

 M :

Institut National Polytechnique de Toulouse (INP Toulouse)

Systèmes (EDSYS)

Planification de pas pour robots humanoïdes : approches discrètes et
continues

lundi 24 octobre 2011
Nicolas Perrin

Systèmes Informatiques

Satoshi Kagami, Chercheur AIST, Tokyo
John H. Reif, Professeur étranger, Duke University, Durham

Christine Chevallereau, Directeur de recherche, CNRS-IRCCyN, Nantes

Florent Lamiraux, Directeur de recherche, LAAS-CNRS, Toulouse, Directeur de thèse
Olivier Stasse, Chargé de recherche CNRS, Vitry, Co-directeur de thèse

LAAS-CNRS, groupe de recherche Gepetto

Hubert Comon-Lundh, Professeur des universités, ENS Cachan
Jean-Paul Laumond, Directeur de recherche, LAAS-CNRS, Toulouse

Footstep Planning for Humanoid Robots: Discrete and

Continuous Approaches

PhD Dissertation

Nicolas Perrin

October 24, 2011

Contents

1 Introduction 6
1.1 Overview of thesis . 7
1.2 Walking robots and footstep planning: a brief history 8
1.3 Summary of contributions . 9

2 Discrete Motion Planning in the Plane 11
2.1 From discrete stepping capabilities to 2-counter machines 13
2.2 The reachability and universal reachability problems in a free unbounded

environment . 16
2.2.1 NP-completeness of the reachability problem 17
2.2.2 The U-turn property . 18

2.3 With finitely described obstacles . 18
2.3.1 A result of undecidability . 19
2.3.2 An open problem and a result of decidability 20

2.4 A NP-hard 2D discrete shortest path problem 22
2.5 Conclusion . 24

3 Offline Precomputations 25
3.1 Problem statement . 26
3.2 Related work . 29
3.3 Mapping approximation . 29

3.3.1 How to pick a new leaf-box . 32
3.3.2 How to get new samples . 35
3.3.3 How to split the boxes . 35
3.3.4 How to locally approximate . 35
3.3.5 Convergence result . 36

3.4 Reducing the dimensionality of the parameter space 38
3.4.1 Unique trajectories from 6 parameters 39
3.4.2 From 6 to 4 parameters . 39

3.5 Experimental results of online footstep correction 40
3.5.1 Analysis of the approximation . 40
3.5.2 Preliminary experiments . 41
3.5.3 Experiment: steering HRP-2 with a gamepad 41

3.6 Conclusion . 43

4 Walking Pattern Generation 44
4.1 Related work . 44
4.2 A walking pattern generator based on half-steps and a smoothing ho-

motopy . 45

2

Contents

4.2.1 Producing isolated half-steps . 46

4.2.2 Smoothing a sequence of half-steps 50

4.3 On the sensitivity of the walking pattern generator 53

4.3.1 Problem statement . 54

4.3.2 Sensitivity of the trajectory generation 55

4.3.3 Sensitivity of the inverse kinematics of a simple humanoid robot
leg . 57

4.3.4 Global bound . 62

4.3.5 Numerical estimates and potential applications 64

4.4 Conclusion . 65

5 Discrete Footstep Planning 66

5.1 Building the transition model and the swept volume approximations . . 68

5.1.1 The transition model . 68

5.1.2 The swept volume approximations 69

5.2 Footstep planning with a variant of RRT 71

5.3 Preliminary experimental results . 73

5.3.1 The planning phase: RRT vs. A* 73

5.3.2 The smoothing phase . 76

5.4 Real-time replanning experiments . 76

5.5 Discussion on an extension to continuous transition models 79

5.6 Conclusion and future work . 79

6 Continuous Footstep Planning 82

6.1 The preliminary problem of “flea motion planning” 83

6.2 A continuous footprint planning problem 86

6.3 From a solution to a weakly collision-free path 90

6.4 From a weakly collision-free path to a solution 91

6.5 Generalization to different stepping capabilities 94

6.6 Potential applications . 95

6.7 Footstep planning with a two-level hybrid bounding box 96

6.7.1 Weakly collision-free paths and hybrid bounding box trajectories 98

6.7.2 Reduction to a finite sequence of steps 99

6.7.3 Smoothing . 100

6.8 Implementation and simulations . 100

6.9 Conclusion and future work . 104

7 Conclusion 106

7.1 General contributions . 106

7.2 Limitations and perspectives . 107

A Proof of Theorem 2.2.2 108

B Proof of Theorem 2.3.2 111

C Proof of Theorem 2.3.3 114

D NP-hardness of a 2D discrete shortest path problem 116

E Bounds for α1 and α2: proof of inequalities (4.46) and (4.47) 126

3

Contents

F Bound for β: proof of inequality (4.48) 128

G Bound for δθ: proof of inequality (4.49) 130

4

Remerciements

Je tiens tout d’abord à remercier mes directeurs de thèse, Florent Lamiraux et Olivier
Stasse. Ils ont été une source constante d’idées et de motivation et m’ont guidé dans
mon travail tout en me laissant une grande liberté dans mes recherches. C’est un
réel privilège d’avoir été leur élève et d’avoir pu profiter de leurs hautes compétences
scientifiques et techniques ainsi que de leur grande connaissance de la robotique. Je
suis très reconnaissant de ce qu’ils m’ont appris.

C’est un grand honneur pour moi d’avoir dans mon jury Satoshi Kagami, John
Reif, Christine Chevallereau, Jean-Paul Laumond et Hubert Comon-Lundh, et je les
remercie sincèrement. Je remercie tout particulièrement Satoshi Kagami, John Reif et
Christine Chevallereau pour leur relecture attentive de mon manuscrit, et pour leurs
remarques et commentaires pertinents.

Je remercie Abderrahmane Kheddar et Eiichi Yoshida de m’avoir permis de tra-
vailler dans des conditions exceptionnelles lors de mon long séjour au Joint Robotics
Laboratory à Tsukuba.

Je remercie également Young J. Kim et Dinesh Manocha pour leurs conseils précieux
et pour leur encadrement lors de mes quelques mois passés à l’Université de Caroline
du Nord à Chapel Hill.

Je remercie Olivier Sigaud pour son accueil chaleureux et sa disponibilité lors de
mon très bref passage à l’ISIR, et je remercie Vincent Padois de m’avoir invité à donner
un exposé à CLAWAR 2011.

Je remercie Rogelio Lozano, Jorge Torres et Juan-Antonio Escareño de m’avoir
donné l’opportunité de venir présenter mes travaux au LAFMIA à Mexico.

Pour leur travail, leur code, les discussions scientifiques ou simplement les moments
de détente, je tiens à remercier tous les chercheurs et étudiants que j’ai cotoyés durant
mes trois années de thèse. En particulier, je remercie Martin Battaglia, Léo Baudouin,
Mehdi Benallègue, Karim Bouyarmane, Antoine Bussy, Sébastien Dalibard, Duong
Dang, Anthony David, Claire Dune, Adrien Escande, Paul Evrard, Toréa Foissotte,
Pierre Gergondet, Sovannara Hak, Andrei Herdt, François Keith, Sujeong Kim, Anto-
nio El Khoury, Nosan Kwak, Jungeun Lee, Sébastien Lengagne, Nicolas Mansard, Mit-
suharu Morisawa, Thomas Moulard, Jia Pan, Layale Saab, Wael Suleiman et Pierre-
Brice Wieber.

Je remercie également mes amis et ma famille, et j’exprime enfin toute ma gratitude
à mes parents et à mon frère pour leur soutien constant.

5

Chapter 1

Introduction

“Step with care and great tact
and remember that Life’s
a Great Balancing Act.
Just never forget to be dexterous and deft.
And never mix up your right foot with your left.”
— Dr. Seuss (1904 - 1991), Oh, the Places You’ll Go!

During the last 40 years humanoid robots, and more generally legged robots, have
been built and studied for various purposes. Among other things, they are expected
to move about comfortably in environments designed for humans, and in fact, the
intrinsic ability of humanoid robots to step over (or step on) obstacles on the ground
should give them a significant advantage over their wheeled counterparts in a wide
range of environments. However, legged locomotion involves trajectories that are much
harder to generate and control than the ones for wheeled locomotion, and the problem
of generating efficient and reliable walking motions has been challenging researchers
since the beginning of humanoid robotics.

Footstep planning is the motion planning problem associated with walking motion
generation: it is the process of computing walking motions that bring the robot from
its initial state to a goal location while avoiding obstacles. In this thesis, we will always
assume that the floor is flat and horizontal, with no height variation (no stairs), and the
robot will not be allowed to step on the obstacles. These assumptions are restrictive,
but considering the complexity of the problem, they are a reasonable starting point.
Besides, they hold for many indoor environments. We will also focus on the motions
of the legs more than on the rest of the robot, and the reason is that the most critical
collisions are the ones involving the lower part of the robot: for example it is more
likely that the robot will fall if it walks on a ball rather than if it knocks its shoulder
against a shelf. Hence, we will pay a particular attention to the legs.

Since humanoid robots combine high dimensionality with underactuation, two

6

1 – Introduction

properties that tend to drastically increase the complexity of motion planning, foot-
step planning is not an easy task. It has been the object of extensive research, and
although there is no completely satisfying solution so far, a lot of promising techniques
and tools have been introduced over the past decade. The biggest challenge is probably
the introduction of good simplifying hypotheses so that to make the problem compu-
tationally affordable (reactive walk is a major need for future humanoid robots), while
still exploiting well the advantages of legged locomotion, and producing efficient and
fast walking. A good tradeoff is very hard to obtain, and this thesis will explore vari-
ous strategies in that direction. For example, it is easier to plan and control statically
stable walk motions (motions that involve only balanced postures; see [Kuffner et al.,
2001]), but these motions are usually slow, not energy-efficient, and better obstacle
clearance can be obtained with more dynamic motions. Another common method for
footstep planning is called the “bounding box method” (see [Yoshida et al., 2008]): it
first plans the continuous motion of a big box that contains the whole robot, and then
a sequence of steps that follows the box trajectory. If the bounding box trajectory is
collision-free, then the robot trajectory is a fortiori collision-free, but the drawback
of this method is obvious: since the bounding box must circumvent all the obstacles
on the floor – even the smallest ones that could easily be stepped over –, it becomes
quite unnecessary for the robot to have legs, and thus this method is better suited for
wheeled robots such as PR2 or Robonaut. These were two examples of tradeoffs that
are too restrictive. Probably the most successful approaches for footstep planning are
based on the use of the A* algorithm (or variants such as D*, see [Stentz, 1994]) with
a finite transition model, i.e. a relatively small set of possible steps decided in advance
(see for example [Kuffner et al., 2001], [Bourgeot et al., 2002], [Chestnutt et al., 2003],
[Chestnutt et al., 2005], [Gutmann et al., 2005]). Because the complexity of the A*
search quickly increases with the size of the transition model, this size is limited and so
are the stepping capabilities. Thus this approach is not always satisfying for it leads to
walking motions with little flexibility, and combined with planning it often results in
the robot making many steps to perform tasks for which only one or two steps would
have arguably been enough. A lot of ad hoc methods have been proposed to extend
this approach and perform better footstep planning, such as for instance local footstep
adjustments [Chestnutt et al., 2007] or human-like strategies [Ayaz et al., 2006], or
tiered planning combining different low-level and high-level planners [Chestnutt and
Kuffner, 2004]. There are also really continuous methods that rely on the capacity of
the robot to make infinitesimally small steps: sequences of steps are found by first try-
ing to “slide” the robot on the ground (but with these methods stepping over obstacles
is not possible; see [Kanoun et al., 2011], [Dalibard et al., 2011]).

In fact, a full spectrum of strategies is emerging, ranging from “discrete approaches”
on one end to “continuous approaches” on the other, with very different associated
planning techniques. In this thesis, we explore both ends of this spectrum: discrete
and continuous approaches, examine the pros and cons, and finally give two origi-
nal, efficient and coherent frameworks for footstep planning, one based on a discrete
approach, and the other on a continuous one.

1.1 Overview of thesis

In chapter 2, we consider the discrete approach to footstep planning, and more specifi-
cally to footprint planning which is the important subproblem that consists in planning

7

1.2 - Walking robots and footstep planning: a brief history

sequences of footprints without taking into account the actual robot trajectory. Usu-
ally this problem is solved by some graph search algorithm (A*, etc.) in a discrete
graph of steps whose size grows exponentially with the maximum length of the se-
quences of steps considered. By choosing a slightly unusual discretization, it is also
possible to obtain a grid whose growth is polynomial in this length (and depends on
a resolution parameter). We study related problems of 2D discrete planning on a grid
from a theoretical point of view, and wonder if there would exist alternatives to the
traditional graph search algorithms, such as for instance algorithms that would directly
reason on the description of the obstacles or the transition model definition, instead of
taking them only implicitely into account. We show some links with automata theory,
but do not exhibit any efficient algorithm: we mostly prove negative results, the most
interesting one being probably the NP-hardness result of Section 2.4.

In Chapter 3 we start focusing on more practical algorithms. In order to obtain
fast footstep planning, we consider the idea of precomputing data structures that, once
embedded in the robot, should replace computationally costly tests by approximation
functions that are extremely quick to evaluate. We introduce a simple but original
approximation algorithm aimed at maximizing its efficiency by taking advantage of
the specificities of the context. We use it to approximate feasibility tests for the robot
HRP-2, and show results in experiments requiring real-time step corrections.

In Chapter 4, noticing some drawbacks of the combination between offline precom-
putations and state-of-the-art walking pattern generators, we introduce a new walking
pattern generator which provides features that can be advantageously exploited by
approximation and planning algorithms, such as a low dimensional input space and
a computationally efficient homotopy for trajectory smoothing. We also obtain and
discuss theoretical bounds on the sensitivity of this walking pattern generator.

In Chapter 5, we describe an original and efficient framework for discrete footstep
planning where the algorithm of chapter 3 is used to build many swept volume ap-
proximations that help to significantly reduce the time spent in online collision checks.
We show the results of several implementations on HRP-2.

In Chapter 6, we introduce a new equivalence between some discrete and contin-
uous 2D motion planning problems. We then use this result as the foundation of a
novel algorithm for footstep plannings which, as a consequence of the equivalence, can
be based on any classical rigid body motion planning algorithm such as RRT [LaValle
and Kuffner, 2000], PRM [Geraerts and Overmars, 2002], SBL [Sanchez and Latombe,
2001], KPIECE [Sucan and Kavraki, 2008], etc. We use simulations to test this algo-
rithm which also combines the features of the walking pattern generator of Chapter 3
with an original hybrid bounding box.

Finally, Chapter 7 summarizes the results of this thesis, and presents some direc-
tions to extend this work.

1.2 Walking robots and footstep planning: a brief history

More than forty years ago, a seminal method for biped gait synthesis was proposed in
[Vukobratovic and Juricic, 1969]. The ideas introduced in this paper lead to the notion
of Zero Moment Point (ZMP), a fundamental concept for both biped gait synthesis
and biped control. And even three years before that, the robot series WL started to
be developped in Ichiro Kato’s laboratory at Waseda University. In 1973, WL-5 was
used as the lower limbs of the first full-scale anthropomorphic walking robot (WABOT-

8

1 – Introduction

1), and in 1984, the concept of ZMP was used in the first realization of dynamically
balanced1 biped gait (it was done with the WL-10D robot). In the 1980s the Leg
Lab founded by Marc Raibert at Carnegie Mellon University (but later moved to the
Massachusetts Institute of Technology) also had a large influence on the research in
robotic locomotion and especially in the consideration of dynamic balance. In the
1990s there were several active humanoid robot projects, and great progress was made
in control schemes for biped locomotion (we can mention [Kajita and Tani, 1991] which
introduced the first version of the linear inverted pendulum model whose equations are
now used in the gait generation algorithms of most humanoid robots). In 2000 was
unveiled the humanoid robot ASIMO, result of more than 15 years of research at
Honda Motor Co., Ltd. Between 2000 and 2003 several other advanced humanoid
robots were completed, such as H6 and H7 that were developed at Tokyo University,
QRIO made by Sony Corp., HRP-2 by Kawada Industries, Inc., JOHNNIE built at
the Technical University of Munich, or HUBO prototypes developed by the Korea
Advanced Institute of Science and Technology (KAIST). With reliable platforms and
increasing computational power, research in footstep planning really started during this
period, notably in a joint effort between Carnegie Mellon University, Tokyo University
and then the Digital Human Research Center of the Japanese institute of Advanced
Industrial Science and Technology (AIST). In a decade, researchers have been able to
deal with increasingly complex problems such as planning quasi-static walking motions
in a known environment [Kuffner et al., 2001] or in an environment acquired by vision
[Kuffner et al., 2003], planning dynamically stable walking motions among moving
obstacles [Chestnutt et al., 2005] or movable obstacles [Stilman et al., 2006], or using
footstep planning [Chestnutt et al., 2009] or advanced balance control [Nishiwaki and
Kagami, 2010] for biped navigation in rough environments. Of course the field of
footstep planning is not limited to bipeds, and in particular interesting achievements
have been reached with quadrupeds such as the Boston Dynamics robots BigDog and
LittleDog (see for example [Kalakrishnan et al., 2010], [Byl et al., 2009]), but in this
thesis we will focus exclusively on humanoid robots, even though some of our results
could be transposed to other types of legged robots.

1.3 Summary of contributions

The main contributions of this thesis are:

• in Chapter 2, some complexity results, and especially the NP-hardness result of
Section 2.4, proved in Appendix D;

• in Chapter 3, the approximation algorithm and the proof of its convergence
(Section 3.3);

• in Chapter 4, the walking pattern generator based on half-steps with a smoothing
homotopy (Section 4.2), and the proof of the sensitivity bound (Section 4.3);

• in Chapter 5, the footstep planning framework obtained by combining offline
swept volume approximations and the walking pattern generator of Chapter 4;

1In this thesis we interchangeably use the expressions “statically balanced”, “statically stable”,
“quasi-static” and “static” to denote gaits that involve only balanced postures of the robot (i.e. pos-
tures such that the center of mass is above the convex hull of the contact points with the ground). We
also interchangeably use the expressions “dynamically balanced” and “dynamically stable” to denote
gaits that are not statically stable but such that the robot does not fall.

9

1.3 - Summary of contributions

• in Chapter 6, the study of the “flea motion planning problem” (Section 6.1),
the equivalence result of Section 6.2 to Section 6.5, and the footstep planning
algorithm based on a hybrid bounding box (Section 6.7).

