reduce equations (5.1) and (5.2) to:

−∇ · (η∇u) +∇pf +∇pc = f

∇ · u((((((((hhhhhhhh−∇ · (kD∇pf ) = g

∇ · u + 1
ε
pc = 0
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But, since pc = ps − pf when φ = 0, we get

−∇ · (η∇u) +∇ps = f + ε∇g

∇ · u = 0

When there is no melt, g is typically 0 and then ps = pf since pc would then have to

become zero. Therefore, we have

−∇ · (η∇u) +∇pf = f (5.7)

∇ · u = 0. (5.8)

The analysis for this case was done entirely in Chapter 2.

5.8 Case 2: kD > 0 non-constant

We now turn our attention to the case where kD > 0, or in other words, there is melt

everywhere. In this case there is no need for an inf-sup condition and thus different

finite element choices can be made!

5.8.1 Well-posedness

Letting u ∈ X = H1
0 = {u ∈ H1(Ω),u|∂Ω = 0}, pf ∈ Y = H1

∗ = {pf ∈ H1(Ω),∇pf ·

n = 0,
∫

Ω pf = 0}, and pc ∈ Z = L2, we test equations (5.1), (5.2), and (5.3) with
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v, qf , qc, integrate by parts, and balance derivatives to get:

(η∇u,∇v)− (pf ,∇ · v)− (pc,∇ · v) = (f,v) (5.9)

(∇ · u, qf ) + (kD∇pf ,∇qf ) = (g, qf ) (5.10)

(∇ · u, qc) + 1
ε
(pc, qc) = 0 (5.11)

Note that since X, Y, and Z are all Hilbert spaces, then W = X
⊗
Y
⊗
Z is also a

Hilbert space. Now, we want

a ((u, pf , pc), (v, qf , qc)) : W → R

where the energy norm is

||(u, pf , pc)||W =
√
|ηu|21 + ||pf ||2 + |kDpf |21 + ||1

ε
pc||2. (5.12)

Adding the left hand sides of equations (5.9), (5.10), and (5.11) gives

a ((u, pf , pc), (v, qf , qc)) = (η∇u,∇v)− (pf ,∇ · v)

−(pc,∇ · v) + (∇ · u, qf )

+(kD∇pf ,∇qf ) + (∇ · u, qc)

+(1
ε
pc, qc).

Notice that if we flipped the sign on −(pf ,∇ · v) and −(pc,∇ · v) we would have

gotten a saddle point problem. We now try to satisfy the following theorem:
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Theorem 2.6 (Banach-Necas-Babuska) from Brezzi et al [23]

Let W be a Banach space and let V be a reflexive Banach space. Let a ∈ L(W×V ;R)

and f ∈ V ′. Then, the problem

Seek u ∈ W s.t. a(u,v) = f(v) ∀v ∈ V

is well-posed if and only if:

∃α > 0, inf
w∈W

sup
v∈V

a(w,v)
||w||W ||v||V

≥ α (5.13)

as well as

∀v ∈ V, (∀w ∈ W,a(w,v) = 0) =⇒ (v = 0). (5.14)

Moreover, the a priori estimate holds:

∀f ∈ V ′, ||u||W ≤
1
α
||f||V ′ . (5.15)

Note that for us V = W and we have already mentioned that W is a Hilbert

space so we have that it is a reflexive Banach space. Now we must show that

a ((u, pf , pc), (v, qf , qc)) is a continuous bilinear form on W ×W .
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Continuity

Looking at |a ((u, pf , pc), (v, qf , qc)) | and applying Cauchy-Schwarz yields

|a ((u, pf , pc), (v, qf , qc)) | ≤ ||η∇u||||∇v|| (5.16)

+||pf ||||∇ · v|| (5.17)

+||pc||||∇ · v|| (5.18)

+||∇ · u||||qf || (5.19)

+||kD∇pf ||||∇qf || (5.20)

+||∇ · u||||qc|| (5.21)

+||1
ε
pc||||qc|| (5.22)

Taking this line by line, we can reduce the above. Before we do this let’s look at our

norm (5.12) again:

√
|ηu|21 + ||pf ||2 + |kDpf |21 + ||1

ε
pc||2 ≥ ||η∇u||. (5.23)

Similarly, we find

√
|ηu|21 + ||pf ||2 + |kDpf |21 + ||1

ε
pc||2 ≥ ||kD∇pf ||, (5.24)

as well as √
|ηu|21 + ||pf ||2 + |kDpf |21 + ||1

ε
pc||2 ≥ ||

1
ε
pc||. (5.25)
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Now that we have these inequalities, we look at term (5.16):

||η∇u||||∇v|| ≤ ||η∇u|| 1
ηmin
||η∇v||

≤ 1
ηmin
||(u, pf , pc)||W ||(v, qf , qc)||W .

