3 research outputs found

    Near-Optimal Min-Sum Motion Planning for Two Square Robots in a Polygonal Environment

    Full text link
    Let WR2\mathcal{W} \subset \mathbb{R}^2 be a planar polygonal environment (i.e., a polygon potentially with holes) with a total of nn vertices, and let A,BA,B be two robots, each modeled as an axis-aligned unit square, that can translate inside W\mathcal{W}. Given source and target placements sA,tA,sB,tBWs_A,t_A,s_B,t_B \in \mathcal{W} of AA and BB, respectively, the goal is to compute a \emph{collision-free motion plan} π\mathbf{\pi}^*, i.e., a motion plan that continuously moves AA from sAs_A to tAt_A and BB from sBs_B to tBt_B so that AA and BB remain inside W\mathcal{W} and do not collide with each other during the motion. Furthermore, if such a plan exists, then we wish to return a plan that minimizes the sum of the lengths of the paths traversed by the robots, π\left|\mathbf{\pi}^*\right|. Given W,sA,tA,sB,tB\mathcal{W}, s_A,t_A,s_B,t_B and a parameter ε>0\varepsilon > 0, we present an n2εO(1)lognn^2\varepsilon^{-O(1)} \log n-time (1+ε)(1+\varepsilon)-approximation algorithm for this problem. We are not aware of any polynomial time algorithm for this problem, nor do we know whether the problem is NP-Hard. Our result is the first polynomial-time (1+ε)(1+\varepsilon)-approximation algorithm for an optimal motion planning problem involving two robots moving in a polygonal environment.Comment: The conference version of the paper is accepted to SODA 202

    Planification de pas pour robots humanoïdes : approches discrètes et continues

    Get PDF
    Dans cette thèse nous nous intéressons à deux types d'approches pour la planification de pas pour robots humanoïdes : d'une part les approches discrètes où le robot n'a qu'un nombre fini de pas possibles, et d'autre part les approches où le robot se base sur des zones de faisabilité continues. Nous étudions ces problèmes à la fois du point de vue théorique et pratique. En particulier nous décrivons deux méthodes originales, cohérentes et efficaces pour la planification de pas, l'une dans le cas discret (chapitre 5) et l'autre dans le cas continu (chapitre 6). Nous validons ces méthodes en simulation ainsi qu'avec plusieurs expériences sur le robot HRP-2. ABSTRACT : In this thesis we investigate two types of approaches for footstep planning for humanoid robots: on one hand the discrete approaches where the robot has only a finite set of possible steps, and on the other hand the approaches where the robot uses continuous feasibility regions. We study these problems both on a theoretical and practical level. In particular, we describe two original, coherent and efficient methods for footstep planning, one in the discrete case (chapter 5), and one in the continuous case (chapter 6). We validate these methods in simulation and with several experiments on the robot HRP-2

    d_1-Optimal Motion for a Rod (Extended Abstract)

    No full text
    ) Tetsuo Asano 1 , David Kirkpatrick 2 , and Chee K. Yap 3 1 Osaka Electro-Communication University, Japan, 2 University of British Columbia, Canada, 3 Courant Institute, New York University, USA December 5, 1994 Abstract We study optimal motion for a rod in the plane amidst polygonal obstacles. The optimality criterion is based on minimizing the orbit length of a fixed but arbitrary point (called the focus) on the rod. Our surprising result is that this problem is NP-hard if when focus is in the relative interior of the rod whereas it is solvable in polynomial time if the focus is an endpoint of the rod. Other results include a local characterization of d1-optimal motion and an approximation algorithm. 1 Introduction Although feasibility motion planning is very well studied, little is known about optimal motion planning except for the case where the robot body is a disc. In this paper we are interested in studying optimal motion for a rod (a directed line segment). Of c..
    corecore