10

Chapter 2

Discrete Motion Planning in the
Plane

Footstep planning is not a problem of motion planning in the plane. Indeed, even
if footprints can often be described as elements of SE(2) = R2×SO(2) (the Euclidean
group of rigid motions of the plane), what needs to be planned are trajectories in the
configuration space of a humanoid robot or at least its lower body, i.e. in a space
with more than 12 degrees of freedom (most of the advanced humanoid robots have a
lower body with at least 6 degrees of freedom per leg). Besides, although footprints
must avoid 2D obstacles, the robot itself must avoid 3D obstacles. For these reasons
footstep planning is much more complex than motion planning in the plane. Neverthe-
less, generating trajectories with non-trivial dynamic constraints in a 12-dimensional
space being an extremely difficult task, the efficient way to perform footstep plan-
ning is to separate the generation of the footprint sequence from the generation of
the robot trajectory in the configuration space. The risk with this separation is to
produce footprint sequences that don’t lead to feasible trajectories, or on the contrary
be overconservative and frequently miss solutions. When the first issue is avoided we
say that the separation is sound, and when solutions are not missed we say it is com-
plete. Completeness, or at least “almost completeness”, is desirable, but soundness is
crucial. We will see throughout the following chapters that sound separations which
are not too overconservative can effectively be achieved. As a consequence the problem
of planning sequences of footprints, which can be considered as a problem of motion
planning in the plane (we recall that we assume the ground to be flat and horizontal)
is a very important component of footstep planning. In this thesis we will call this
subproblem footprint planning while footstep planning will refer to the global problem.
Footprint planning has a “hybrid nature” in the sense that it has both discrete and
continuous aspects: on one hand, the sequence of footprints to plan is obviously dis-
crete, and on the other hand next footprints can be chosen inside continuous feasibility
regions. Please note that the hybrid nature of footprint planning is very different from
the global hybrid nature of humanoid robot motion planning, which is characteristic
of robotic systems with contacts in the sense that they continusously move between

11

Fig. 2.1: This figure taken from [Kuffner et al., 2001] illustrates continuous and discrete
approaches. On the left, a continuous feasibility region is considered, and on the right,
only a finite set of possible steps is allowed.

modes where the set of contacts (e.g. footprints) is fixed. In each mode, the allowable
motions lie on a lower dimensional submanifold of the configuration space, and the set
of contacts can be changed at the intersection between different modes. Finding a dis-
crete sequence of modes together with a continuous motion that follows the sequence
is called “multi-modal planning”. In this thesis, we don’t study multi-modal planning
(for a good introduction see [Hauser, 2008]); instead we focus on footstep planning
which is a specific problem of multi-modal planning, but for which we show specific
approaches that clearly separate the search for a discrete sequence of modes (the foot-
prints) from the generation of a continuous walking motion. In footstep planning the
problem of finding the discrete sequence of modes (footprint planning) is hybrid in
itself and one can choose to use the continuous aspect of the feasibility regions for
steps, or use only a finite number of possible steps so that to obtain a fully discrete
planning problem. Fig. 2.1 illustrates these two strategies.

We use the term discrete approach to refer to footprint planning methods where
only a finite number of steps is considered, and the term continuous approach to re-
fer to methods that actually use continuous regions of feasible steps. We also simply
call these approaches discrete footprint planning and continuous footprint planning,
respectively, and by extension we use the terms discrete footstep planning and con-
tinuous footstep planning according to the approach used for footprint planning. The
discrete approach is actually the current state-of-the-art method for efficient footprint
planning: a finite set of steps is fixed in advance, and then variants of the A* search
algorithm are used to plan sequences of steps. This method amounts to a search in an
infinite but discrete graph of steps; it is convenient because easy to implement but it
completely overshadows the continuous aspect of the problem which is very important
in approaches such as [Kanoun et al., 2011] and [Dalibard et al., 2011]. What’s more,
the finite set of steps must remain relatively small (around 15 to 30 steps is standard)
for the performance of the A* algorithm quickly dwindles when the number of outgoing
edges per node increases (i.e. the number of possible steps), and this has a negative
impact on the flexibility of the robot paths.

When the task is to go to a certain goal, we can usually evaluate a rough upper
bound of the number of steps required. Let’s say for instance that we assume the goal
to be reachable in n steps. In that case, with only a k possible steps in the transition

12

2 – Discrete Motion Planning in the Plane

model we know that the solution can be searched in a finite graph whose size grows
as kn. In such a graph an A* search can often perform in time polynomial in n, but a
large k still has a strong impact on the performances. As we will see, if discretization
is made up to a resolution, the graph gets a grid structure which ensures its size to
be polynomial in n, but since the number of outgoing edges per node is unchanged it
does not necessarily make search algorithms faster in average.

A particularity of the state-of-the-art search techniques for (discrete and continu-
ous) motion planning is that they only implicitely take obstacles into account: indeed
obstacles only appear in the main loop of the algorithm when they happen to make
some motion or configuration unfeasible. However, for some simple continuous motion
planning problems in the plane, there exist exact solutions directly reasoning on the
description of the obstacles given in the input. For example algorithms using visibility
graphs (see [de Berg et al., 2000], ch. 15), Voronoi diagrams or algebraic representa-
tions (see [Schwartz et al., 1986], ch. 6 and ch. 2). Although not always efficient in
practice, these algorithms are polynomial in the size of the obstacles description. In
this section, we consider problems of discrete motion planning in the plane that are re-
lated to footprint planning, and we wonder whether there would exist some algorithms
that could efficiently exploit the structure of the transition model as well as a compact
description of the obstacles rather than using a heuristic search. While the choice of
the finite set of steps is usually made by an expert user, such algorithms would be espe-
cially useful when a large number of possible steps is automatically generated (which
we will do in Chapter 5): in that case we do not necessarily control the properties
of the finite set of steps, and its large cardinality makes classical algorithms such as
A* inefficient. The goal of the present chapter is to explore the possibility for such
techniques, but we will mainly show negative results. Our discussion will reveal some
connections with automata theory, we will present some NP-complete and polynomial
problems, an undecidability result, an open problem and a decidability result, and we
will conclude with probably the most important result of this chapter: a proof of NP-
hardness for a basic problem of discrete motion planning in the plane (Section 2.4).
This chapter is essentially independent from the remainder of this thesis, and since it
does not contain practical results, the reader in a hurry can safely skip it and directly
start at Chapter 3.

2.1 From discrete stepping capabilities to 2-counter ma-
chines

We suppose that a biped robot is walking on a flat ground, free from any obstacle.
By discrete stepping capabilities, we mean that only a finite set of possible steps is
allowed. A step is a transition between two postures of the feet, a posture of the
feet being defined by the position and orientation of the right foot relatively to the
left foot. For mathematical convenience, in this section we represent the stepping
capabilities of the robot by the finite set of possible sequences of two steps (instead
of just one), and always take the left foot as a reference. We use a simple model of
discrete stepping capabilities where we can concatenate two sequences of two steps if
and only if the initial posture of the second sequence is the same as the final posture
of the first sequence (sometimes this concatenation is subject to dynamic constraints,
but not here).

Let us provide the flat infinite ground with a Cartesian coordinate system of two

13

2.1 - From discrete stepping capabilities to 2-counter machines

x

y

A posture (here qi)
described by 4 parameters:

final posture qf

step 1step 2

initial posture qi

ψ
θ

x

y

(u, v)

(x, y)

Fig. 2.2: (Left) The sequence of two steps from posture qi to qf , with translation
parameters (x, y). (Right) A posture is fully described by the absolute orientation of
the left foot, and the relative position and orientation of the right foot.

axes x and y, and let the x axis define the zero orientation. The configuration of the
robot (feet) in the free environment is then completely defined by the position and
orientation of the left foot, and the current posture of the feet.

Fig. 2.3: An example of grid construction

A sequence of two steps is completely defined by the initial and final posture, and
three additional parameters x, y and θ: the position and orientation of the left foot final
placement relatively to its initial placement. If we suppose that this orientation change
is a rational number multiplied by π, it turns out that only a finite set of absolute
orientations of the left foot are reachable. From now on (in this Chapter), what we
call a posture will be defined not only by the position and orientation of the right foot
relatively to the left foot, but also by the left foot absolute orientation (so a posture is a
quadruple (u, v, ψ, θ): see Fig. 2.2 on the right). Let us denote by {p1, . . . , pN} the set of
all the reachable postures, which are in finite number. As shown on Fig. 2.2, a sequence
of two steps is now completely defined by the initial and final posture plus a vector
of two parameters. Similarly, a configuration of the robot is a posture and a vector
of two parameters (position of the left foot). These vectors should intuitively have

14

2 – Discrete Motion Planning in the Plane

real-valued coordinates, since orientation changes usually induce irrational numbers
that make the set of reachable positions dense in R2. However, we know that the
feasibility regions are actually continuous, and thus we can decide to slightly modify
the irrational positions in order to make them belong to a grid of fixed resolution that
we can decide in advance (a similar “trick” for grid construction is described in [Tate,
1991], section 4.3, where it is illustrated with Fig. 2.3). As a result, we can assume
that all the vectors are couples of rational numbers, and then, adapting the scale,
couples of integers. It follows that the whole stepping capabilities can be represented
by a finite state machine (or automaton) with two integer-valued counters, where
Q = {p1, . . . , pN} is the set of states, and each sequence of two steps is a transition
(qa, x, y, qb) ∈ Q × Z2 × Q. A configuration of the machine is a triple (q, z1, z2) ∈
Q× Z2, which exactly corresponds to a configuration of the robot (posture q and left
foot at (z1, z2)) in the free environment. If (qa, z1, z2) is the current configuration of
the machine, after transition (qa, x, y, qb) its configuration is (qb, z1 + x, z2 + y). The
set Access(q0, x0, y0) of all the reachable configurations from an initial configuration
(q0, x0, y0) is the set of configurations (q, x, y) such that there exists a finite sequence
(q0, x1, y1, q1), (q1, x2, y2, q2),. . . , (qk−1, xk, yk, qk) such that qk = q,

∑k
j=0 xj = x and∑k

j=0 yj = y. This set corresponds to the set of configurations that are actually
reachable by the robot walking in the free environment, when its initial configuration
is (q0, x0, y0). One simple but important property of Access() is:

Access(q0, x0, y0) = {(q, x, y)|(q, x− x0, y − y0) ∈ Access(q0, 0, 0)} (2.1)

Fig. 2.4 illustrates the conversion of a simple example of discrete stepping capabilities
into a 2-counter machine.

(+8, 0)

(+10,−6)

(−3,+4)

(+10,−6)
(0,−8)(+8, 0)

q1 q2

q2 q2

q1

q1

q1

the corresponding 2-counter machine:

(−3,+4)
(0,−8)

Fig. 2.4: A simple set of possible sequences of 2 steps converted into a 2-counter
machine.

So, discrete stepping capabilities can be seen as 2-counter finite state machines.
The converse is not true because stepping capabilities of biped robots have natural

15

2.2 - The reachability and universal reachability problems in a free unbounded environment

properties that are not shared by all 2-counter machines. However, if we find efficient
planning techniques for general 2-counter machines, it will be possible to apply them to
footprint planning, and with this hope we study general 2-counter machines in sections
2.2 and 2.3. Besides, 2-counter machines can be used to model discrete motion planning
problems other than discrete footprint planning, so an efficient algorithm could have
several applications. Our 2-counter machines are closely related to what was first
called blind multicounter machines (see [Greibach, 1978], [Kambites, 2006]) and now
known under various names such as valence automata ([Render and Kambites, 2009]),
extended finite automata ([Mitrana and Stiebe, 2001], [Mitrana and Stiebe, 1997])
or integer weighted automata ([Halava and Harju, 1999], [Halava and Harju, 1998],
[Boichut et al., 2009]). These automata have been studied in the context of model
checking and they also provide algebraic methods to characterize important language
classes such as the context-free, recursively enumerable and blind counter languages,
whose accepting power has been thoroughly studied, leading to a plethora of results
that might be useful in our context, but which would help to characterize classes of
paths rather than solve planning problems. Planning problems are close to reachability
problems, and thus model checking techniques might be more directly applicable.

2.2 The reachability and universal reachability problems
in a free unbounded environment

As we have seen in the previous section, the reachability of a configuration, for a
biped robot walking with discrete stepping capabilities on an infinite flat ground free
from obstacles, can be expressed as the reachability of a configuration in a 2-counter
machine. If (Q,T) is a 2-counter machine (Q is the set of states and T the set of
transitions), we denote by |(Q,T)|B the size of a classical binary encoding of (Q,T).

The problem of reachability can be expressed this way:

Definition 2.2.1 (Reachability problem). Given a 2-counter machine (Q,T), and two
configurations (qi, x, y) and (qf , x

′, y′), is there a finite sequence of transitions that goes
from (qi, x, y) to (qf , x

′, y′), i.e. do we have (qf , x
′, y′) ∈ Access(qi, x, y) ?

Because of the equality (2.1), the reachability of (qf , x
′, y′) from (qi, x, y) is equiv-

alent to the reachability of (qf , x
′ − x, y′ − y) from (qi, 0, 0). Thus when (qf , x

′, y′) ∈
Access(qi, x, y), we simply write qi

∗−−−−−−−→
(x′−x,y′−y)

qf .

We will also consider the problem of universal reachability which is slightly differ-
ent:

Definition 2.2.2 (Universal reachability problem). Given a 2-counter machine (Q,T),
and an initial configuration (q0, x, y), is any configuration reachable from it, i.e. do we
have Access(q0, x, y) = Q× Z2 ?

These two problems correspond to very natural questions in automata theory, and
in our case they are related to motion planning, even if there are no obstacles so far. As
we mentionned previously, the new techniques we are looking for might be useful when
discrete stepping capabilities with a large number of steps are automatically generated,
and thus it is interesting to evaluate, for some basic problems, the complexity in the
size of the transition model, i.e. in |(Q,T)|B.

The complexity of the reachability problem is clearly at least linear in |(Q,T)|B,
and it is also equivalent to or more than the complexity of the universal reachability

16

2 – Discrete Motion Planning in the Plane

problem, because universal reachability can be essentially reduced to the conjunction
of a few reachability problems. Indeed, if (q0, x + u, y + v) ∈ Access(q0, x, y) for all
(u, v) ∈ {−1, 0, 1}2 (this is the conjunction of 9 reachability problems), then we have

q0
∗−−−→

(a,b)
q0 for all (a, b) ∈ Z2, and if on top of that all states can be reached from q0 (this

can be verified with a simple graph search), it follows that Access(q0, x, y) = Q× Z2.
The converse implication is also true: if Access(q0, x, y) = Q × Z2, then all states
can be reached from q0, and (q0, x + u, y + v) ∈ Access(q0, x, y) is verified for all
(u, v) ∈ {−1, 0, 1}2.

In the next section, we prove that the reachability problem is actually NP-complete.
In section 2.2.2, we prove that with a natural additional assumption (the ability to
make U-turns in any posture), the universal reachability problem is in PTIME.

2.2.1 NP-completeness of the reachability problem

The reachability problem is equivalent to the “fixed distance problem” in finite weighted
graphs, in the case of weights belonging to Z2. In [Nykänen and Ukkonen, 1999], this
problem is studied and proven NP-complete. The membership to NP follows from a
reduction to integer linear programming (i.e. linear optimization problems in which
the variables are restricted to be integers). Here, we prove again the NP-hardness us-
ing a reduction from SUBSET-SUM (see [Garey and Johnson, 1990] p.223) similar to
the one done in [Laroussinie et al., 2004], where the problem of reachability for timed
automata with 2 clocks is considered.

Definition 2.2.3 (SUBSET-SUM). Assume we are given a set {a1, . . . , ap} of integers
and a goal b, one asks whether there exists a subset J ⊂ {1, . . . , p} such that

∑
j∈J aj =

b.

This problem is known to be NP-complete, and Fig. 2.5 shows a (polynomial)
reduction of an instance ({a1, . . . , ap}, b) of SUBSET-SUM to the reachability problem
for a 2-counter machine (actually only one counter is used in the reduction). The
existence of a solution for SUBSET-SUM is clearly equivalent to the reachability of
configuration (qp, b, 0) from (q0, 0, 0).

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��
�
�
�
�

(a1, 0)

(0, 0)

(ap−1, 0) (ap, 0)

(0, 0)

q0 q1 qp−1 qp

(0, 0)

(a2, 0)

(0, 0)

(b+ 1, 0)

Fig. 2.5: The configuration (qp, b, 0) is reachable if and only if the corresponding in-
stance of SUBSET-SUM has a solution.

We can thus state the first theorem:

Theorem 2.2.1. In a free environment, the reachability problem is NP-complete.

As well as an immediate corollary:

17

2.3 - With finitely described obstacles

Corollary 2.2.1. In a free environment, the universal reachability problem belongs to
NP.

Surprisingly, proving that the universal reachability problem is NP-hard (and thus
NP-complete) seems much more difficult. We let the NP-hardness of the universal
reachability problem as an open question, but in the next section we show that some
natural property (natural for biped robots) can lead to a linear-time decision algorithm.

2.2.2 The U-turn property

Definition 2.2.4 (U-turn property). A 2-counter machine (Q,T) is said to verify the
“U-turn property” if there exists a permutation (·)> : Q→ Q such that:

1. ∀q ∈ Q, (q>)> = q

2. ∀(q, x, y, q′) ∈ T, (q>,−x,−y, (q′)>) ∈ T

3. ∀q ∈ Q, q ∗−−−→
(0,0)

q>

If (Q,T) is viewed as stepping capabilities, the U-turn property can be translated
as follows: in any configuration (q, x, y), the robot can perform a sequence of steps to
reach the configuration (q>, x, y) which is obtained by applying on (q, x, y) a rotation
of angle 180◦ around the center of the left foot. Of course, taking the left foot as a
reference was arbitrary, and the result we are going to prove holds if we decide to take
for example the right foot, or a position between the feet, as a reference.

Theorem 2.2.2. For the class of 2-counter machines effectively verifying the U-turn
property, the universal reachability problem can be solved in time linear in |(Q,T)|B.

The proof of this theorem is to be found in appendix A.

2.3 With finitely described obstacles

We first show that a natural way to define obstacles is to use transition guards, i.e.
logical constraints that restrict the use of transitions.

Automata with transition guards are of prime importance in the field of model
checking (see for example [Vardi and Wolper, 1986]). Usually, guards are defined by
a particular logic with the hope that some natural questions (e.g. the emptiness of
the language recognized, the reachability of some configuration, etc.) can be proven
decidable. For example, by reducing them (the natural questions) to formula expressed
in a decidable theory, such as the additive theory of Z (the Presburger arithmetic),
they can be decided in doubly exponential time ([Fischer and Rabin, 1974]). More
particularly, a lot of work has been done on counter machines with transition guards,
with both positive and negative results. For example, if the machine is flat (i.e. its
transition graph has no nested loop), then the reachability problem stays decidable
for an expressive fragment of logic (see [Comon and Jurski, 1998]). However, flatness
is not really a natural property for the 2-couter machines corresponding to walking
robots.