We now look at term (5.17):

||pf ||||∇ · v|| ≤ Cpc||∇pf ||||∇v||

≤ Cpc
1

kDmin

||kD∇pf ||
1
ηmin
||η∇v||

≤ Cpc
1

kDmin

1
ηmin
||(u, pf , pc)||W ||(v, qf , qc)||W .

Similarly, we reduce term (5.18):

||pc||||∇ · v|| ≤ ||pc||||∇v||

≤ εmax||
1
ε
pc||

1
ηmin
||η∇v||

≤ εmax

ηmin
||(u, pf , pc)||W ||(v, qf , qc)||W .

Similarly, we reduce term (5.19):

||∇ · u||||qf || ≤ ||∇u||Cpc||∇qf ||

≤ 1
ηmin
||η∇u||Cpc

1
kDmin

||kD∇qf ||

≤ 1
ηmin

Cpc
1

kDmin

||(u, pf , pc)||W ||(v, qf , qc)||W .
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where Cpc is the Poincaré constant [88]. Similarly, we reduce term (5.20).

||kD∇pf ||||∇qf || ≤ ||kD∇pf ||
1

kDmin

||kD∇qf ||

≤ 1
kDmin

||(u, pf , pc)||W ||(v, qf , qc)||W

Similarly, we reduce term (5.21):

||∇ · u||||qc|| ≤ ||∇u||||qc||

≤ 1
ηmin
||η∇u||εmax||

1
ε
qc||

≤ εmax

ηmin
||(u, pf , pc)||W ||(v, qf , qc)||W .

Similarly, we reduce term (5.22):

||1
ε
pc||||qc|| ≤ ||1

ε
pc||εmax||

1
ε
qc||

≤ εmax||(u, pf , pc)||W ||(v, qf , qc)||W .

Therefore, we have that

|a ((u, pf , pc), (v, qf , qc)) | ≤ c1||(u, pf , pc)||W ||(v, qf , qc)||W . (5.26)

where c1 = εmax + 1
kDmin

+ 1
ηmin

(
1 + 2

(
εmax + Cpc

1
kDmin

))
.
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Boundedness of Right Hand Side

Adding the right hand sides of equations (5.10) and (5.11) yields

F (v, qf , qc) = G(v) +H(qf )

≤ ||G||H−1 ||∇v||+ ||H||Y ′ ||∇qf ||

= ||G||H−1
1
ηmin
||η∇v||+ ||H||Y ′

1
kDmin

||kD∇qf ||

≤
(

1
ηmin
||G||H−1 + 1

kDmin

||H||Y ′
)
||(v, qf , qc)||W .

Therefore, we have

F (v, qf , qc) ≤ c3||(v, qf , qc)||W , (5.27)

where c3 = 1
ηmin
||G||H−1 + 1

kDmin
||H||Y ′ .

Fulfilling equation (5.13)

Instead of equation (5.13), we use Remark 2.9 from Brezzi et al [23] to instead satisfy

∀u, p ∃v, q s.t. a ((u, pf , pc), (v, qf , qc))
||(v, qf , qc)||

≥ α||(u, pf , pc)|| (5.28)

Let u, p be given and use Lemma A.42 in Brezzi et al [23] to write that ∀vf ∈ H
′
0

such that:

pf = ∇ · vf (5.29)

||∇vf || ≤ c0||pf ||. (5.30)
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Note that if we pick v = −vf , qf = qc = 0, then we have

a ((u, pf , pc), (−vf , 0, 0)) = −(η∇u,∇vf ) + ||pf ||2 − (pc,∇ · vf )

= −(η∇u,∇vf ) + ||pf ||2 − (pc, pf ).