Besides, in order to describe obstacles, it is more natural to put guards on the con-
figurations rather than on the transitions. Therefore we only consider guards described
by formulas of the form φq(x, y) and such that a configuration (q, x, y) is allowed if

18

2 – Discrete Motion Planning in the Plane

and only if the corresponding formula φq(x, y) is evaluated to true, and forbidden
otherwise (because the configuration intersects an obstacle).

In the next section we show a simple class of guards which leads to the unde-
cidability of the reachability problem, and in Section 2.3.2, we consider even simpler
guards corresponding to a finite number of finite obstacles in the environment. With
no assumption on the 2-counter machine, whether the reachability is decidable or not
is let as an open problem, but we show that it becomes decidable at least when the
U-turn property and two other minor constraints are verified.

2.3.1 A result of undecidability

In [Hopcroft et al., 2006] (theorem 7.9, p.172), it is shown that if a 2-counter machine
is allowed to test whether the value of any of its counters is zero, then it can simulate
an arbitrary Turing machine, and therefore the corresponding reachability problem is
undecidable. Let (Q,T) be such a 2-counter machine. The zero-tests are naturally
represented by guards on the transition that can be written:

(q, x, y)
φ(x,y)−−−−→ (q′, x+ a, y + b),

where φ(x, y) is a formula constructed according to the following grammar:

φ(x, y) ::= true | x = 0 | y = 0 | ¬φ1(x, y) | φ1(x, y) ∧ φ2(x, y)

Definition 2.3.1 (Zero-test guards). We call “zero-test guards” the guards constructed
according to the above grammar.

The above transition can be fired if and only if φ(x, y) is evaluated to true.
Let us show how to convert any such machine into a 2-counter machine with guards

on the configurations.

We start with the graph Q with no edge. For each transition t = (q, x, y)
φ(x,y)−−−−→

(q′, x + a, y + b) of the initial machine, we create a new state qt on which we put the
guard φqt(x, y) = φ(x, y): a configuration (qt, x, y) is allowed if and only if φ(x, y) is
evaluated to true. We add also the transitions (q, 0, 0, qt) and (qt, a, b, q

′). It is clear
that the reachability in the initial machine of a configuration (q, x, y) is equivalent
to the reachability of the same configuration in the 2-counter machine just created.
Therefore, we can conclude, stating the following theorem:

Theorem 2.3.1. The problem of reachability for 2-counter machines with zero-test
guards on the configurations is undecidable.

On Fig. 2.6, we show how would look like a real environment associated with a
2-counter machine with zero-test guards. Of course, the Turing machine simulation
used in the proof of undecidability is not likely to correspond to reasonable discrete
stepping capabilities, and therefore using some characteristic properties of realistic
stepping capabilities (such as the U-turn property for instance) might make it possible
to obtain the decidability of this reachability problem.

We tried to use model checking tools to solve the problem of motion planning among
obstacles defined as transition guards, with very simple discrete stepping capabilities.
Our hope was that despite the general undecidability result, model checking tools
might be able to discover and exploit the intrinsic simplifying properties of our stepping
capabilities. Unfortunately it was not the case, and the tools that we used: BRAIN

19

2.3 - With finitely described obstacles

��
��
��

��
��
��

����

����

��
��
��

��
��
��

��
��
��
��

��
��
��

��
��
��

�
�
�
�

�
�
�
�

��

���
���
���

���
���
���

��
��
��

��
��
��

��

�
�
�
�

���
���
���
���

��
��
��

��
��
��

�
�
�
�

���
���
���
���

��
��
��

��
��
��

��

��
��
��

��
��
��

����

����

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

��

���
���
���

���
���
���

���
���
���
���

��
��
��
����

��
��
��

��
��
��
��

��
��
��
��

���
���
���

���
���
���
��
��
��
����

��
��
��

��
��
��
��

��
��
��
��

���
���
���

���
���
���

��
��
��
��

��
��
��

��
��
��

�
�
�
�
�
�

�
�
�
�
�
�

������������

x

y

3 postures:

1

1

p0

Obstacles that can be used

as guards (one for each

posture):

p1

p2

Fig. 2.6: We consider a 2-counter machine with 3 states p0, p1 and p2, and guards
φp0(x, y) = (x = 0 ∧ y = 0), φp1(x, y) = (x 6= 0 ∧ y 6= 0), and φp2(x, y) = (x = 0).
On this figure we show how obstacles can be put in the whole environment in order
to encode these guards for 3 postures corresponding to the 3 states of the 2-counter
machine.

([Rybina and Voronkov, 2002]) and FAST ([Bardin et al., 2003]), were much slower
than an A* search, which is not very surprising given that they were not designed to
tackle motion planning problems. They can however be used to prove properties for
which an A* search is useless, such as for example proving that some configuration is
unreachable, or that all obstacle-free configurations are reachable, etc. But the time
required to obtain such results is prohibitive for any practical application.

2.3.2 An open problem and a result of decidability

Let (Q,T) be a 2-counter machine, with guards of the form φq(x, y) = ((x, y) 6∈ Sq),
where Sq are finite subsets of Z2. This kind of guards, called “finite guards”, correspond
to environments with a finite number of finite obstacles, as shown on Fig 2.7.

We are interested in the decidability of the reachability problem in this context.
Although there are a lot of tools in the litterature that have been successfully used to
tackle similar questions, we let it as an open problem. Let us nevertheless present here
some related work.

Let L be the language recognized by a Pushdown Finite Automata on alphabet
Σ = a1, . . . , an. We denote by #ai(w) the number of occurences of ai in the word w.
The theorem of Parikh states that {(#a1(w),#a2(w), . . . ,#an(w)), w ∈ L} (the image
of Parikh of the automaton), is an effectively computable semi-linear set ([Parikh,
1966]). Besides, semi-linear sets are exactly the sets that can be expressed in the
decidable Presburger Arithmetic. If we could show that even in presence of (finite)
obstacles, the sets of reachable configurations are semi-linear, it would result that the
reachability problem is decidable. To do that, using the theorem of Parikh could be
a solution, and indeed Parikh’s construction has been used in many works of great
interest (see for example [Seidl et al., 2004]). Pushdown Finite Automata allow the
use of one counter, which could be used to represent the obstacles. Nevertheless, the

20

2 – Discrete Motion Planning in the Plane

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

�
�
�

�
�
�

����
y

x

Fig. 2.7: An infinite environment with finite obstacles.

difficulty here is that, to “remember” the position of the obstacles, we need 2 counters,
which leads to the same expressiveness as Turing Machines.

A problem very similar to our reachability problem is the reachability problem for 2-
dimensional Vector Addition Systems with States (2D-VASS). Actually, if we consider
no obstacle but instead the constraint that the robot can only move in the quadrant
of the plane corresponding to the couples of non-negative integers, then we exactly
obtain the problem of reachability for 2D-VASS. Hopcroft and Pansiot [Hopcroft and
Pansiot, 1976] proved that the set of reachable vectors is effectively semi-linear for 2D-
VASS, and they designed a decision algorithm for the problem of reachability. Their
proof cannot be directly used with the four quadrants of the plane and obstacles,
but it might be possible to adapt the idea of constructing a tree which can generate
the whole set of reachable configurations, and whose finiteness is a consequence of
König’s Lemma (such a construction is often called a Karp-Miller tree, see [Karp and
Miller, 1969]). In [Verma and Goubault-Larrecq, 2004], Karp-Miller trees are used to
prove the decidability of some problems on BVASS, an extension of VASS. Yet, the
decidability of reachability in BVASS is equivalent to the decidability of provability
in MELL (Multiplicative Exponential Linear Logic), which is an open problem. One
other property of the 2D-VASS exposed in [Hopcroft and Pansiot, 1976] is that they
can be simulated by 5-dimensional VAS (Vector Addition Systems with only one state,
which are equivalent to Petri Nets). With only one state our problem of reachability
would be probably easier to prove decidable, but unfortunately without the constraints
of the VAS (all the counters must stay positive), we cannot apply the trick used in
[Hopcroft and Pansiot, 1976]. Finally, over the past decades, a very large amount of
work has been done on Petri Nets and VAS or VASS, leading to new proof techniques
(see for example [Leroux, 2009]) and promising extensions (see for example [Reinhardt,
2008], [Finkel and Sangnier, 2010]). At first, our problem of reachability seems easier
than some similar problems that have been proven decidable, and actually the vast
litterature might already contain tools that could be adapted to validate or invalidate
the following conjecture:

Conjecture 2.3.1. In an infinite environment with finite obstacles, the reachability

21

2.4 - A NP-hard 2D discrete shortest path problem

problem is decidable.

Yet, the proof of this conjecture (if valid) probably requires advanced arguments,
whereas we show now that a rather natural property (natural for our context) leads
to a quite straightforward decidability result.

Property 2.3.1 (Four-Vectors property). We say that a 2-counter machine (Q,T)
verifies the “Four-Vectors property” if there exist two non-colinear vectors u ∈ Z2 and
v ∈ Z2 such that, when ignoring the guards, for each q ∈ Q we have q

∗−→
u
q, q

∗−−→
−u

q,

q
∗−→
v
q, and q

∗−−→
−v

q.

Soon we will see that with a few more assumptions, this property is implied by
the U-turn property (now we say that a 2-counter machine with guards verifies the
U-turn property if ignoring the guards leads to a 2-counter machine verifying the U-
turn property). Besides, the Four-Vectors property implies the decidability of the
reachability problem in an infinite environment with finite obstacles:

Theorem 2.3.2. For 2-counter machines with finite guards effectively verifying the
Four-Vectors property, the reachability problem is decidable.

The proof of Theorem 2.3.2 is to be found in appendix B.
Additionally, we prove the following theorem in appendix C:

Theorem 2.3.3. If (Q,T) is a 2-counter machine such that there exists at least two
transitions that are not colinear, and such that the graph (Q,T) is strongly connected,
then:

(Q,T) verifies the U-turn property ⇒ (Q,T) verifies the Four-Vectors property

Using Theorem 2.3.2, we obtain an immediate corollary:

Corollary 2.3.1. If (Q,T) is a 2-counter machine with finite guards such that there
exist at least two transitions that are not colinear, and such that the graph (Q,T) is
strongly connected, then:

(Q,T) effectively verifies the U-turn property ⇒ the reachability problem is decidable

We would like to stress here the fact that for a 2-counter machine representing a
walking robot, the two first conditions can almost be taken for granted: first, if all the
transitions are colinear, it means that the robot can only move along a line (which is
quite useless), and second, being always able to come back to some standard posture is
a very natural expectation for a humanoid robot. Thus in most cases the graph (Q,T)
should be strongly connected.

2.4 A NP-hard 2D discrete shortest path problem

The previous sections of this chapter give the idea that there is little hope for an efficient
discrete planning algorithm based on a 2-counter machine representation, unless maybe
if we find specific simplifying hypotheses that make planning and model checking
problems easier. To see if there is a chance for such simplifications to actually lead to
practical algorithms, a natural preliminary step is to study problems with very simple
discrete stepping capabilities. If we can show that some problems are hard even in that

22

2 – Discrete Motion Planning in the Plane

Fig. 2.8: On the left, the “jumping capabilites” of the point robot, and on the right, a
valid sequence of jumps among disjoint polygonal obstacles.

case, then we will be in a position to believe that even with simplifying hypotheses
the hope for algorithms with good worst-case complexity is thin. This is exactly what
we do in this section: we consider a very basic discrete shortest path problem in the
plane, and show that it is NP-hard.

The problem definition is the following: we consider a point robot that moves in
Z2 (it has no orientation), and can jump (rather than walk) in the 4 main directions.
Its jumps can be of size 1 to 4. We call the displacements of this point robot “jumps”
because they can be feasible even if there is an obstacle between the initial configuration
and the one after the displacement (but both initial and final configurations must be
outside the obstacles). These “jumping capabilites” are described on Fig. 2.8. The
input consists of an initial position in Z2 and a goal position, and a list of disjoint
polygonal obstacles whose vertices belong to Z2. The problem is to find the minimum
number of jumps that can bring the robot from its initial position to the goal while
avoiding the obstacles (and we arbitrarily decide that being on the edges of an obstacle
is a collision). Of course, we can set up a Dijsktra search to run in pseudo-polynomial
time, so it means that our NP-hardness result will require the obstacles to occupy an
exponentially large region of the plane (exponential in n, the total number of vertices
of the obstacles). This can seem somewhat unrealistic, but it is related to the 3D
continuous shortest path problem, which is NP-hard [Canny and Reif, 1987], but for
which discretization leads to approximation algorithms that are polynomial in the
resolution parameter (see [Papadimitriou, 1985], [Sellen et al., 1995]). In our case,
the grid unit size corresponds to a resolution parameter, and the exponential space
occupied by the obstacles can also be seen as an exponentially precise resolution of the
grid.

To prove that the problem is NP-hard, we follow the strategy introduced in [Canny
and Reif, 1987]: we obtain a reduction from 3-SAT with gadgets implementing oper-
ations of “path splitting” and “literal filtering”. Similar reductions have been used
to prove the NP-hardness of several motion planning problems [Reif and Wang, 1998;
Asano et al., 1996]. An interesting point is that 2D continuous shortest path problem
is in PTIME [Sharir and Schorr, 1986; Clarkson et al., 1987; Storer et al., 1994], and
thus we can somehow relate our NP-hardness result to the gap of complexity between

23

2.5 - Conclusion

linear programming with real-valued variables (in PTIME) and integer linear program-
ming (NP-complete, see [Schrijver, 1986] ch. 18). This comparison must be interpreted
with caution, however, because the ability to jump over obstacles is essential in the
NP-hardness proof, so we are not really comparing a discrete and a continuous version
of the same problem. In fact in Chapter 6 we will introduce a problem which is a more
natural “continuous version” of the 2D discrete shortest path problem considered in
this section. Along the same lines, it is not clear whether our NP-hardness result shows
that discretization potentially has negative effects on the computational complexity of
motion planning problems, but this question–which we will not answer– is interesting
in the context of this thesis.

The proof of NP-hardness being quite involved, we defer it in Appendix D.

2.5 Conclusion

In this chapter, we saw that the natural discretization of the stepping capabilites of a
biped robot can be slightly modified to obtain a grid of configurations rather than an
unorganized discrete graph. Yet, we proved negative results which give the intuition
that this approach will not lead to particularly efficient motion planning techniques.
In the next chapter, we start considering continuous stepping capabilites, but since
it is quite complicated to know in advance what the continuous feasibility regions
look like (e.g. the green area on the left of Fig. 2.1), we investigate the possibility of
approximating them through extensive offline precomputations.

24

Chapter 3

Offline Precomputations

The high number of degrees of freedom of humanoid robots has a strong impact
on the computation cost of numerical methods used to produce motions as well as on
the complexity of collision detection [Kuffner et al., 2002]. The number of potentially
colliding pairs of bodies grows as the square of the number of bodies. What’s more,
humanoid robots are subject to dynamic constraints that make most motions unstable.
One way to cope with this complexity is to precompute data structures that depend
only on the robot geometry and dynamics, and then use these data structures to speed
up online computations. We explore this idea in the present chapter.

As we will see later, the footstep planning problem can be solved by growing large
trees of steps with a bias towards the goal. The growing tree of steps should obviously
only consider feasible steps, and if the robot has no specific prior knowledge, the
only solution to test the feasibility of a step is to actually generate the trajectory,
and then check some properties (or run a dynamic simulation) to verify that it is
valid. Unfortunately, the current trajectory generation and verification techniques only
allow the verification of a step in a couple of hundreds of milliseconds (on a standard
computer). This fact drastically limits the size of the tree of steps, and makes this
method unsuitable for reactive walk.

Yet, reactive walk is a major requirement for humanoid robots, because it is needed
in any potentially changing environment, and a fortiori in any task involving coop-
eration with humans. As we mentionned in the introduction, the current solution is
to only allow a small set of steps for the robot: in that case the generation and ver-
ification phases are useless since all the trajectories can be memorized and verified
offline [Kuffner et al., 2001; Chestnutt et al., 2003], but with this method the lack of
flexibility of the robot motions is usually a major drawback (in [Chestnutt et al., 2007]
local adjustments are used to cope with this issue).

Instead of limiting the possible steps, in this chapter we base our work on the
following remark: even if a humanoid robot has a great number of degrees of freedom,
the set of all possible steps on a flat ground has 6 dimensions (if the steps can be
entirely defined by the initial and final relative configurations of feet). So, if we add
some restrictions ensuring that to one step definition corresponds a unique trajectory,
then the number of parameters used to describe a trajectory could be small enough to

25

3.1 - Problem statement

Fig. 3.1: From quick feasibility guess to fast and safe footsteps planning.

make machine learning or approximation techniques of practical interest. With such
restrictions, we attempt to approximate feasibility regions (in the space of all possible
steps) through extensive offline computations.

Should a satisfying approximation be reached, the robot would be able to use it
online to correctly and quickly guess whether a given step is feasible or not. It would
cut down the time consumption of that phase, and let the planning algorithm grow
online a large tree of feasible steps in the blink of an eye, as it can be seen on Fig. 3.1.
Hence, it would enable reactive walk.

In this chapter, we present an original approximation algorithm (Section 3.3) aimed
at being particularly efficient in our specific context. We show how we used it and
obtained an approximation that helped the robot HRP-2 to perform experiments where
reactivity is constantly needed. The same approximation algorithm will be used to
build swept volume approximations in Chapter 5.

3.1 Problem statement

Let us denote by S the state space of the robot. A state of the robot is represented
by a vector x ∈ S containing the configuration of the robot together with the first and
second derivatives:

x = (q,
.
q,

..
q) (3.1)

Let γ be a trajectory in the state space defined over an interval [0, T], and corresponding
to one step of the robot.

In various applications, the trajectories are constrained by some real valued func-
tions defined over the state space. In our work, we took into account four specific
constraints:

1. The distance to self-collision: SC(x). This is the minimum distance between two
bodies of the robot that could collide.

26

3 – Offline Precomputations

Since the geometry of the robot is not taken into account during the creation of
the trajectory, we need to verify that no self-collision occurs along γ. Thanks to
V-clip [Mirtich, 1998], we dispose of a very efficient algorithm to calculate the
distances between the robot bodies along the trajectory. We keep the minimum
of these values and add a margin (σSC) to take into account the possible tracking
errors of the motor PID controllers or the modifications that can be introduced by
the stabilization control law (we use a stabilizer to control the dynamic balance
of the robot).

2. The distance to joint limits: JL(x).

The joint values of a humanoid robot are limited into ranges that are not taken
into account during trajectory generation. So, we check along the trajectory the
distance to limits for each joint (negative when beyond the limit), and keep the
minimal value; again a margin (σJL) is added.

3. The Zero Moment Point (ZMP) deviation: ZD(x). This is the distance between
the ZMP reference used by the pattern generator and the ZMP corresponding
to the trajectory actually produced. The ZMP position depends on q and its
second derivative.

Most of the current real-time dynamic walking pattern generators are based upon
the linear inverted pendulum model [Kajita et al., 2003], and use as main criterion
for balance the belonging of the ZMP to the polygon of support (we will explain
more details about this in Chapter 4). These algorithms first generate a reference
trajectory for the ZMP and then for the Center of Mass (CoM). Finally the
configuration space trajectory is generated so that to realize the CoM reference
(this can be done for example through inverse kinematics). However, due to the
simplified equations of the linear inverted pendulum model, a precise tracking
of the CoM reference does not necessarily correspond to a precise tracking of
the ZMP reference. Once the whole configuration space trajectory has been
generated, we can compute the ZMP trajectory for the robot multibody model
and verify that it stays close to the ZMP reference. We set a threshold σZD to
decide whether the maximum deviation of the multibody ZMP1 is acceptable or
not.

4. The variance of the multibody ZMP:

1

T

∫ T

0

(
ZD(γ(t))

)2
dt (3.2)

Through experiments, we noticed that in some cases if the ZMP goes out of the
polygon of support for a very short time and with a relatively small amplitude,
the robot might not fall. That’s why we took a relatively high value for σZD,
and instead decided to strongly reject the cases where the multibody ZMP is
regularly far from the reference along the trajectory. Thus we take into account
the variance of the multibody ZMP relatively to the ZMP reference, and set a
maximum value σV Z which ensures that the multibody ZMP stays mostly inside
the polygon of support.

1Note that here the term ZMP is an abuse of language since the motion is not necessarily feasible;
one of the terms virtual ZMP, Fictitious ZMP or Foot-Rotation Indicator should be used instead (see
[Vukobratovic and Borovac, 2004], [Goswami, 1999]). However this slight ambiguity is not a major
issue in this thesis, and we will simply keep using the term ZMP.

27

3.1 - Problem statement

C

fσ(γ) RγTrajectory

Generator
p ∈ Rm

Fig. 3.2: The mapping to approximate. The Trajectory Generator takes in input a
vector of parameters defining a step, and must return a unique trajectory. The value
returned by the mapping is positive if the trajectory is acceptable (feasible), negative
otherwise.

We desire to characterize the actual feasibility of a given trajectory with a unique
real number, so finally, the formula we use returns the minimum of the four constraints
considered:

fσ(γ) = min

(
− σSC + min

t∈[0,T]

(
SC(γ(t))

)
,

− σJL + min
t∈[0,T]

(
JL(γ(t)

)
,

σZD − max
t∈[0,T]

(
ZD(γ(t)

)
,

σV Z −
1

T

∫ T

t=0

(
ZD(γ(t))

)2
dt

)
, (3.3)

where σ is the quadruple (σSC , σJL, σZD, σV Z) ∈ R4. The way we obtained the four
margins σSC , σJL, σZD and σV Z is empirical. We chose a margin of 2.5 centimeters
for the self-collisions, 3 degrees for the joint limits, and, as for the margins related to
the ZMP trajectories, we calibrated them through tests.

In the end, the desired property is the following: if the result fσ(γ), which depends
on the minimum distance to self-collisions and joint limits along the trajectory, the
maximum of the ZMP deviation, as well as its “variance”, is positive, then the trajec-
tory γ (i.e. the step) should be feasible on the real robot. The margins σSC , σJL, σZD
and σV Z are chosen so that so converse property is also not far from being true: if
fσ(γ) < 0, then with high probability the trajectory is not feasible on the real robot.

It is straightforward to approach fσ(γ) when the trajectory is discretized, but it
is quite time consuming for it requires a high frequency sampling. What we would
like to do is to build offline an approximation helping us to guess the value and more
importantly the sign of fσ(γ) without even having to generate the trajectory.

Since we can only approximate functions from Rm to R, we need to be able to
produce trajectories from vectors of parameters in Rm. This would give us a mapping
C as shown on Fig. 3.2, which can entirely be computed and approximated offline.

We show in section 3.4 how we describe steps with a vector of Rm, and how we
map a vector of parameters to a unique trajectory. This will complete the definition
of the mapping C. Before that, in section 3.3, we present the original approximation
algorithm which will be used to approximate C. But first, we present some related
work.

28

3 – Offline Precomputations

3.2 Related work

This idea of precomputing robot dependent data structures has been exploited in path
planning for multibody robots in the past [Leven and Hutchinson, 2000; Kallmann and
Mataric, 2004; Nakhaei and Lamiraux, 2008]. In these papers a roadmap is computed
for a multibody robot without obstacles. Once the robot is placed in an environment
with obstacles, the precomputed roadmap is pruned by removing edges in collision
with the obstacles. The remaining roadmap is then used to plan paths.

In robot motor control, Bayesian and kernel-based methods have been studied
extensively for value function approximation or locally weighted regressions. For in-
stance in [Ting et al., 2008], a Bayesian formulation of spatially local adaptive kernels
for locally weighted regression is proposed to estimate the Jacobian of the SARCOS
anthropomorphic arm. In [Sugiyama et al., 2007], a method for value function ap-
proximation based on “geodesic Gaussian kernels” is proposed and evaluated in the
contexts of robot arm control and robot navigation.

Closer to our application, in [Takubo et al., 2007] a 2-dimensional map is built
which returns the time necessary to change the length of a step of HRP-2 in order
to realize an emergency stop. The keypoint of this work is to build a map which
verifies that the ZMP realized by the robot stays in the polygon of support for a
given step-length modification done at a given time while walking. Indeed walking
pattern generators such as the ones proposed by Kajita et al. [Kajita et al., 2002] or
Morisawa [Morisawa et al., 2007] do not guarantee that the robot ZMP stays in the
polygon of support. The main difference between this work and our approach is that
we consider more constraints, and propose an adaptive partition of the input space
well suited for higher dimensions. Indeed our work, taking into account free steps (in
[Takubo et al., 2007] only forward walking is considered), aims at dealing with higher
dimensions.

Concerning our approximation algorithm, we focused on techniques that reduce
the required number of samples. The main specificity of our problem is that we are
only interested in the sign of the function to approximate. Therefore, we naturally
chose to use a method for which the sampling is adaptive and focuses on the regions
where the mapping changes its sign. We adapted the concept of Recursive Stratified
Sampling, which has been extensively used for Monte Carlo integration and image
reconstruction (see [Schürer, 2002], [Hachisuka et al., 2008] and section 7.8 of [Press
et al., 1992]). Locally, we approximate by using a classical Quadratic Programming
problem minimizing under some constraints a distance between a linear combination
of basis functions and the samples. Similar optimization problems are used for basic
regression techniques (see the introduction of [Smola and Schölkopf, 2004]).

We also use in our algorithm two techniques (one global, and one local) of ap-
proached Farthest Point Sampling, a method which has been shown to lead to high
data acquisition rates (see [Moenning and Dodgson, 2003] for recent developments on
Farthest Point Sampling).

3.3 Mapping approximation

The approximation algorithm presented in this section is also described and studied
in [Perrin et al., 2010a].

Let C be a mapping from a bounded hyper-rectangle B0 ⊂ Rm to R (bounded
hyper-rectangles will be called boxes from now on). We suppose that the zero-level

29

3.3 - Mapping approximation

surface {x ∈ B0|C(x) = 0} (the “frontier”) is of Lebesgue measure zero. We also
assume that C is continuous, although our approximation algorithm works well in
practice if C is only piecewise continuous.

Our goal is to approximate C through sampling (since we know nothing about C
we can see this task as nonparametric learning), focusing on the correctness of the
sign of the result, and reducing as much as possible the number of samples needed for
a satisfying approximation (because evaluating one sample is quite time consuming).
These objectives come from the specificities of our problem, but the algorithm we
present can be used in various cases. Typically, C can be an important function that
needs to be frequently called by a real-time application, with decisions made depending
on the sign of the results returned by C. Yet, if C is originally implemented with a
quite time consuming algorithm, the computation cost makes it unsuitable for real-
time applications, and therefore it would be interesting to approximate the sign of
C(x) offline in order to then be able to quickly guess it online, without having to
actually go through any lengthy computation. This is the kind of context in which
the algorithm presented here is most useful. This context corresponds to our problem
of approximation of the mapping defined in Section 3.1, but as we will see later, the
algorithm can also be used in order to build implicit swept volume approximations
that can be evaluated very fast (in that case the result obtained is a bit similar to an
Adaptive Distance Field, see [Frisken et al., 2000]). Indeed, if collisions have to be
checked over and over for the same trajectory of an object in different environments,
it might be very useful to approximate the sign of the corresponding distance field
(i.e. the distance to the volume swept by the object along the trajectory) minus a
fixed margin. If the result of the approximation is then stored in a very efficient data
structure, a lot of time can be subsequently saved during collision checks. Fig. 3.3 shows
the corresponding mapping C for a trajectory followed by a cube; it also displays the
result of our approximation algorithm on this case example.

Back to the general case, the goal of the algorithm is to learn the sign of C through
adaptive sampling. The algorithm is articulated around three principles:

1. Recursive Stratified Sampling: the initial input space B0 is recursively parti-
tioned into small boxes (a tree structure keeps the trace of all splittings; the
current partition is formed by the “leaf-boxes”). Basically, a box will be split
when the local approximation process fails, which can happen only when both
positive and negative samples are contained in the box. Thus, the boxes will
be split a lot and will become small especially near the frontier, i.e. the zone
where C changes its sign. This property will enable an effective implementation
of adaptive sampling focusing on the frontier.

2. Farthest Point-like Sampling in two different scales:

• While selecting a leaf-box for sampling: we roughly estimate for each leaf-
box our “confidence in the sign” of the local approximation, and select
among boxes of lowest confidence.

• While sampling inside a leaf-box: since there will be a limited number of
samples inside a leaf-box, we can use a naive technique for an approached
farthest point-like sampling.

3. Solving small Quadratic Programming problems (i.e. optimizing quadratic func-
tions of several variables that are subject to linear constraints) to obtain local
approximations with correct sign on the training data.

30

3 – Offline Precomputations

C(x) < 0

C(x) > 0

C(x) = 0

C(x) = min (dist(x, ci)− τ, i = 0, . . . , q)

The 2D plot on the bottom-left shows how the approximation algorithm
recursively divides the Euclidean space into small boxes in order to

plot on the bottom right.
A view of this swept volume approximation is displayed on the 3D

adaptively approximate the surface C(x) = 0. The approximated
surface defines an approximation of the volume swept by the cube.

On the left, a 2D representation of a cube
moving along a discretized trajectory. We
denote its successive configurations by c0,
c1, . . . , cq . For a point x of the Euclidean
space, C(x) is defined as the minimum
distance from x to any configuration of
the cube, minus a fixed margin τ . The
margin is important to avoid errors due to
the discretization, and besides, it makes the

thus easier to approximate.
level set {x ∈ R3 | C(x) = 0} smoother,

Fig. 3.3: Case example: implicit approximation of the volume swept by a cube.

Fig. 3.4: An example run of our approximation algorithm on a continuous function
from R2 to R.

31

3.3 - Mapping approximation

Figure 3.4 shows the result of our approximation algorithm on a function from
[−1, 1]2 to R. We can see that the boxes are split adaptively, and that it leads to an
adaptive sampling focusing on the region where the function changes its sign. Let us
call f the result of the approximation. f is constantly updated during the execution
of the algorithm, and like C, it is a function from B0 ⊂ Rm to R. We denote by f|B
the restriction of f to a box B contained in B0. Below, Algorithm 1 describes the
algorithm structure, and leaves just four questions, which we answer respectively in
the four next sections: “how to pick a new leaf-box?”, “how to get new samples?”,
“how to split the boxes?”, and “how to locally approximate?”.

Algorithm 1 The algorithm structure.

1: f ← the constant function 0.
2: Set of Leaves← {B0}
3: while (1) do
4: Pick (using Algorithm 2) a leaf-box B out of Set of Leaves (and remove it from

Set of Leaves).
5: Get new samples in B.
6: if there are only positive samples in B then
7: Define f|B as any positive constant on B, for example choosing the minimum

value of C on the samples in B.
8: else if there are only negative samples in B then
9: Define f|B as any negative constant on B, for example choosing the maximum

value of C on the samples in B.
10: else
11: Temporary Stack ← {B}
12: while Temporary Stack 6= ∅ do
13: Pop a leaf-box Bcurrent out of Temporary Stack
14: Try to locally approximate C on Bcurrent, i.e. try to define a new value of

f|Bcurrent , the main constraint being that f|Bcurrent must have a correct sign
on all the samples in Bcurrent.

15: if this attempt does not succeed then
16: Split Bcurrent into two son boxes of equal dimensions: Bleft and Bright,

and push them both in Temporary Stack.
17: else
18: Put Bcurrent in Set of Leaves.
19: end if
20: end while
21: end if
22: end while

3.3.1 How to pick a new leaf-box

It is very important to find a good method to pick new leaf-boxes, because this choice
is the core of the adaptiveness of the sampling. We want to focus on the boxes where
we know that C changes its sign, but without forgetting to sample on other boxes
where a change of sign might still have to be discovered. It is very difficult to decide
at which rate one should sample near the frontier and at which rate one should sample
in regions where only positive (or only negative) samples have been seen so far.

32

3 – Offline Precomputations

In the first version of our algorithm (see [Perrin et al., 2010b]), the mapping C was
assumed to be K−Lipschitz for some K ∈ R, and a formula for the “confidence in the
sign” of a local approximation was defined, with the aim of picking only leaf-boxes
with lowest confidence. This formula works well in general, but causes the algorithm
to fail to converge with some particular mappings C. In the variant presented here,
we use a different heuristic which this time comes with a proof of convergence (see
section 3.3.5).

The set of leaf-boxes – let us call it Set of Leaves – is divided into three dis-
joint subsets: the set of positive leaf-boxes (containing only samples on which C
is positive), the set of negative leaf-boxes (containing only samples on which C is
negative), and the set of “frontier” leaf-boxes (containing either no sample or both
positive and negative samples). We denote these subsets by Set of PositiveLeaves,
Set of NegativeLeaves, and Set of FrontierLeaves. We also denote by max value
the maximum absolute value of C seen on the samples collected so far. For a leaf-box
B containing k samples (s1, C(s1)), . . . , (sk, C(sk)), with k ≥ 1, we define co(B),
which is inspired by the value conf(B) used in [Perrin et al., 2010b] (the “confidence
in the sign”), but leads to better convergence properties. The definition is divided into
two cases:

1. If B is a leaf-box with at least one sample on it, co(B) is defined as follows
(the measure of Lebesgue, or volume of B, denoted by volume(B), is simply the
product of its m lengths):

co(B) =
k

volume(B)
+

1

max value
×
∑k

i=1 |C(si)|
volume(B)

(3.4)

2. If B is a leaf-box with no sample, it has necessarily just been created, and in
that case either B is the input space, B0, and we pose co(B) = (volume(B0))−1,
or B has been created by splitting its parent box B′, and we pose:

co(B) =
co(B′)

2
, (3.5)

where co(B′) is the value just before the split.

The important properties of co(B) are that first, it increases when the density of
samples in the leaf-box (i.e. k

volume(B)
) increases, and second, co(B) has a component

which depends on the values of C on the samples: this helps to drive the sampling
towards regions where C takes relatively small values. Indeed, considering only the
density of samples is not enough: if B1 is a box containing 10 samples on which the
value of C is about 5, and B2 a box of same size with 9 samples on which the value
of C is about 1, even though the density of samples is higher in B1, it seems natural
to sample first in B2, because intuitively C has more chances to change its sign in
B2. co(B) gives us an arbitrary rule to know when to stop sampling on B2 and start
sampling on B1. The third interesting property comes from the use of max value and
is that if we simply multiply C by a non-zero constant, the behaviour of the sampling
would remain unchanged: without randomness it would lead exactly to the same sam-
ples and the same leaf-boxes. Finally, one of the main advantages of this definition of
co(B) is that it is extremely easy to compute.

Algorithm 2 shows how co(B) is used to pick a new leaf-box. We see that by
default, this algorithm gives the same importance to the two following tasks:

33

3.3 - Mapping approximation

Algorithm 2 The default algorithm for picking a new leaf-box.

1: Flip a coin.
2: if the flip is heads AND Set of FrontierLeaves is not empty then
3: Choose a leaf-box Bnew ∈ Set of FrontierLeaves such that co(Bnew) =

min {co(B)|B ∈ Set of FrontierLeaves}.
4: else
5: Flip another coin.
6: if the flip is heads AND Set of PositiveLeaves is not empty then
7: Choose a leaf-box Bnew ∈ Set of PositiveLeaves such that co(Bnew) =

min {co(B)|B ∈ Set of PositiveLeaves}.
8: else
9: Choose a leaf-box Bnew ∈ Set of NegativeLeaves such that co(Bnew) =

min {co(B)|B ∈ Set of NegativeLeaves}.
10: end if
11: end if

1. Select a leaf-box among Set of FrontierLeaves, i.e. try to make the approxi-
mation more precise on the known parts of the frontier of C.

2. Select a leaf-box among Set of PositiveLeaves ∪ Set of NegativeLeaves, i.e.
try to discover new parts of the frontier of C.

Two remarks:

• In some cases, it is better to customize the Algorithm 2. For example, when C
is a distance minus a small threshold, the positive and negative regions are not
symmetric and should not be treated so. C will mainly be equal to −τ (τ being
the threshold) on the negative region, which gives few information; thus in that
case it seems appropriate to focus more on the positive region than the negative
one. Another example is when the frontier is known to have a simple shape: in
that case it is arguably better to pick “frontier” leaf-boxes with a probability
greater than 50%, thus boosting the focus on the frontier.

• We call “task 1)” selecting a leaf-box in Set of FrontierLeaves, and we call
“task 2)” selecting a leaf-box in Set of PositiveLeaves ∪ Set of NegativeLeaves.
Looking for a good tradeoff between tasks 1) and 2) is very similar to some issues
raised by the so-called multi-armed bandit problem, where a gambler is using a
slot machine with multiple levers. When pulled, each lever provides a reward
drawn from a distribution associated with that specific lever. The objective of
the gambler is to maximize the sum of rewards earned through a sequence of
lever pulls. The crucial tradeoff the gambler faces at each trial is between “ex-
ploitation” of the lever that has the highest expected payoff and “exploration”
to get more information about the expected payoffs of the other levers. In our
problem, the task 1) can be seen as the “exploitation”, and the task 2) as the
“exploration”. This similarity could be the starting point of a more theoretical
foundation for the Algorithm 2, and indeed a few examples of adaptive sampling
techniques based on Bayesian or frequentist analyses of the bandit problem ex-
ist in the litterature, such as in [Hardwick and Stout, 1998]. Yet in our case
the payoff is not very clear, or at least not known in advance (it should quan-
tify the improvement of the frontier approximation), and furthermore one of our
priorities, computational efficiency, limits the range of possible methods.