And therefore, using Holder’s Inequality twice with ξ1 = 1
2 and ε2 <

c2
0

2ξ1
yields the

following inequality

a ((u, pf , pc), (−vf , 0, 0)) ≥ ||pf ||2 −
1

2ξ2
||η∇u||2 − ξ2

2 ||η∇vf ||

− 1
2ξ1
||pc||2 −

ξ1

2 ||pf ||
2.

And making sure 1
2ξ2
, ξ2

2 ,
1

2ξ1
, and ξ1

2 are all strictly less than 1 (which was achieved

with our choice of ξ1 and ξ2), by letting v = u − αvf (where α = min
{
c2

0ηmin
η2

max
, 1
ε2

}
),

qf = pf , and qf = qc), we obtain the following

a ((u, pf , pc), (v, qf , qc)) ≥ |ηu|21 + |kDpf |21 + ||1
ε
pc||2 + α||pf ||2

− α

2ξ2
||η∇u||2 − αξ2

2 ||η∇vf || −
α

2ξ1
||pc||2 −

αξ1

2 ||pf ||
2

≥ 1
2 ||u, p||

2

≥ 1
2 ||u, p||

1
1 + αηmax

||v, q||W
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where the last inequality comes from the fact that

||v, q|| ≤ ||u, p||+ ||αvf , 0||

≤ ||u, p||+ αηmax||∇vf ||

= ||u, p||+ αηmax||pf ||

≤ (1 + αηmax) · ||u, p||

Fufilling equation (5.14)

For us, equation (5.14) boils down to showing

∀(u, p), [∀(v, q), a((u, p), (v, q)) = 0] =⇒ pf = pc = 0 and u = 0 (5.31)

Let u, p = (pf , pc) be given and

a((u, p), (u, p)) = ||η∇u||2 + ||kD∇pf ||2 + ||pf ||2 + ||1
ε
pc|| = 0 (5.32)

Now we will use three different steps to show equation (5.31):

Step 1:

Let q = (0, 0),v = u and thus

0 = a((u, p), (u, 0))

= ||η∇u||2

≥ c||u||2 =⇒ ||u||2 = 0 =⇒ u = 0.

Step 2:
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Let q = (0, pc),v = 0 and thus

0 = a((u, p), (0, (0, pc)))

= ||1
ε
pc||2 =⇒ pc = 0 if ε <∞.

Step 3:

Let q = (0, 0),v = u− αvf and thus

0 ≥ ||pf ||2 + ||kD∇pf ||

=⇒ ||pf ||2 = 0 =⇒ pf = 0.

5.8.2 Convergence Rates

Letting W = H1
0 ×H1

∗ × L2, Wh = Qk ×Ql ×Qm, and p = (pf , pc) we get

||u− uh, p− ph||2W ≤ ch2kηmax|u|2k+1 + h2(l+1)|pf |2l+1

+ch2lkDmax|pf |2l+1 + ch2(m+1) 1
εmin
|pc|2m+1

=⇒ ||u − uh, p − ph||W ≤ chmin(k,l+1,l,m+1). This agrees with the results found

in Dannberg and Heister [32]. When using Q2 × Q1 × Q1 elements (called Q2Q1Q1

henceforth in this chapter), both Dannberg and Heister [32] and this analysis shows

that you get suboptimal rates.
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5.9 Numerical Results

We now present our numerical results for the cases where kD = 0 and kD = 1 > 0.

5.9.1 Test problem

The following test problem is used in ASPECT [72] for all of the proceeding calcula-

tions:

η = 1

ξ = 0.1 + 0.1e1−20(x2+y2)

u = (cos(y), sin(x))

div u = 0

ps = sin(xy)

pc = sin(x+ y)

pf = −2 sin(x+ y) + sin(xy)

5.9.2 Convergence Rates

The convergence rates for the case where kD = 0 is seen in Table 5.1 and the case

where kD = 1 > 0 is seen in Table 5.2.