34

3 – Offline Precomputations

3.3.2 How to get new samples

Let us assume that new samples must be chosen inside the leaf-box B (see line 5 of
Algorithm 1).

In the default version of the algorithm, N new samples are simply chosen indepen-
dently and uniformly inside B, N being an integer fixed in advance.

In a more elaborate version, we can first pick more than N samples (e.g. 10N), and
then select a group of samples that are far from each other and far from the samples
already in B. This version can be chosen if the evaluation of C is much longer than
the computation needed to obtain such samples.

In an even more elaborate version, we allow the samples to be drawn also a bit
outside of B. This technique has already been efficiently used in several adaptive
algorithms, such as the one presented in [Hachisuka et al., 2008]; it allows samples
to spill into neighboring boxes and enables the adaptive sampling method to “crawl”
along the frontier of C.

3.3.3 How to split the boxes

We simply split the boxes cyclically. We give an order to the dimensions: dim. 1,
dim. 2,. . . , dim. m. The initial box B0 is split in half orthogonally to dim. 1, and
its children boxes are split orthogonally to dim. 2, then dim. 3 for the grandchildren
boxes, etc. If a box is split orthogonally to dim. m, its children boxes will be split
orthogonally to dim. 1, and so on. . .

If the input space has 2 or 3 dimensions, specific implementations with quadtrees
or octrees can be advantageously used.

3.3.4 How to locally approximate

Here is the context: a leaf-box Bcurrent contains a finite number of samples, and we
want to find a local approximation which has a correct sign on these samples, or return
“fail”.

The three first cases are simple: if there is no sample in Bcurrent, we don’t modify
f|Bcurrent ; if there are only positive samples in Bcurrent, we define f|Bcurrent as any
positive constant on Bcurrent (e.g. the minimum value of C on the samples in Bcurrent);
if there are only negative samples in Bcurrent, we define f|Bcurrent as any negative
constant on Bcurrent (e.g. the maximum value of C on the samples in Bcurrent).

In the last possible case, Bcurrent contains both positive and negative samples. We
use another parameter Nmax > N chosen in advance, and if the box contains more
than Nmax samples, we return “fail” (and the box will be split, which will lead to two
smaller boxes with hopefully less samples, and local approximations will be attempted
again on each of them). This parameter Nmax should be chosen so that only a small
portion of the computation time is spent on local approximations (whose complexity
depends on the number of samples); most of the computation time should be spent in
evaluations of C.

We present a simple technique for local approximation based on Quadratic Pro-
gramming (see the introduction of [Smola and Schölkopf, 2004] for details on regression
techniques of that sort). The convergence (Theorem 3.3.1) of the algorithm does not
depend on local approximations, but good local approximations will speed up the
convergence rate.

Let us call {(s1, C(s1)), . . . , (sl, C(sl))} the samples in Bcurrent.

35

3.3 - Mapping approximation

In the technique presented here, f|Bcurrent is being searched among the elements
of a finite dimension vector space chosen by the user (this vector space must contain
constant functions). Let us describe the basic case of the affine functions which take
the following form:

g(x) = g(x1, x2, . . . , xm) = 〈w, (x1, x2, . . . , xm, 1)〉, (3.6)

with w ∈ Rm+1 and where 〈·, ·〉 denotes the dot product on Rm+1. We solve the
following Quadratic Programming problem over the real numbers:

minimize
∑
i

(g(si)− C(si))
2 = 〈w,Mw〉+ 〈d,w〉+

∑
i

C(si)
2

subject to

{
∀i | C(si) > 0, g(si) > 0
∀i | C(si) ≤ 0, g(si) < 0

(3.7)

where M is a symmetric positive (m+ 1)× (m+ 1) matrix, and d ∈ Rm+1.
The solution g found defines the new value for f|Bcurrent . If no solution is found,

“fail” is returned.
Our implementation uses the solver QL [Schittkowski, 2005].

3.3.5 Convergence result

Each leaf-box than can appear during the execution of the algorithm can be defined by
a finite list of booleans coding a path in the infinite tree. Therefore there is a bijection
between theses boxes and N, and we can denote them by B(1), B(2), B(3), . . .

The execution of the algorithm is entirely determined by an infinite sequence of
independent coin flips randomly drawn, and for each box B(i), an infinite sequence of
independent samples uniformly drawn in it (when new samples are needed in a box
B, we just follow the sequence of samples corresponding to this box). Let us call

Rflips the sequence of coin flips, and R(i)
samples the sequence of samples in the box B(i).

Let us denote by E(Rflips, (R
(i)
samples)i∈N) the execution of the algorithm with random

sequences Rflips and (R(i)
samples)i∈N, and let us also denote by fi the approximation

obtained after i iterations of the while loop (line 3 of Algorithm 1).
With probability 1, both of the two following properties are verified (a key argument

to prove this is that any countable union of sets of Lebesgue measure 0 has Lebesgue
measure 0):

1. In the sequence of coin flips there are infinitely many “tails” and infinitely many
“heads”, and what’s more, any finite sequence appears infinitely many times (e.g.
“tails-heads”, or “heads-heads-tails”, etc.).

2. For each box B(i), R(i)
samples contains infinitely many points in any non-empty

open subset of B(i).

Under these assumptions, we have the following:

Theorem 3.3.1. For all compact subsets X ⊂ B0 such that ∀x ∈ X, C(x) 6= 0, there
exists n0 ∈ N such that:

∀n > n0, ∀x ∈ X,
{
C(x) > 0⇒ fn(x) > 0
C(x) < 0⇒ fn(x) < 0

36

3 – Offline Precomputations

Since the frontier is assumed to be of Lebesgue measure zero, we have the immediate
corollary:

Corollary 3.3.1. The Lebesgue measure of Errn, the set of points of B0 on which fn
does not have a correct sign, tends to zero when n tends to +∞.

We will demonstrate Theorem 3.3.1 with the default version of the algorithm, the
one where groups of samples are simply drawn uniformly, but with very small changes
in the proof we obtain the same theorem with the algorithm variants. Before proving
the theorem, we demonstrate three preliminary lemmas:

Lemma 3.3.1. For any leaf-box B, we always have:

co(B) ≥ k + 1

4(volume(B))
,

where k is the number of samples in B.

Proof. It is true for the initial value of co(B0), and when the equation (3.4) is used,
we have co(B) ≥ k

(volume(B′))
, with k ≥ k+1

4 .

When the equation (3.5) is applied, it means that B contains no sample (k = 0),
but the parent box B′ necessarily contained samples (otherwise it wouldn’t have been
split), so we had co(B′) ≥ 1

(volume(B′))
(by eq. (3.4)). Since the volume of B is half

the volume of B′, we obtain indeed co(B) ≥ 0+1

4(volume(B))
.

Lemma 3.3.2. Let B be a leaf-box after iteration i of Algorithm 1.
There exists j > i such that B will be selected by Algorithm 2 at iteration j.

Proof. We prove it by contradiction. Without loss of generality we assume that
B belongs to Set of PositiveLeaves; the reasoning would be the same with B ∈
Set of NegativeLeaves or B ∈ Set of FrontierLeaves.

Assuming that B is never to be selected, the value co(B) will never change.
Because of Lemma 3.3.1, the number of boxes B(i) which could verify co(Bi) ≤

co(B) if they were leaf-boxes is finite (for the boxes B(i) that are too small, namely
such that co(B(i)) < (4(volume(B0)))−1, this inequality cannot be verified). Let us
call them B(i1), B(i2), . . . , B(iK).

Thanks to the assumption made on the sequence of coin flips, it can be shown
that Set of PositiveLeaves will be selected infinitely many times by Algorithm 2.
Each time, some samples will be put in one leaf-box B(i) which belongs to the set
{B(i1), B(i2), . . . , B(iK)}, and must verify co(Bi) ≤ co(B). At least one of the boxes
B(ij) must be chosen an infinite number of times, but because of the inequality

co(B(ij)) ≥ 1+number of samples in B(ij)

4×volume(B(ij))
the value co(B(ij)) will eventually exceed

co(B), and it will become impossible to choose B(ij): contradiction. We can thus
conclude that the box B will be selected again.

Lemma 3.3.3. Let B be a leaf-box that will eventually be split. Then the intersection
between B and the frontier is not empty.

Proof. If the intersection was empty, since C is continuous, it would either be negative
on all points of B, or positive on all points of B. In that case f|B would always be
defined as a constant on B, and B would never be split.

37

3.4 - Reducing the dimensionality of the parameter space

Now we can prove the convergence theorem:

Proof of Theorem 3.3.1. Let X be a compact subset of B0 such that ∀x ∈ X, C(x) 6=
0, and let us call d > 0 the distance between X and the frontier. We call Xd/2 ⊃ X the
open set of points x ∈ B0 such that the distance between x and the frontier is greater
than d/2. Thanks to Lemma 3.3.3 we know that after some iteration, all the leaf-
boxes that have a non-empty intersection with Xd/2 will never be split, because in the
opposite case, as a consequence of König’s lemma the minimum size of the boxes that
will be split and have a non-empty intersection with Xd/2 should endlessly decrease
and tend to zero, which is impossible because since the distance between Xd/2 and the
frontier is d/2 > 0, no box too small can at the same time contain points of Xd/2 and
points of the frontier.

So there exists n0 ∈ N+ such that after iteration n0, all the leaf-boxes having a
non-empty intersection with Xd/2 are fixed. Let us consider one such leaf-box B(i).
Thanks to lemma 3.3.2, we know that B will be picked an infinite number of times,
and as a result will receive an infinite number of samples. Besides, B(i) will never
belong to Set of FrontierLeaves, because otherwise it would be eventually split (see
section 3.3.4: with more than Nmax samples, leaf-boxes of Set of FrontierLeaves are
automatically split). As a consequence, f|B(i) will always have the same constant sign.

Moreover, since Xd/2 is an open set and B(i) the closure of an open set, the intersection

between B(i) and Xd/2 contains an open subset, and since R(i)
samples contains infinitely

many points in any non-empty open subset of B(i), we know that a sample of Xd/2

will eventually be drawn. It follows that after iteration n0 the sign of f|B(i) is equal

to the sign of C on some point of Xd/2 ∩ B(i). But since C is continuous, it can only

have a constant sign on Xd/2 ∩ B(i); otherwise we could easily obtain a contradiction

by considering two open subsets of B(i), one on which C is positive, and one on which
C is negative. Since we know that samples will eventually be drawn in these two open
subsets, B(i) would be transfered to Set of FrontierLeaves, which as we have proved
cannot happen.

Hence, the sign of f|B(i) is equal to the sign of C on every point of Xd/2 ∩B(i). By
extending this result to all the leaf-boxes having a non-empty intersection with Xd/2,
we deduce that after iteration n0, f has a correct sign on the entire set Xd/2, and a
fortiori on X:

∀n > n0, ∀x ∈ X,
{
C(x) > 0⇒ fn(x) > 0
C(x) < 0⇒ fn(x) < 0

3.4 Reducing the dimensionality of the parameter space

So, now that we presented our approximation algorithm, and showed how to get from
a trajectory γ a real number whose sign characterizes the feasibility of γ, the only
thing left to do (before applying the algorithm to approximate feasibility tests for the
robot HRP-2) is the definition of a parameter space from which unique trajectories
can be generated. It is the purpose of this section.

38

3 – Offline Precomputations

Fig. 3.5: Parameterization of a step for the humanoid robot HRP-2. The right foot
defines the origin of the coordinate frame, and the left foot moves from (xi, yi, θi)
to (xf , yf , θf). The robot has 36 degree of freedom. 6 for the waist position and
orientation (the “free-flyer”), and 30 revolute joints.

3.4.1 Unique trajectories from 6 parameters

As shown on Fig. 3.5, 6 parameters can fully describe a step: 3 for the initial po-
sition and orientation of the swing foot (relatively to the stable foot), and 3 for its
final position and orientation. Nevertheless, this geometric description usually doesn’t
correspond to a unique trajectory: recent walking pattern generators produce fully
dynamic walks, and thus take into account the initial speed of the robot’s Center of
Mass (CoM), as well as the next few steps that are going to be performed (see [Kajita
et al., 2003]).

Our approximation only considers isolated single steps: the initial and final speeds
of the CoM are zero. This corresponds to a conservative approach, since preliminary
work showed that in most cases, a non-zero initial speed only expands the feasible set
of steps.

Moreover, a fixed CoM height is given, as well as the initial and final horizontal
positions of the CoM during any step: namely, right in between the centers of the feet.
We also set the initial and final orientations of the robot (i.e. of its waist): its initial
orientation is the one of the stable foot while its final orientation corresponds to the
final orientation of the swing foot.

With all these restrictions, we can obtain a unique trajectory from the 6 parameters
describing a step geometry.

3.4.2 From 6 to 4 parameters

In a 6-dimensional space, 10 values in each dimension correspond to a total of 1 million
samples.

Being able to treat 1 sample in about 0.4s, we were not able to obtain a satisfying
approximation in a reasonable time with the computational power we dispose of.

39

3.5 - Experimental results of online footstep correction

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3

x-axis distance between the feet (m)y-
ax

is
di

st
an

ce
 b

et
w

ee
n

th
e

fe
et

 (
m

)

Fig. 3.6: Approximation of the feasibility region for the landing position of the left
foot from a fixed initial position, for several values taken in [−5 ◦,+5 ◦] × [−5 ◦,+5 ◦]
setting its initial and final orientations. The line segments of a same color define the
contour (for one couple of orientations) of the set of positions on which the swing foot
can land after a valid step. We can see that if the initial and final orientations of the
swing foot are modified a little bit, the feasibility region is slightly changed, but we
can find a safe zone inside the feasibility region so that to ignore these modifications.

Therefore, a further reduction of dimensionality was still necessary.

We noticed that if we oblige the feet to stay at a reasonable distance from each
other, and if the initial and final orientations of the swing foot remain close to the
support foot orientation (e.g. ±5 ◦), then orientations do not have much impact on
the feasibility region from a given initial position.

Fig. 3.6 shows some feasibility regions with different initial and final orientations
of the swing foot. The results are similar in shape, with differences when the lateral
displacement is large. To avoid significant differences we set an upper bound limit
(29cm) for the lateral distance between the feet of the robot to 29cm, and also add a
lower bound limit at 16cm, so that the feet stay relatively far from each other. With
these restrictions, we limit the orientation of the feet to the interval [−5 ◦,+5 ◦] and
ignore the orientation parameters when guessing the feasibility of a step. Fig. 3.6
motivates this heuristic.

3.5 Experimental results of online footstep correction

3.5.1 Analysis of the approximation

It took us 11 days with an Intel(R) Pentium(R) CPU 3.40GHz to build the complete
approximation, and the total number of points sampled was 2,672,928.

The resulting function is instanciated in 9µs: it means that with the same computer
we divided the verification time for the feasibility of a step by about 40,000.

We tested the approximation on 349,559 points randomly drawn according to a
uniform distribution over the input space. Among them, 8,607 corresponded to steps
declared feasible by our verification process, 340,952 were declared not acceptable

40

3 – Offline Precomputations

y-
ax

is
di

st
an

ce
 b

et
w

ee
n

th
e

fe
et

 (
m

)

x-axis distance between the feet (m)

Fig. 3.7: Construction of a simple feasibility region inside a zone defined by positive
samples. This region is also chosen symmetric with respect to the y-axis so that to
always keep the same reachable zone no matter what the previous step was.

(which, because of the margins, does not necessarily mean that the trajectory would
actually fail). On the 8,607 positive points, the approximation was positive 8,278 times.
On the 340,952 negative points, the approximation was negative 340,862 times. So for
these random samples, if the approximation returns a positive result, it is correct (i.e.
the trajectory generated would be considered feasible by our verification process) at
98.8%. If the returned result is negative, it is correct at 99.9%.

3.5.2 Preliminary experiments

First, instead of using the approximation obtained, we constructed a simpler region
of feasibility, as shown on Fig. 3.7. The advantage of such a simple region is that
it can be written as a conjunction of linear constraints, and thus it is possible to
use it in a Walking Pattern Generator which computes foot placements as part of an
optimization problem. It was used in [Herdt et al., 2010] where a reference speed is
sent to the robot which then tries to find the best foot placements and leg trajectories
to follow the reference.

We also used similar simple regions to correct footsteps in an experiment where the
robot is guided by the hands of the user: see Fig. 3.8 and [Perrin et al., 2009], [Stasse
et al., 2009a,b].

3.5.3 Experiment: steering HRP-2 with a gamepad

We used the real approximation obtained through offline computations to correct foot-
step placements in the following steering experiment: through a gamepad with 2 axes
the user controls simple requests of steps that are repeatedly sent to the robot HRP-2.
This experiment is described in [Perrin et al., 2010b]. Each request has two com-
ponents: a position of the objective footprint relatively to the support foot, and an
orientation change. The mechanism of treatment of the requests of steps is described
on Fig. 3.9.

41

3.5 - Experimental results of online footstep correction

Fig. 3.8: A human-humanoid interaction experiment.

Every 20ms, the step currently set by the gamepad
is sent to our approximation, which guesses whether
from the current posture it will be a feasible step
or not. As long as the step is not feasible, it is dis-
carded. But when a step is declared feasible, the
software saves it and gets ready to send it to the
robot. When another step is guessed feasible, the
previous candidate step is overwritten: therefore,
when the robot is ready to perform a new step, it is
always given the last feasible step.

Fig. 3.9: Steering HRP-2 with a gamepad.

With this simple approach, we have been able to repeatedly teleoperate the robot
for several minutes without making it fall on the ground. the steering is very intuitive,
and the user naturally avoids keeping the axes in a configuration that would correspond
to unfeasible steps.

Nevertheless, in some cases, the robot, pushed to its limits, falls down. This is due
to discrepancies between the model on which we tested steps, and the real conditions.
First, in our experiments the waist and arms of the robot are not fully constrained
by tasks, and thus don’t have exactly the same behaviour as the one fixed for our
offline computations. Second, our verification process of trajectories neither includes
torque limits nor dynamic simulations of contact forces, and does not take into account
the robot ankle compliance. Third, we use slightly different models ([Morisawa et al.,
2007] and [Kajita et al., 2002]) for online pattern generation and offline tests. But the
fourth and main discrepancy between the offline approximation and the real conditions
is that we approximated the results of tests on isolated steps. However, during the

42

3 – Offline Precomputations

online execution, with a state-of-the-art walking pattern generator like the one we used
([Morisawa et al., 2007]), two consecutive steps are not independent: the trajectory
of a step depends on the previous one, and even on the next one (because of the use
of preview control). To avoid this discrepancy we would have to use a new parameter
space where sequences of 3 steps are considered, but this would significantly increase
dimensionality, and would cause an explosion of the approximation time.

3.6 Conclusion

In this chapter we presented an original approximation algorithm, and showed how,
with some restrictions, we were able to reduce dimensionality and perform an offline
approximation of feasibility regions for a state-of-the-art walking pattern generator.
HRP-2 was then able to guess the feasibility of a step 40,000 times faster than with the
normal verification process, and that helped us realize some successful experiments of
reactive walk.

43

Chapter 4

Walking Pattern Generation

In the previous chapter, we used a state-of-the-art walking pattern generator, and
tried to approximate the set of feasible steps through extensive offline computations.
One of the main problems encountered was the relatively high dimensionality of the
input space: indeed one step is geometrically defined by 6 parameters, and this is
enough to lead to slow approximations. We added debatable restrictions to reduce the
input space down to a 4-dimensional space, and finally obtained results that were suc-
cessfully applied to HRP-2. Nevertheless, as we mentioned there are some unavoidable
discrepancies between the steps considered during the approximation process and the
steps actually performed by the robot: with a state-of-the-art walking pattern genera-
tor the connections between steps are not done at zero speed, and therefore consecutive
steps are not independent. This means that for a sound result we would be obliged to
increase even further the dimensionality of the input space.

In section 4.2, we introduce a new walking pattern generator based on half-steps,
and show how to use it in order to obtain a 3-dimensional input space, without hav-
ing to give up on the dependency between consecutive steps. This dimensionality
reduction enables better offline approximations, and a smoothing process ensures the
soundness of the approach: the initial trajectories correspond exactly to a concate-
nation of the steps that are evaluated by the approximation algorithm. This walking
pattern generator is also described in [Perrin et al., 2011b] and [Perrin et al., 2011a].
In chapters 5 and 6, we will see how to use the interesting properties of this walking
pattern generator in fast footstep planning frameworks.

In section 4.3, we conduct a theoretical study of the sensitivity of this new walking
pattern generator. But first, we present the related work.

4.1 Related work

Our approach for walking pattern generation shares a lot of similarities with the article
[Kuffner et al., 2001], which presents an algorithm for planning safe navigation strate-
gies for biped robots moving in obstacle-cluttered environments. In [Kuffner et al.,
2001], in order to reduce the number of transition trajectories between two consecu-

44

4 – Walking Pattern Generation

tive footstep placements, the authors introduce two intermediate postures Qright and
Qleft that serve as via points for all footstep transitions. Qright and Qleft correspond
to default postures in which the robot is respectively balanced entirely on the right or
left foot, with the other foot raised high above the walking surface. We use the same
intermediate postures as extremities for what we call half-steps: an upward half-step
goes from a double support configuration to the posture Qleft or Qright, whereas a
downward half-step goes from either Qleft or Qright to a double support configuration.
This divides by 2 the dimensionality of the input space.

The goal of [Kuffner et al., 2001] is to quickly find statically stable walking motions
from an initial position to a goal location. The problem with considering only statically
stable motions is that it considerably reduces the set of possible steps. For example
large steps can usually not be obtained with statically stable motions. Indeed, during
a statically stable motion the center of mass (CoM) must always be above the polygon
of support (defined as the convex hull of the set of points of the robot in contact with
the walking surface). Therefore, the CoM has to shift completely from one foot to the
other before the swing foot can be raised. This often causes an overstretching of the
leg, while large steps can easily be produced with dynamic motions where the swing
foot can be raised while the CoM is not above the polygon of support.

On the contrary our approach directly uses a low dimensional space of dynamic
motions (the half-steps). Thanks to its low dimensionality, we will be able to replace
tests on this space by approximation functions that are computed offline, following the
method introduced in chapter 3. Although dynamic, the half-steps we consider start
and finish with zero speed, so they are still statically stable at their extremities. This
enables us to concatenate them freely in order to produce “raw” sequences of half-steps,
but it also makes these sequences contain strong speed variations (they frequently reach
zero speed) and unnecessary sway motions of the CoM. For this reason even if those raw
sequences are better than statically stable motions, they are still very poor compared to
trajectories generated by state-of-the-art walking pattern generators. We show that we
can cope with this issue by using a very simple homotopy which continuously deforms
a raw sequence of half-steps into a smoother and more dynamic sequence where the
zero speed configurations have totally disappeared.

4.2 A walking pattern generator based on half-steps and
a smoothing homotopy

We use a classical simplified model of the robot dynamics: the linear inverted pendulum
model (see [Kajita et al., 2003]). In this model the mass of the robot is assumed to
be concentrated in its CoM which is supposed to be rigidly linked to the robot waist
and directly above it at all time. Besides, the robot is supposed to have only coplanar
point contacts with the horizontal walking surface. An analysis of the subsequent
equations leads to a further approximation which enables the decoupling of the dynamic
differential equations for the x-axis and y-axis. They can be written as follows:

px = Z(x) (4.1)

py = Z(y) (4.2)

with Z , Id− zc
g

d

dt2
(4.3)

45

4.2 - A walking pattern generator based on half-steps and a smoothing homotopy

(x, y) are the (x-axis,y-axis) coordinates of the CoM of the robot, zc is the height of
the robot center of mass which is supposed constant during the steps, and (px, py) are
the (x-axis,y-axis) coordinates of the virtual Zero Moment Point (ZMP). A classical
dynamic balance criterion for biped walking is that the ZMP should stay at all time
inside the polygon of support (see [Vukobratovic and Borovac, 2004]). An important
thing to notice in these equations is that Z is a linear operator.

In the article [Harada et al., 2006], Harada et al. show how analytical trajectories
for both the CoM and the ZMP can be derived from these equations. The ZMP

trajectory is a polynomial of the time variable t, and the CoM trajectory
(
x(t)
y(t)

)
has

the general following form:

cosh(

√
g

zc
· t)
(
Vx
Vy

)
+ sinh(

√
g

zc
· t)
(
Wx

Wy

)
+

(
rx(t)

ry(t)

)
(4.4)

where rx(t) and ry(t) are polynomials entirely determined by px(t) and py(t), respec-
tively.

From this equation we see that for a given ZMP profile, there are just enough
free parameters (Vx, Vy,Wx,Wy) to set the initial horizontal position and speed of the
CoM: (

x(0)

y(0)

)
=

(
Vx + rx(0)

Vy + ry(0)

)
(4.5)

(.
x(0)
.
y(0)

)
=

√

g
zc
·Wx +

.
rx(0)√

g
zc
·Wy +

.
ry(0)

 (4.6)

Using these equations, next we show how to produce the C-space (configuration
space) trajectory corresponding to an isolated half-step. We just need to obtain a
unique C-space trajectory from a small number of half-step parameters (as we will see,
in our case it will be 3 parameters). If each of the robot legs has 6 degrees of freedom
or more (the redundancy can be treated using generalized inverse kinematics, see
[Nakamura and Hanafusa, 1987]), then this problem can be reduced to the generation
of trajectories for the waist and the feet. Besides the compulsory constant waist height,
we also make a few arbitrary and convenient restrictions (which reduce the number of
parameters): the pitch and roll parameters of the waist orientation will stay at zero,
and similarly the swing foot will always stay parallel to the walking surface. Thus, the
lower body trajectory is entirely defined by 7 functions of the time:

• the waist horizontal position: x(t), y(t) (we recall that the waist and CoM are
rigidly fixed)

• the waist orientation: θ(t)

• the swing foot position: SFx(t), SFy(t), SFz(t)

• the swing foot orientation SFθ(t)

4.2.1 Producing isolated half-steps

There are two types of half-steps: upward half-steps which start in double support
configuration and end up with the swing foot at maximum height, and downward half-
steps which start with the swing foot raised and end up in double support configuration.

46

4 – Walking Pattern Generation

y

x

(SFx(0), SFy(0), 0)

(0, 0, 0) (0, SFy(T), SFz(T))

SFθ(0)

z

Fig. 4.1: Here we show an upward half-step from above. It is fully determined by the
5 parameters SFx(0), SFy(0), SFθ(0), SFy(T) and SFz(T). A downward half-step is
also fully determined by 5 parameters.

In this section we only consider upward half-steps, but the method for the generation
of downward half-steps trajectories is similar.

So, let us consider an upward half-step. In order to reduce the dimensionality of
the parameter space, we make several assumptions. First, we fix and denote by T the
duration of any half-step. Then, we assume that the initial and final speed of the ZMP
and swing foot are 0, but we do not assume that the CoM initial and final speed are
zero.

.
px(0) =

.
py(0) =

.
px(T) =

.
py(T) = 0 (4.7)

.
θ(0) =

.
θ(T) = 0 (4.8)

.
SFx(0) =

.
SFy(0) =

.
SFz(0) =

.
SFθ(0) = 0 (4.9)

.
SFx(T) =

.
SFy(T) =

.
SFz(T) =

.
SFθ(T) = 0 (4.10)

Second, the initial vertical projection on the ground of the CoM is equal to the ZMP
initial position, right in between the centers of the feet. Taking the center of the
support foot as the origin of the Euclidean space, it gives us:

x(0) = px(0) =
SFx(0)

2
(4.11)

y(0) = py(0) =
SFy(0)

2
(4.12)

We also assume that the final horizontal position of the CoM and ZMP coincide at
the center of the support foot, and that the final orientation of the swing foot and the
initial and final orientation of the waist are equal to the orientation of the support
foot (as a consequence during downward half-steps the initial orientation of the waist
is equal to the orientation of the support foot, but the final orientation of the waist is

47

4.2 - A walking pattern generator based on half-steps and a smoothing homotopy

equal to the final orientation of the swing foot). Besides, the line passing through the
centers of the final positions of the feet is orthogonal to this final orientation:

x(T) = px(T) = 0 (4.13)

y(T) = py(T) = 0 (4.14)

θ(0) = θ(T) = SFθ(T) = 0 (4.15)

SFx(T) = 0 (4.16)

As a consequence of these equations, the final and initial configurations are entirely
determined by 5 parameters (as shown on Fig. 4.1):

SFx(0), SFy(0), SFθ(0), SFy(T) and SFz(T).

Besides, concerning the derivatives at the boundaries, the only free parameters are
.
x(0),

.
x(T),

.
y(0), and

.
y(T). This adds up to a total of 9 free parameters.

Now, we show how the ZMP trajectory is defined. An upward half-step is divided
into 3 phases: during the first one, of duration t1, the ZMP stays right in between
the centers of the feet (and the feet keep their positions as well), so we have px(t) =
SFx(0)

2 , py(t) =
SFy(0)

2 , and
.
px(t) =

.
py(t) = 0. Then there is the “shift” phase, during

which the ZMP quickly shifts from its initial position to its final position, reached
at time t2. Then, from t2 to T , the ZMP stays at its final position, so we have
px(t) = py(t) =

.
px(t) =

.
py(t) = 0. During the “shift” phase we set px and py as third-

degree polynomials determined by the respective boundary conditions px(t1) = SFx(0)
2 ,

px(t2) =
.
px(t1) =

.
px(t2) = 0, and py(t1) =

SFy(0)
2 , py(t2) =

.
py(t1) =

.
py(t2) = 0. For

the downward half-step, even if the phase of double support and single support are
inverted, we keep the same durations: the ZMP shift occurs between time t1 and t2.
In practice, we set t1 = T − t2.

By application of eq. (4.4), if we fix SFx(0), SFy(0),
.
x(0), and

.
y(0), we can get

an analytical expression of the unique C2 solution for x(t) and y(t) over [0, T]. The
solution is unique because during the first phase, Vx, Vy, Wx and Wy are fixed by the
following equations (obtained from eq. (4.5) and eq. (4.6)):

Vx =
SFx(0)

2
− rx(0) (4.17)

Vy =
SFy(0)

2
− ry(0) (4.18)

Wx =

√
zc
g

(
.
x(0)− .

rx(0)) (4.19)

Wy =

√
zc
g

(
.
y(0)− .

ry(0)) (4.20)

Moreover, the unique solution during the first phase leads to unique values for x(t1),
y(t1),

.
x(t1), and

.
y(t1). These values fix the free parameters of the unique C2 exten-

sion of the solution on [t1, t2], and subsequently the free parameters of the unique
C2 extension over [t2, T]. Nevertheless, those two unique C2 solutions might violate
the constraints x(T) = 0 and y(T) = 0 (eq. (4.13) and eq. (4.14)). Analyzing the
impact of

.
x(0) and

.
y(0) on the anayltical solutions, we can see that they have a mono-

tonic influence over respectively x(T) and y(T), and that to one value of x(T) (resp.

48

4 – Walking Pattern Generation

−0.1

−0.02

 0

 0.02

 0.04

 0 0.2 0.4 1 1.2

−0.08

(m)

SFy(0)
2

t2t1 (s)

the ZMP shift

T

Fig. 4.2: We consider the upward half-step of Fig. 4.1, and show the corresponding
ZMP trajectory along the y-axis: py(t) (solid line). To this trajectory corresponds an

infinity of C2 solutions for y(t) which all verify y(0) = py(0) =
SFy(0)

2 , each of them
being fully defined by the derivative of y at 0. We show several such C2 solutions
(dotted lines); the thick dotted line is the solution retained: it is the unique one
verifying y(T) = 0.

y(T)) corresponds a unique value
.
x(0) (resp.

.
x(0)). We implemented a dichotomic

search for those values, and with simple methods avoided problems of numerical un-
stability (using the fact that with only one ZMP shift and the boundary conditions
CoM(0) = ZMP (0) and CoM(T) = ZMP (T), the solution CoM trajectories x and
y are necessarily monotone).

Fig. 4.2 considers the half-step of Fig. 4.1, and it shows the trajectory of the ZMP
along the y-axis as well as several C2 solutions for y(t), for different values of

.
y(0).

Only one solution is retained, the one with y(T) = 0. If the durations t1 and T − t2
are long enough, the values obtained for

.
x(0),

.
x(T),

.
y(0) and

.
y(T) can be neglected,

and thus the CoM trajectories obtained can be assumed C2 continuous over (−∞,∞).
Performing tests on a real humanoid robot empirically validated this asumption: time
discretization of the control law itself makes the neglected velocity unnoticeable. For
the trajectories other than x(t) and y(t) (θ(t), SFx(t), SFy(t), SFz(t), SFθ(t)), we
simply use polynomials of degree 3 that ensure C2 smoothness and satisfying profiles,
with a few specific constraints (e.g. in our implementation the swing foot always
leaves the ground and lands vertically). So, we can completely define a half-step with
5 parameters (whether it is an upward half-step or a downward half-step). In our
application, we decided to fix the maximum height of the swing foot (SFz(T)), and
the horizontal distance between the feet when the maximum height is reached (which
fixes SFy(T)). This means that now the configuration when the swing foot reaches its
maximum height (i.e. the configuration “right in the middle” of a full step trajectory)
is completely fixed. This puts us in the conditions of [Kuffner et al., 2001] where two
statically stable, intermediate postures Qright and Qleft are fixed, and serve as via
points for all footstep trajectories (see Fig. 4.3). In [Kuffner et al., 2001] these “via

49

4.2 - A walking pattern generator based on half-steps and a smoothing homotopy

Fig. 4.3: The intermediate posture Qright used in [Kuffner et al., 2001] for transitioning
between left leg footstep placements.

point configurations” are used to reduce the number of transition trajectories, and in
our case they have the similar effect of reducing the dimensionality of the parameter
space1. Indeed, with these constraints only 3 parameters are needed to completely
define a half-step. Once these parameters are set, we are capable of generating unique
analytical solutions for the 7 functions of time that are required to produce the lower
body trajectory in the C-space.

4.2.2 Smoothing a sequence of half-steps

Using the results of the previous section, we can generate C-space trajectories for
isolated half-steps. Since they start and finish with zero speed, we can simply join
them to produce sequences of half-steps. Alternating upward and downward half-steps
will produce a walking motion. During each half-step, the motion is dynamically stable
(i.e. not quasi-static, but the robot does not fall), but at the boundary of each half-
step motion, the configuration is statically stable (i.e. it is a balanced posture). This
is not a satisfactory result because between each half-step the robot comes to a stop,
so the walk motion is not visually smooth, and rather slow. Recent walking pattern
generators achieve much better results by using preview control (see [Kajita et al.,
2003]). In this section, we show how to continuously modify a sequence of half-steps
using a simple homotopy, in order to make it faster and smoother along the same
footstep sequence. We first show how to do so for a sequence of two half-steps, and
start with the case of an upward half-step followed by a downward half-step.

Upward then downward

We consider an upward half-step followed by a downward half-step. Together the two
half-steps make a classical full step: double support phase, then single support phase,
and then double support phase again.

1A remark: we use dynamic trajectories while in [Kuffner et al., 2001], only statically stable
trajectories are considered.

50

4 – Walking Pattern Generation

The plot on the top shows the
trajectories y(t) and py(t) for a
raw sequence of two half-steps (no
overlap), the first half-step being
the one of Fig. 4.1, whose CoM
and ZMP trajectories are shown
on Fig. 4.2. Notice that the CoM
reaches the ZMP between the half-
steps. On the other plots, we show
the effect of progressively increas-
ing the overlap, using the opera-
tors g1

∆ and g2
∆. We can see that

the CoM trajectory becomes more
natural: it does not need to reach
the top of the ZMP curve between
the two ZMP shifts anymore. In-
deed, the overlap works a bit like
a preview control: the first CoM
trajectory is influenced by the sec-
ond one during the overlap, so it is
as if it already “knew” that there
will be another ZMP shift, and
adapted consequently.

Fig. 4.4: Progressively increasing the overlap between two half-steps.

51

4.2 - A walking pattern generator based on half-steps and a smoothing homotopy

We recall that the whole C-space trajectory of the lower body during one half-step
is generated by inverse geometry from 7 functions of the time. Since here we are dealing
with two consecutive half-steps (with the same support foot), we have to consider 14
functions. Let us first consider for example the position of the waist along the y-axis,
respectively for the upward half-step: y1(t), and the downward half-step: y2(t). We
have y1(T) = y2(0) = 0. Let us define two operators g1

∆ and g2
∆ such that:

g1
∆(f)(t) =

{
f(t) for t ∈ (0, T)

f(T) for t ∈ (T, 2T −∆)
(4.21)

g2
∆(f)(t) =

{
0 for t ∈ (0, T −∆)

f(t− T + ∆)− f(0) for t ∈ (T −∆, 2T −∆)
(4.22)

g1
0(y1) + g2

0(y2) corresponds to the simple concatenation of y1 and y2 without overlap.
Knowing that py1 = Z(y1), py2 = Z(y2), and y1(T) = y2(0) = 0, it is quite easy to
verify that for any 0 ≤ ∆ ≤ T , g1

∆(py1) = Z(g1
∆(y1)) and g2

∆(py2) = Z(g2
∆(y2)). And,

since Z is a linear operator:

g1
∆(py1) + g2

∆(py2) = Z(g1
∆(y1) + g2

∆(y2)) (4.23)

It follows that operators g1
∆ and g2

∆ enable us to obtain new combined CoM and ZMP
trajectories that still verify the Linear Inverted Pendulum equations (eq. (4.1) and
eq. (4.2)). Starting with ∆ = 0 and progressively increasing the value of ∆ continuously
modifies the CoM trajectory (starting from the initial trajectory g1

0(y1) + g2
0(y2)) to

make the second ZMP shift (the one of py2) happen earlier, creating an overlap of
duration ∆ between the two trajectories y1 and y2. Fig. 4.4 illustrates this effect.
When we increase the value of ∆ we can see for example that the position of the CoM
does not need to reach the center of the support foot anymore.