5.9.3 Expected vs. Calculated / Case 3: kD ≥ 0

Note that Table 5.3 gives expected and calculated orders of convergence in the L2

norm, where red implies suboptimal rates and X implies that there was no conver-
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Table 5.1: L2 convergence rates for kD = 0

Q2Q2Q1 Q2Q1Q1
h u ratio pf ratio pc ratio u ratio pf ratio pc ratio

3.5E-1 1.8E-4 - 8.4E-3 - 4.1E-3 - 1.8E-4 - 3.3E+4 - 4.1E-3 -
1.7E-1 2.2E-5 8.0 2.1E-3 4.0 1.0E-3 4.0 2.2E-5 8.0 1.3E+4 2.6 1.0E-3 4.0
8.8E-2 2.8E-6 8.0 5.2E-4 4.0 2.5E-4 4.0 2.8E-6 8.0 1.1E+4 1.2 2.5E-4 4.0
4.4E-2 3.5E-7 8.0 1.3E-4 4.0 6.4E-5 4.0 3.5E-7 8.0 4.1E+2 27.4 6.4E-5 4.0

Table 5.2: L2 convergence rates for kD = 1 > 0

Q2Q2Q1 Q2Q1Q1
h u ratio pf ratio pc ratio u ratio pf ratio pc ratio

3.5E-1 1.8E-4 - 4.0E-4 - 4.1E-3 - 3.2E-3 - 1.4E-2 - 4.2E-3 -
1.7E-1 2.2E-5 8.1 5.0E-5 8.0 1.0E-3 4.0 8.1E-4 4.0 3.5E-3 4.0 1.0E-3 4.0
8.8E-2 2.8E-6 8.0 6.3E-6 8.0 2.5E-4 4.0 2.0E-4 4.0 8.8E-4 4.0 2.6E-4 4.0
4.4E-2 3.5E-7 8.0 7.8E-7 8.0 6.4E-5 4.0 5.1E-5 4.0 2.2E-4 4.0 6.5E-5 4.0

gence:

Table 5.3: Optimal, expected and calculated convergence rates (L2-norm)

Q2 Q1 Q1 Q2 Q2 Q1
optimal rates 3 2 2 3 3 2

kD = 0 (expected) 3 2 2 X X X
kD = 0 (calculated) 3 2 2 3 X 2
kD = 0 (expected) 2 2 1 3 3 2

kD >= 1 0 (calculated) 2 2 2 3 3 2

In conclusion, Q2Q1Q1 elements always converge but have suboptimal rates if kD > 0.

Q2Q2Q1 elements have optimal rates but do not converge if kD = 0. Therefore, in

realistic problems where kD > 0 somewhere but kD = 0 most places, it is important

to use Q2Q1Q1 elements so that you get convergence. If you bound kD away from

zero, then it is best to use Q2Q2Q1 as you see optimal convergence rates with this

finite element choice.
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5.10 Melt Linear Solver

We now consider the linear solver used in Heister & Dannberg [32] where they obtained

the linear system


A BT BT

B N 0

B 0 K




Us

Pf

Pc

 =


F

G

0

 , (5.33)

where N is the discretization of − (KD∇pf ,∇qf ) in the incompressible case and K is

given by −
(

1
ξ
pc, qc

)
.

Based on the work of Rhebergen et al. [92], Heister & Dannberg [32] solved the block

system (5.33) using flexible GMRES with the upper block triangular preconditioner

(preconditioned from the right)

P−1 =


A BT BT

0 X 0

0 0 Y



−1

.

Heister & Dannberg [32] chose

X̂ = −1
η
Mpf

−KDLpf
≈ −BA−1BT + N = X

and

Ŷ = −(1
η

+ 1
ξ

)Mpc ≈ −BA−1BT + K = Y,

where M∗ and L∗ are mass and stiffness matrices, respectively.

As stated in Heister & Dannberg [32], “The approximation for A−1 is done using
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an inner CG solver with a relative tolerance of 10−2 preconditioned by Trilinos ML

applied to the diagonal blocks of A. The Schur complement solves for X̂−1 and Ŷ−1

are also done using CG preconditioned by a block ILU(0).”

5.10.1 Another Approach

Unfortunately, that approach used in Heister & Dannberg [32] can be made better

as a better preconditioner should have the Schur complement S = BA−1BT in two

spots due to Gaussian elimination, and thus should actually be

P−1 =


A BT BT

0 N− S −S

0 −S K− S



−1

.

Continuing the use of Gaussian elimination one can see that this is equivalent to

Rhebergen et al.’s [92] ideal preconditioner of

P−1 =


A BT BT

0 N− S −S

0 0 K− S − S(N − S)−1S



−1

.