We use the same operators, g1
∆ and g2

∆, to produce an overlap between the functions
of time corresponding to the waist orientation and swing foot position and orientation.
Since the inverse geometry for the legs is a continuous function as long as we stay inside
the joint limits, these operators used on the bodies trajectories actually implement
a simple homotopy that continuously deforms the initial C-space trajectory into a
smoother, more dynamic trajectory. The linearity of simplified differential equations
has already been used in a similar way to produce mixtures of motions ([Nishiwaki
et al., 1999] and [Nishiwaki et al., 2001]), but the purpose was to create new steps, not
to smooth them nor speed them up.

In the case of an upward half-step followed by a downward half-step, increasing ∆
reduces the duration of the single support phase, and therefore it increases the speed
of the swing foot. To limit this effect we must bound ∆. Besides, if ∆ is too large
undesirable phenomena can occur, such as a negative swing foot height. To avoid
these problems we set an upper bound such that the maximum overlap results in a
moderately fast gait.

Downward then upward

We can apply the same technique to produce an overlap in the case of a downward half-
step followed by an upward half-step. Since the last phase of the downward half-step
and the first phase of the upward half-step are double support phases, the constraint
on the swing foot motion disappears and the maximum bound on ∆ becomes simply
T .

52

4 – Walking Pattern Generation

Fig. 4.5: We illustrate the “smoothing” of a raw sequence of half-steps. On the initial
raw sequence (on the left), the support paths of the ZMP and CoM trajectories are
superimposed. Then, after adjusting the overlaps, the ZMP support path stays the
same but the CoM support path becomes smoother (on the right). We can smooth even
more, but it reduces the duration of the single support phase that is directly linked
with the swing foot speed. Therefore limitations on the swing foot speed constrain the
smoothing process.

For longer sequences of half-steps, we can simply repeat the procedure to smooth
the whole trajectory, setting the overlaps one by one. Fig. 4.5 shows the results ob-
tained with an example of raw sequence. After the smoothing, the CoM trajectory
is visually smoother and besides, the new trajectory is much faster (about 3 times
faster). Changing overlaps inside a sequence of half-steps modifies the whole C-space
trajectory: not only the CoM and ZMP, but also the swing foot trajectory. When the
overlap is increased, the swing foot tends to move faster and closer to the ground. If one
property must be preserved (for instance the absence of collision), it must be checked
after every modification. Since the smoothing by overlap is a continuous operator, we
can use dichotomies to quickly find large acceptable values of overlap. Let us consider
an example for two consecutive half-steps. We predefine a maximum overlap ∆max

and, first, we simulate the part of the trajectory modified by the overlap ∆max, and
check for collisions, self-collisions and joint limit violations. If none of these events oc-
cur, we set the overlap to ∆max. Otherwise, we use a dichotomy starting at ∆max/2 to
quickly converge towards the largest “good” overlap value below ∆max. Fig. 4.6 shows
the effect of the smoothing process on the swing foot trajectory: with the dichotomy
we can quickly find a large overlap that keeps the trajectory collision-free.

4.3 On the sensitivity of the walking pattern generator

In Chapter 5, we will take advantage of the low dimensionality of our pattern generator
to go further in terms of offline precomputation by building a large (but finite) number
of swept volume approximations for the leg trajectories and then use them online
to speed up collision checks. But instead of only a finite number of swept volume

53

4.3 - On the sensitivity of the walking pattern generator

Fig. 4.6: On the left : a raw sequence of two half-steps avoiding a box on the ground.
We can see that the swing foot reaches an unnecessarily high position. After smoothing
(on the right), the trajectory has been modified so that the foot moves very close to
the obstacle.

approximations, it would be even better to extrapolate swept volume approximations
for continuous regions of the 3-dimensional input spaces defining half-steps. In the rest
of the present chapter, we follow this simple idea: if we would expand the swept volumes
by a fixed margin, then they could cover neighborhoods of half-steps definitions instead
of single half-step definitions, and we could use a finite number of swept volumes
in order to cover the whole continuous input space, while keeping the soundness of
collision checks. Before doing that it is fundamental to know the relation between the
size of the margin and the size of the neighborhoods. In other words, we need to know
how many swept volumes are needed to cover the whole input space when the margin
has a fixed size ε. Theorem 4.3.2 gives an answer to this question, but which, as we
will see in Section 4.3.5, is unfortunately impractical.

4.3.1 Problem statement

We recall that through inverse geometry, both upward and downward half-steps are
completely defined by the Center of Mass (CoM) horizontal trajectory (it remains
at a fixed height), the waist orientation and the swing foot position and orientation
trajectories, and all these trajectories are generated from only 3 input parameters: the
relative position and orientation of the swing foot when on the walking surface.

In the following sections (4.3.2 to 4.3.5) we make a new convenient assumption
which is just a slightly different convention than the one followed so far: we suppose
that at all time, the orientation of the waist is equal to the mean value of the orienta-
tions of the feet (up to now we assumed that during a full step the initial orientation
of the waist is equal to the orientation of the support foot while the final orientation of
the waist is equal to the final orientation of the swing foot). This new convention gives
more symmetry to the half-steps, and actually, because of another symmetry property
imposed on the functions used to produce the trajectories (equations (4.29)), upward
half-steps and downward half-steps become completely symmetric in the sense that a
downward half-step is just an upward half-step with time going backwards. As a result,
we don’t need to consider both downward and upward half-steps: the bound obtained
for upward half-steps will directly apply to downward half-steps. Besides, the half-

54

4 – Walking Pattern Generation

steps with left and right support foot are also symmetric, so in the end we only need
to consider upward half-steps with left support foot. We recall that they are defined
as shown on Fig. 4.1: at the end of the half-step, when t = T , the robot is in the fixed
“via-point configuration” in which the swing foot coordinates are (0, SFy(T), SFz(T)),
and its orientation zero. The input parameters are SFx(0), SFy(0), and SFθ(0).

We define the robot lower body as the union of the two legs: the two thighs, calfs
and feet. For a given vector of input parameters (SFx(0), SFy(0), SFθ(0)), we denote
by SV

(
(SFx(0), SFy(0), SFθ(0))

)
the volume swept by the robot lower body during

the corresponding half-step. We also denote by E the continuous transition model, i.e.
the set of input vectors ~v such that the corresponding half-step is feasible on a flat
ground without obstacles (no self-collision, no joint limits violations –we mention in
section 4.3.3 some of the restrictions imposed on the joint limits–, . . .).

The question we want to answer is related to the following one:
Given an input vector (SFx(0), SFy(0), SFθ(0)) ∈ E , and a small variation (∆x,∆y,∆θ)
such that (SFx(0) + ∆x, SFy(0) + ∆y, SFθ(0) + ∆θ) also belongs to E , how can we
bound, with respect to (∆x,∆y,∆θ), the variation that it implies for the swept vol-
ume?

In other words:
Given two input vectors (SFx(0), SFy(0), SFθ(0)) ∈ E and (SFx(0) + ∆x, SFy(0) +
∆y, SFθ(0) + ∆θ) ∈ E , how can we bound, in function of (∆x,∆y,∆θ), the Haus-
dorff distance between SV

(
(SFx(0), SFy(0), SFθ(0))

)
and SV

(
(SFx(0)+∆x, SFy(0)+

∆y, SFθ(0) + ∆θ)
)
?

We answer this question by dividing the problem into three parts: first, in sec-
tion 4.3.2, we bound the variation induced on the waist trajectory and the trajectories
of the feet by a slight modification of the input parameters. Then, in section 4.3.3,
we bound the displacement of the physical points of the robot leg induced by a slight
modification of the end effector (the foot) configuration in the workspace. Finally we
combine the two results in section 4.3.4 and obtain Theorem 4.3.2. In section 4.3.5,
we present numerical results and conclude.

4.3.2 Sensitivity of the trajectory generation

Let us consider an upward half-step defined by the 3 parameters SFx(0), SFy(0) and
SFθ(0). As explained in Section 4.2, these parameters are used to set the following
functions of the time (plus the waist orientation):

• the waist horizontal position, which is equal to the CoM horizontal position (the
waist and CoM are rigidly fixed) : x(t), y(t)

• the swing foot position: SFx(t), SFy(t), SFz(t)

• the swing foot orientation SFθ(t)

For all these trajectories except x(t) and y(t), C2 cubic splines are used. SFz(t) does
not depend on the input parameters. For the other functions SFx(t), SFy(t) and
SFθ(t), we use a single operator F which maps a couple of real numbers (a, b) to a C2

cubic spline s(t) that smoothly goes from a at t = 0 to b at t = T with constraints
such as zero speed at t = 0 and t = T :

SFx(t) = F(SFx(0), 0)(t) (4.24)

SFy(t) = F(SFy(0), SFy(T))(t) (4.25)

55

4.3 - On the sensitivity of the walking pattern generator

SFθ(t) = F(SFθ(0), 0)(t) (4.26)

F has three important properties:

F(a+ c, b+ d) = F(a, b) + F(c, d) (4.27)

∀t ∈ [0, T], min(a, b) ≤ F(a, b)(t) ≤ max(a, b) (4.28)

∀t ∈ [0, T], F(a, b)(t) = F(b, a)(T − t) (4.29)

If we call x′, y′, SF ′x, SF ′y and SF ′θ the trajectories associated to the input parameters
(SFx(0)+∆x, SFy(0)+∆y, SFθ(0)+∆θ), then from the above properties of F follows,
for all t ∈ [0, T]:

min(0,∆x) ≤ SF ′x(t)− SFx(t) ≤ max(0,∆x) (4.30)

min(0,∆y) ≤ SF ′y(t)− SFy(t) ≤ max(0,∆y) (4.31)

min(0,∆θ) ≤ SF ′θ(t)− SFθ(t) ≤ max(0,∆θ) (4.32)

Now we will try to obtain similar inequalities for x and y. For the sake of clarity,
we rewrite the equations linking the ZMP trajectories px, py and the CoM trajectories
x, y:

px = Z(x) (4.33)

py = Z(y) (4.34)

with Z , Id− zc
g

d

dt2
(4.35)

We recall that px(0) = x(0) = SFx(0)
2 and py(0) = y(0) =

SFy(0)
2 , and px(T) =

x(T) = 0 and py(T) = y(T) = 0. It follows that if px and py are fixed as C2 cubic
splines, there are unique C4 solutions for x and y over [0, T] (in which

.
x(0),

.
y(0) and

.
x(T),

.
y(T) are not zero, but, as mentionned in section 4.2, can be neglected if T is

large enough and px and py well chosen) that we denote respectively by Z−1(px) and
Z−1(py) .

px and py can be seen as the result of an operator FZ which maps a couple of reals
(a, b) to a C2 cubic spline that quickly shifts from a to b around time t = T/2, and
which verifies the same properties (4.27), (4.28) and (4.29) as F . We have then:

p′x = FZ
(
SFx(0) + ∆x

2
, 0

)
= px + FZ

(
∆x

2
, 0

)
(4.36)

p′y = FZ
(
SFy(0) + ∆y

2
, 0

)
= py + FZ

(
∆y

2
, 0

)
(4.37)

From the linearity of the operator Z we deduce the linearity of the operator Z−1, and
thus we have:

x′ = Z−1(p′x) = x+ Z−1(FZ (∆x/2, 0)) (4.38)

y′ = Z−1(p′y) = y + Z−1(FZ (∆y/2, 0)) (4.39)

Now let’s have look on the properties of this operator Z−1. Since the result is a con-
tinuous function, as shown on Fig. 4.7, the restrictions Z−1(p)(0) = p(0), Z−1(p)(T) =
p(T) imply that for a C2 cubic spline p over [0, T], we necessarily have:

∀t ∈ [0, T], min
τ∈[0,T]

(p(τ)) ≤ Z−1(p)(t) ≤ max
τ∈[0,T]

(p(τ)) (4.40)

56

4 – Walking Pattern Generation

ZMP reference
CoM trajectory

zc
g

..
x.

x

t
px(0)

x(t)

px(T)

Fig. 4.7: If one of the components of the CoM position, say for example x, goes outside
the stripe [px(0), px(T)] defined by the ZMP reference, then the second derivative of x,
obtained with the equation (4.33), can only make x diverge. Therefore x(t) must stay
inside the stripe for all t ∈ [0, T]. Remark: this figure is only illustrative, the curves
do not correspond to real ZMP/CoM curves.

Since we also have for all t ∈ [0, T], FZ (∆x/2, 0) (t) ≤ max(0,∆x/2), FZ (∆x/2, 0) (t) ≥
min(0,∆x/2) and the same for FZ (∆y/2, 0) (t), we finally obtain the inequalities we
were looking for: for all t ∈ [0, T],

min

(
0,

∆x

2

)
≤ x′(t)− x(t) ≤ max

(
0,

∆x

2

)
(4.41)

min

(
0,

∆y

2

)
≤ y′(t)− y(t) ≤ max

(
0,

∆y

2

)
(4.42)

4.3.3 Sensitivity of the inverse kinematics of a simple humanoid robot
leg

In this section we consider a very generic robot leg with 6 degrees of freedom. Its
geometry is exactly similar or almost similar to the geometry of the legs of several
humanoid robots, including HRP-2, ASIMO, HRP-4, QRIO, HUBO, WABIAN, and
LOLA. For slightly different geometries, the proofs presented in this section can be
adapted, and lead to bounds of the same order of magnitude. The robot leg consists
in 3 joints: the hip (yaw + pitch + roll), the knee (only pitch), and the ankle (pitch
+ roll), the foot being the end effector. The main axis of the foot is supposed to be
always included in the plane defined by the hip, knee and ankle. The center of the hip
joint is the origin (0,0,0) of the workspace, and a horizontal reference orientation is
fixed. Since we assume that the foot always stays parallel to the ground, as shown on
Fig. 4.8 the configuration of the leg is entirely defined by two vectors: ~L (the vector
from the hip joint to the ankle joint), and ~F , a unit vector defining the orientation of
the foot. ~F is also completely defined by a single value θ which does not necessarily
correspond to the value of the hip yaw. The leg is composed of three bodies: the
thigh, the calf, and the foot. For the thigh and the calf, we assume that all the
physical points of the robot are contained in a volume defined by 2 spheres and a
cylinder: see Fig. 4.8. The spheres and cylinder of the thigh have radius rT , while the
spheres and cylinder of the calf have radius rC . The two links and cylinders have the
same length l. We also assume that the foot is entirely contained in a sphere of radius
rF and center the ankle joint. We impose a few restrictions on the joint values: let us

57

4.3 - On the sensitivity of the walking pattern generator

λ
~L

~F

ankle joint

knee joint

(pitch + roll)l

l

γ

rC

rF

rT

spherical hip joint

(pitch)

Fig. 4.8: A simple 6-DOF robot leg.

call ν the vertical axis passing through (0,0,0), γ the angle between ν and ~L, and λ
the value of the knee joint (see Fig. 4.8). The restrictions are: 0 ≤ γ ≤ γmax < π/3,
and 0 < λmin ≤ λ ≤ λmax < π. Here is the context of our problem: the current
configuration of the leg is (~L, θ) (where θ is the orientation of ~F), and we modify it
to (~L + ~∆L, θ + ∆θ), with ~∆L and ∆θ “relatively small” (we will discuss about this
notion later). We ask the following question: how can we bound, in function of ~∆L
and ∆θ only, the distance between any physical point of the leg in configuration (~L, θ),
and the same physical point when the configuration is (~L+ ~∆L, θ + ∆θ)?

Even a closed-form solution of the inverse kinematics of the leg (see [Siciliano
and Khatib, 2008], section 1.7.1) cannot be straightforwardly used to obtain a tight
bound, and the same is true for an approach based on the inverse Jacobian, so instead
we choose to use purely geometrical considerations in an attempt to obtain a tighter
bound, which will lead us to the following theorem:

Theorem 4.3.1. For any point of the robot leg, the displacement resulting from the
motion from configuration (~L, θ) to configuration (~L+ ~∆L, θ + ∆θ) is bounded by the
maximum of the three following expressions:

1) 2 sin
(
αmax

2

)
(l + max(rT , rC)) + sin

(
1
2 arcsin

(
2 sin(αmax/2)

cos γmax

))
(l + max(rT , rC))

+2 sin(βmax/2)(l + max(rT , rC)) + 2 sin
(

cos γmax·|∆θ|
4 cos γmax−2

)
(l· cos

(
λmin

2

)
+ max(rT , rC))

2) ‖ ~∆L‖+ 2 sin(αmax/2)rC + 2 sin
(

1
2 arcsin

(
2 sin(αmax/2)

cos γmax

))
rC

+2 sin(βmax/2)rT + 2 sin
(

cos γmax·|∆θ|
4 cos γmax−2

)
rC

3) ‖ ~∆L‖+ 2 sin(|∆θ|2)rF

with:
αmax = arcsin

(
‖ ~∆L‖

2l sin(
λmin

2
)

)
βmax = λmax

2 − arcsin
(

sin(λmax2)− ‖ ~∆L‖2l

)
58

4 – Walking Pattern Generation

We denote by B(‖ ~∆L‖, |∆θ|) this bound, and it should be noted that it tends to zero
when ‖ ~∆L‖ and |∆θ| tend to zero.

We will decompose the demonstration of this theorem in several steps, and start
with a preliminary lemma which shows that if we can bound the displacement under-
gone by the points inside the 5 spheres previously defined (2 spheres for thigh, 2 spheres
for the calf, and 1 for the foot), we will have obtained a global bound that applies to
any physical point of the robot leg (in other words, no need to consider the cylinders).
The proofs of these steps use only basic mathematics but can be quite complex, so
most of the elements of the proofs are in appendix. During the demonstrations we will
make some assumptions that have not been stated before. We don’t prove it here, but
it can be verified that all those assumptions are true when ‖ ~∆L‖ and ~∆θ are relatively
small. We don’t give more details because as ‖ ~∆L‖ and ~∆θ are always very small in
the potential applications, these assumptions always hold in practice.