Rhebergen et al. [92] then proceed to take the inverse of K− S and K− S − S(N −

S)−1S whereas we instead take the inverse of the bottom right 2 × 2 matrix of our

preconditioner, which we call Q−1. Recall that N − S = − 1
η
Mpf

− KDLpf
and
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K− S = −( 1
η

+ 1
ξ
)Mpc , and therefore our preconditioner can be written as:

P−1 =


A BT BT

0 − 1
η
Mpf

−KDLpf
− 1
η
Mpc

0 − 1
η
Mpc −( 1

η
+ 1

ξ
)Mpc



−1

.

As previously mentioned, we then need to take the bottom left 2× 2 matrix and find

the inverse of it. One can see that if α = ξ
η
→∞ and η is set to be a constant, then

Q−1 =

− 1
η
Mpf

−KDLpf
− 1
η
Mpc

− 1
η
Mpf

−( 1
η

+ 1
ξ
)Mpc


−1

.

becomes

Q−1 =

− 1
η
Mpf

−KDLpf
− 1
η
Mpc

− 1
η
Mpf

− 1
η
Mpc


−1

.

which becomes

Q−1 =

− 1
η
Mpf

− 1
η
Mpc

− 1
η
Mpf

− 1
η
Mpc


−1

.

as KD → 0, which is singular and we can no longer expect a solution from our iterative

solvers.
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5.10.2 Arbogast-inspired Idea

We need a way to retain solvability when KD → 0. If we replace pc with p̄c, where

pc =
√
KD · p̄c, and multiply the bottom equation by

√
KD then, for the linear system,

we get


A BT

√
KDBT

B N 0
√
KDB 0 KDK




Us

Pf

Pc

 =


F

G

0

 , (5.34)

which results in the new preconditioner

P−1 =


A BT

√
KDBT

0 − 1
η
Mpf

−KDLpf
−
√
KD

η
Mpc

0 −
√
KD

η
Mpc −KD( 1

η
+ 1

ξ
)Mpc



−1

.

This idea was motivated by Arbogast et al [4]. As done above, looking at the bottom

left 2× 2 matrix and find the inverse of it for our new method looks like:

Q−1 =

− 1
η
Mpf

−KDLpf
−
√
KD

1
η
Mpc

−
√
KD

1
η
Mpc −KD

1
η
Mpc


−1

.

which becomes

Q−1 =

− 1
η
Mpf

0

0 0


−1

.

as KD → 0. In practice, we constrain entries of pc = 0 if
√
kd vanishes, which allows
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us to compute Q−1 as it is no longer singular.

5.11 Numerical Results

Here we want to use Q2Q1Q1 elements for kD = 1 using a modified ASPECT that uses

AMG instead of ILU in the preconditioner for S (in order to ensure a fair comparison

between the two methods) against our Arbogast-inspired method to check convergence

rates as well as look at the number of iterations of the solver as we increase α and

decrease h. We use all of the files under Files/melt solver kd1 from the Github

repository named dissertation of user rrgrove6. Note that numerical results for

kD = 0 are omitted from this thesis as both approaches gave the same convergence

rates and iterations counts even when increasing α or decreasing h.

5.11.1 Convergence Rates of Arbogast-inspired Idea

In Table 5.4, it can be seen that our Arbogast-inspired approach has the same con-

vergence rates as our old approach for kD = 1 and α = 1.

Table 5.4: L2 convergence rates of both approaches with kD = 1 and α = 1

Q2Q1Q1
h u ratio pf ratio pc ratio

3.5e-1 2.2e-3 - 1.5e-2 - 5.4e-3 -
1.8e-1 5.4e-4 4.0 3.7e-3 4.0 1.4e-3 4.0
8.8e-2 1.4e-4 4.0 9.1e-4 4.0 3.4e-4 4.0
4.4e-2 3.4e-5 4.0 2.3e-4 4.0 8.4e-5 4.0
2.2e-2 8.5e-6 4.0 5.7e-5 4.0 2.1-5 4.0
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5.11.2 Iteration Counts

Table 5.5 and Table 5.6 show the iteration counts for approach used in ASPECT

currently and the Arbogast-inspired approach, respectively, with kD = 1 and Q2Q1Q1

elements. We only look at the number of iterations of the solver here. It can be

seen that our Arbogast-inspired approach handles α becoming larger better than the

approach used in ASPECT currently. Also, as h becomes smaller, the number of

outer iterations for the new method is becoming constant, which is not true for the

approach used in ASPECT currently. This means that as h continues to grow smaller,

our new method will continue to best the approach used in ASPECT currently.

Table 5.5: Iteration counts for approach used in ASPECT currently with AMG for S
and kD = 1 and Q2Q1Q1 elements

α = 1 α = 10 α = 100 α = 1000
DoFs outer SA SS outer SA SS outer SA SS outer SA SS
1,977 15 16 16 22 23 23 24 25 25 24 25 25
7,401 16 74 17 24 104 25 27 116 28 27 117 28
28,617 16 81 62 25 116 99 27 126 108 27 126 108
112,521 16 82 65 25 126 104 28 139 116 28 139 116
446,217 15 86 69 27 143 123 32 167 143 34 179 152

Table 5.6: Iteration counts for our Arbogast-inspired approach with kD = 1 and
Q2Q1Q1 elements

α = 1 α = 10 α = 100 α = 1000
DoFs outer SA SS outer SA SS outer SA SS outer SA SS
1,977 12 13 13 16 17 17 18 19 19 18 19 19
7,401 14 70 15 21 96 22 23 105 24 24 107 25
28,617 14 74 69 22 112 96 24 120 103 24 120 103
112,521 14 74 75 22 113 111 24 121 114 25 126 118
446,217 14 77 75 22 115 118 25 129 131 25 129 131
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5.12 Conclusions

If you have a problem where kD > 0, our current suggestion would be to pick

Q2, Q1, Q1 elements as they are stable even though you will get suboptimal rates

(done in ASPECT now), but one should pick Q2, Q2, Q1 elements if you have kD = 0

everywhere. As for which solver to use, the Arbogast-inspired approach handles in-

creasing α and decreasing h better than the approach used in ASPECT currently

for kD = 1. The Arbogast-inspired approach also has the advantage that a smaller

amount of expensive A iterations are done at the cost of a larger amount of cheaper

S iterations.
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Chapter 6

Conclusions

For the GMG for Stokes work, we have shown that applying GMG to the velocity

block while solving Stokes is competitive in serial computations in terms of perfor-

mance and memory usage to UMFPACK, ILU, and AMG. This implies that it will

outperform the other methods (especially UMFPACK and ILU) as our systems grow

larger and in parallel computations. Additionally, GMG can be parallelized like AMG

so it is much more competitive than UMFPACK or ILU for bigger problems. This

work is in a good state to serve as a template or starting point for the research of

others, as everything has been well documented and the code has been made available.

For the Schwarz smoothers for conforming inf-sup stable discretizations of the Stokes

equations, our goal was to extend Kanschat’s work to include include Qk+1×DGPk el-

ements but we also look at numerical results for Taylor Hood (Qk+1×Qk), QBubble(k+

1) × Qk, and Qk+1 × Qk + DG0 elements, that is, we wanted to show that Schwarz

methods can be used as multigrid smoother for the Stokes equations using conforming

and inf-sup stable discretization spaces, and that the iteration counts are sufficiently
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small. We have strong numerical evidence to support that we can do this for the

Qk ×DGPk−1 elements, but the analysis is not complete, as we need justification for

the step

∑
v

al(u⊥v ,u⊥v ) ≤ Cal(u⊥l ,u⊥l )

which is the main difficulty. By applying the GMG preconditioner to the entire sys-

tem matrix for Stokes, we hoped to get much better numbers for our iteration counts

than we did when we just applied the GMG preconditioner to the velocity block of

Stokes in Chapter 3. This seems to be the case, and if someone, in the future, finds

an efficient way to handle patch-based smoothers (as right now there it is just too

expensive build all of the local inverses), then this work could be a stepping stone

towards revolutionizing fluid flow solvers.

For the Three-field Stokes work, if you have a problem where kD > 0, our current sug-

gestion would be to pick Taylor Hood (Q2×Q1×Q1) elements as they are stable even

though you will get suboptimal rates (done in ASPECT now), but one should pick

Q2×Q2×Q1 elements if you have kD = 0 everywhere. We also improved the way AS-

PECT handles the melt linear solver and preconditioner so that a smaller amount of

expensive A iterations are done at the cost of a larger amount of cheaper S iterations.
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