Lemma 4.3.1. Let’s consider the robot leg whose bodies are exactly the unions of the
spheres and cylinders previously defined. For any motion of this leg, the maximum
displacement undergone by its physical points is obtained for a point inside one of the
spheres.

Proof. Thanks to Chasles’ Screw displacement theorem (see [Beatty, 1986], section 3.11),
we know that the transformation undergone by any rigid body of the robot leg can
be written as the commutative composition of a rotation about an axis and a transla-
tion along the same axis. Since the displacements resulting from the rotation and the
translation are orthogonal, we can take them into account separately. The translation
results in the same displacement for all the points, so in order to find the maximum
displacement we just need to consider the rotation. Let us project the rigid body onto
a plane orthogonal to the rotation axis, and call O the intersection point between the
axis and the plane. We use O as the origin of this plane and use vectors to represent
projections of the rigid body points. Let ~p be such a projection; it lies on a segment
line whose extremities ~a and ~b are projections of points inside the spheres at the ex-
tremities of the link. We thus have ~p = µ~a+ (1− µ)~b, with µ ∈ [0, 1]. If we denote by
Rot the rotation, the displacement d(~p) undergone by the point projected on ~p can be
written:

d(~p) = ‖Rot(~p)− ~p‖
= ‖µ(Rot(~a)− ~a) + (1− µ)(Rot(~b)−~b)‖ (4.43)

Since the maximum distance from a point to a line segment is always obtained at one
of its extremities, we have:

d(~p) ≤ max(‖Rot(~a)− ~a‖, ‖Rot(~b)−~b‖) (4.44)

d(~p) ≤ max(d(~a), d(~b)) (4.45)

We conclude that the maximum displacement is obtained for a point inside a sphere.

We can now start the demonstration of theorem 4.3.1.

Proof. Thanks to Lemma 4.3.1, we know that we only need to bound the displacements
for points inside the spheres, and we will naturally derive 5 bounds, one for each sphere.
But first, in order to calculate these bounds, let us describe the transformations that
are applied to the leg bodies.

59

4.3 - On the sensitivity of the walking pattern generator

~∆L

l

l

λ

δθ

α

+ knee pitch
hip pitch

hip rotationship rotations

(~L, θ)

ankle pitch + ankle roll to keep the foot horizontal

(~L+ ~∆L, θ + ∆θ)

Fig. 4.9: The three phases to go from (~L, θ) to (~L+ ~∆L, θ + ∆θ).

The motion changing (~L, θ) into (~L + ~∆L, θ + ∆θ) can be decomposed into three
parts (see Fig. 4.9): first, using hip rotations, we obtain the correct hip joint - ankle
joint axis while keeping ~F unchanged thanks to ankle rotations; then, sliding along
this axis, using the hip and knee pitch, we obtain (~L + ~∆L, θ) (ankle rotations are
again used to keep ~F unchanged). Finally, we use the hip joint to rotate about the
axis defined by ~L+ ~∆L, keeping the foot parallel to the walking surface by modifying
the ankle pitch and roll.

In the first phase, the correct axis can be obtained by two consecutive rotations
about orthogonal axes. The first rotation of angle α1 uses only the hip pitch, and
during it the foot is kept horizontal by modifying the ankle pitch. Then follows a
rotation of angle α2 about the axis passing through the origin and with direction the
vector ~F . During this rotation the ankle roll is used to keep the foot horizontal. So
far ~F remains unchanged. To obtain bounds on the displacements resulting from these
rotations, we will need to bound the angles α1 and α2.

In the second phase, three rotations are combined to slide the ankle along the hip
joint - ankle joint axis: a rotation of angle β (hip pitch), a rotation of angle −2β (knee
pitch), and a rotation of angle β (ankle pitch) to keep ~F unchanged (see Fig. F.1 in
appendix F). We will need to bound the angle β.

In the third phase, the angle δθ of the rotation (about the axis defined by ~L+ ~∆L)
is not necessarily equal to ∆θ and needs to be bounded as well.

Since for a rotation of angle ψ on a point p at distance 1 of the rotation axis, the
resulting displacement of p is |2 sin(ψ/2)|, we will rather try to bound this expression
instead of bounding directly the angle value. Here are the bounds obtained for the 4
angles (with proofs in appendix):

60

4 – Walking Pattern Generation

The positive angles α1 and α2 are such that:

|2 sin(α1/2)| ≤ 2 sin(αmax/2), (4.46)

|2 sin(α2/2)| ≤ 2 sin

(
1

2
arcsin

(
2 sin(αmax/2)

cos γmax

))
, (4.47)

with αmax = arcsin

(
‖ ~∆L‖

2l sin(
λmin

2
)

)
.

The demonstration is in appendix E.

The angle β is such that:

|2 sin(|β|/2)| ≤ 2 sin(βmax/2) (4.48)

with βmax = λmax
2 − arcsin

(
sin
(
λmax

2

)
− ‖ ~∆L‖2l

)
.

The demonstration is in appendix F.

The angle δθ is such that:

|2 sin(|δθ|/2)| ≤ 2 sin

(
cos γmax

4 cos γmax − 2
· |∆θ|

)
(4.49)

The demonstration is in appendix G.

Now we can bound the displacements undergone by the points of each sphere.

The sphere of the thigh at the hip joint

During the first, second and third phase of the motion of the leg, this sphere undergoes
4 successive rotations of angles α1, α2, β and δθ, and the points of the sphere are at
a distance from the rotations axes which is bounded by rT . It follows that the total
displacement undergone by any point of the sphere is bounded by the following sum:

2 sin(αmax/2)rT + 2 sin
(

1
2 arcsin

(
2 sin(αmax/2)

cos γmax

))
rT

+2 sin(βmax/2)rT + 2 sin
(

cos γmax
4 cos γmax−2 · |∆θ|

)
rT

(4.50)

The sphere of the thigh at the knee joint

This sphere undergoes the same rotations as the other sphere of the thigh. During the
first and second phases the distance of its points to the rotation axes is bounded by
l + rT , while during the third phase, this distance is bounded by l· cos(λmin/2) + rT
(l· cos(λmin/2) is the maximum distance between the knee joint and the hip joint -
ankle joint axis). It results in the following bound:

2

(
sin
(
αmax

2

)
+ sin

(
1
2 arcsin

(
2 sin(αmax/2)

cos γmax

)))
(rT + l)

+2 sin(βmax/2)(l + rT)

+2 sin
(

cos γmax
4 cos γmax−2 · |∆θ|

)
(l· cos(λmin/2) + rT)

(4.51)

61

4.3 - On the sensitivity of the walking pattern generator

The sphere of the calf at the knee joint

This sphere undergoes the same rotations as the sphere of the thigh at the knee joint,
except the rotation of angle β: while the sphere of the thigh undergoes a rotation of
angle β about an axis at distance l from its center (the axis passes through the hip
joint), the sphere of the calf undergoes a rotation of angle −β about a virtual axis
also at distance l (see Fig. F.1 in appendix F). It follows that the same expressions
of displacement bounds can be used for all the four rotations, except that rT must be
replaced by rC ; hence the bound is:

2

(
sin
(
αmax

2

)
+ sin

(
1
2 arcsin

(
2 sin(αmax/2)

cos γmax

)))
(rC + l)

+2 sin(βmax/2)(l + rC)

+2 sin
(

cos γmax
4 cos γmax−2 · |∆θ|

)
(l· cos(λmin/2) + rC)

(4.52)

The sphere of the calf at the ankle joint

This sphere undergoes the same rotations as the other sphere of the calf, but since
we know that the whole transformation results in a translation of vector ~∆L of the
center of the sphere, we can decompose the transformation into two motions: first a
translation of vector ~∆L, and then 4 consecutive rotations (of angles α1, α2, β and δθ)
about axes passing through the center of the sphere. During any of these 4 rotations
the distance of the points of the sphere to the rotation axis is at most rC , and thus
the following bound on the total displacement undergone by the points of the sphere
follows:

‖ ~∆L‖+ 2 sin(αmax/2)rC

+2 sin
(

1
2 arcsin

(
2 sin(αmax/2)

cos γmax

))
rC

+2 sin(βmax/2)rT + 2 sin
(

cos γmax
4 cos γmax−2 · |∆θ|

)
rC

(4.53)

The sphere of the foot

Since this sphere is attached to the end effector (the foot), the global transformation
undergone is simple: a translation of vector ~∆L followed by a rotation of angle ∆θ
about a vertical axis passing through the center of the sphere. As a result there is a
simple upper bound for the displacements undergone by the points inside the sphere
of the foot:

‖ ~∆L‖+ 2 sin(|∆θ|)rF (4.54)

Finally, by regrouping the bounds (4.50), (4.51), (4.52), (4.53), and (4.54), noticing
that the bound (4.51) is greater than the bound (4.50), we obtain the global bound of
theorem 4.3.1, and that concludes the demonstration.

4.3.4 Global bound

We now combine the bounds obtained in the two previous sections. At an instant
t ∈ [0, T], we can describe the configuration of the robot lower body with the position
of the CoM and orientation of the waist, and the position and orientation of both feet
relatively to the CoM position and waist orientation. For the half-step with input
parameters (SFx(0), SFy(0), SFθ(0)), it gives us the following values:

• For the CoM position and the waist orientation: x(t), y(t), and SFθ(t)
2 .

62

4 – Walking Pattern Generation

• For the swing foot relative position:(
cos(−SFθ(t)/2) − sin(−SFθ(t)/2)
sin(−SFθ(t)/2) cos(−SFθ(t)/2)

)
︸ ︷︷ ︸

R−SFθ(t)/2

(
SFx(t)− x(t)
SFy(t)− y(t)

)

• SFθ(t)
2 for the swing foot relative orientation.

• For the support foot relative position:

R−SFθ(t)/2

(
−x(t)
−y(t)

)
• −SFθ(t)

2 for the support foot relative orientation.

Using the notations of section 4.3.2, for the half-step with input parameters (SFx(0)+
∆x, SFy(0) + ∆y, SFθ(0) + ∆θ) those values are:

• For the CoM position and the waist orientation: x′(t), y′(t), and
SF ′θ(t)

2 .

• For the swing foot relative position:

R(−SF ′θ(t)+SFθ(t))/2R−SFθ(t)/2

(
SF ′x(t)− x′(t)
SF ′y(t)− y′(t)

)
• SF ′θ(t)

2 for the swing foot relative orientation.

• For the support foot relative position:

R(−SF ′θ(t)+SFθ(t))/2R−SFθ(t)/2

(
−x′(t)
−y′(t)

)
• −SF

′
θ(t)

2 for the support foot relative orientation.

As in section 4.3.3, we call ν the vertical axis passing through the CoM. Let rmax
be a bound of the distance between ν and any point of the robot lower body at all
time: the robot lower body is always completely included in a cylinder of axis ν and
radius rmax. It follows that the displacements resulting from a rotation Rψ of axis ν
are bounded by 2 sin(|ψ|/2)rmax.

By application of the inequalities (4.41) and (4.42), at any instant t the distance be-
tween the CoM position in the trajectory of parameters (SFx(0), SFy(0), SFθ(0)), and
the CoM position in the trajectory of parameters (SFx(0)+∆x, SFy(0)+∆y, SFθ(0)+

∆θ), is at most

√
∆x2+∆y2

2 . Similarly, the difference between the two waist orienta-
tions is bounded by |∆θ|/2. Applying also the inequalities (4.30), (4.31), and (4.32),
we obtain that for each foot its position relatively to the corresponding hip is changed
by at most

√
∆x2 + ∆y2 +2 sin(|∆θ|/4)rmax (the term 2 sin(|∆θ|/4)rmax is due to the

change of orientation of the waist, bounded by |∆θ|/2). The relative orientations of
the feet are changed by at most |∆θ|/2. A bound on the total displacement undergone
by the physical points of the robot lower body is given by the sum of the bounds for
the two following displacements: first the displacement resulting from the modification
of the CoM position and waist orientation, and then the displacement resulting from
the modification of the relative configurations of the legs. The latter can be bounded
using Theorem 4.3.1, and that leads us to the following theorem:

63

4.3 - On the sensitivity of the walking pattern generator

Theorem 4.3.2. Assuming the previously defined restrictions concerning the values
rT , rC , rF , γmax, λmin, λmax, rmax, we have the following result: given two input
vectors (SFx(0), SFy(0), SFθ(0)) ∈ E and (SFx(0) + ∆x, SFy(0) + ∆y, SFθ(0) + ∆θ) ∈
E, the Hausdorff distance between SV

(
(SFx(0), SFy(0), SFθ(0))

)
and SV

(
(SFx(0) +

∆x, SFy(0) + ∆y, SFθ(0) + ∆θ)
)

is bounded by:√
∆x2 + ∆y2

2
+ Ω + B

(√
∆x2 + ∆y2 + Ω,

|∆θ|
2

)
, (4.55)

where Ω = 2 sin
(
|∆θ|

4

)
rmax.

4.3.5 Numerical estimates and potential applications

We defined standard values that should approximately correspond to the normal use
of a humanoid robot with almost human dimensions: rT = rC = 15cm, rF = 20cm,
l = 30cm, rmax = 50cm, λmin = π

3 , λmax = π
3 , γmax = π

4 . We also fixed the limits of
the input space: SFx(0) ∈ [−0.30m,+0.30m], SFy(0) ∈ [−0.30m, 0m], and SFθ(0) ∈
[−π

6 ,
π
6]. With those values, we used theorem 4.3.2 to estimate, for different margins

on the swept volumes, the total number of points needed to obtain a covering of the
whole input space: see table 4.1. We also tried with bounds specifically calculated
for the robot HRP-2, and obtained comparable results. As shown in Table 4.1, for a
margin of 10cm, about 1,000,000 points are needed.

This means that the following method would be theoretically possible for safe
and fast footstep planning: 1) for each input of a (3D) grid of 1,000,000 regularly
spaced points, precompute the corresponding swept volume expanded by 10cm, i.e.
the set of points at distance at most 10cm from the actual swept volume; 2) use
the whole continuous input space for footstep planning, and when collisions must
be checked, instead of using the trajectory of the half-step (SFx(0), SFy(0), SFy(0))
actually executed, use the precomputed expanded swept volume of the nearest neighbor
of (SFx(0), SFy(0), SFy(0)) among the 1 million points.

The theoretical bounds given by theorem 4.3.2 ensure the soundness of the ap-
proach (modulo the drift at execution time): if no obstacle intersects the precomputed
expanded swept volume, then the actual half-step (SFx(0), SFy(0), SFy(0)) also avoids
the obstacles. Unfortunately with a standard computer, typical swept volume approx-
imations take about 20 to 40s (see [Kim et al., 2003]) and would lead to unreasonable
computation time for 1 million points. As a result using a finite number of swept
volume approximations in a continuous footstep planning framework will not be made
possible by the theorems proved in this section.

Nevertheless, by quantifying the relation between the uncertainty on the input
parameters and the uncertainty on the distance to collision, we obtained theoretical
upper bounds on how much a small perturbation of the input parameters can affect
the trajectories of the physical points of the robot in the worst case. Such bounds
have never been used in humanoid robotics, and they could be useful in scenarios that
are different from the ones originally planned: for instance it is not compulsory to
cover the whole input space; in [Chestnutt et al., 2007] and [Chestnutt et al., 2006],
a discrete transition model (the authors call it action set) is used with the possibility
to slightly modify any of the fixed transitions (actions). This corresponds to a finite
cloud of small neighborhoods in the input spaces, and our approach could enable to
deal with it with guarantees that do not exist yet in the literature.

64

4 – Walking Pattern Generation

Table 4.1: Numerical bounds with standard parameters

Number of points needed
in order to cover the Corresponding margin:

the whole input space:

1,000 54.1cm
10,000 29.3cm

100,000 16.5cm
1,000,000 9.4cm

10,000,000 5.4cm
100,000,000 3.0cm

With further analyses, it might also be possible to tighten the bounds (e.g. taking
into account the fact that the modifications of the position of the feet are horizontal),
therefore reducing the necessary number of points. In particular, if instead of the
whole input space we choose to study only trajectories in the vicinity of a reference
trajectory, we can easily find better values for λmin, λmax, γmax. As a result the bound
obtained is likely to be much tighter.

We could also use the functions that appear in our results to decide of a good basis
of primitive functions and then use them in a learning process whose objective would
be to build a model of the walking pattern generator sensitivity. This could lead to
new bounds, with no certainty but tighter than the theoretical ones and with probably
higher practical utility.

4.4 Conclusion

In this chapter we presented a new walking pattern generator based on half-steps, and
analyzed its sensitivity. Since 3 parameters entirely define a half-step, unlike with state-
of-the-art walking pattern generators it will be possible to easily approximate (through
offline simulations) the domains of feasibility of the half-steps. Our walking pattern
generator also benefits from concatenation operators that can continuously produce
an overlap between consecutive half-steps. Starting from a concatenation of half-steps
with zero speed at both extremities, by using these operators we progressively obtain
a much smoother and more satisfying trajectory. As we will see in the next chapter,
the continuity of this process can bring more coherence to footstep planning based on
offline approximations.

65

Chapter 5

Discrete Footstep Planning

In this chapter we start tackling the problem of footstep planning itself, and give
an efficient and coherent solution based on a discrete approach. It corresponds to the
method described in [Perrin et al., 2011a].

As explained previously, the state-of-the-art approaches for footstep planning are
based on the use of the A* algorithm with a finite set of possible steps (see [Kuffner
et al., 2001], [Bourgeot et al., 2002], [Chestnutt et al., 2003], [Chestnutt et al., 2005])
called the transition model, and the A* algorithm strongly constrains the size of this
transition model (because it performs poorly with many transitions). As a result
the stepping capabilities actually used are often much less expressive than the actual
stepping capabilities of the biped robot. In this chapter, we keep a discrete approach
but we replace the A* search by a sampling-based algorithm in order to directly deal
with a large transition model, and we add several other improvements to the standard
{A* + finite transition model} approach. Here are the key points of our approach:

• The walking pattern generator introduced in Chapter 4 has a low-dimensional
search space which can be densely covered by relatively few points. With an
automatically generated finite transition model of about 300 points in this search
space, we are able to obtain very expressive stepping capabilities. To deal with
such a large transition model, we use, instead of the classical A* search, a specific
Rapidly-exploring Random Tree (RRT) algorithm.

• Each point in the transition model corresponds to a configuration space trajec-
tory of the robot. Through extensive offline computations, for each of them we
approximate (using the algorithm introduced in Chapter 3) the volume swept
in the workspace by a part of the robot lower body (from the knees down) dur-
ing the execution of the trajectory, and store it in an efficient data structure.
It helps to drastically reduce the time consumed by the online planning phase
when checking for collisions with the environment.

• Finally, with the homotopy provided by the walking pattern generator, we quickly
smooth and accelerate the trajectories obtained after the planning phase, and
as a result the final motions produced are fully dynamic. On top of that, there
is no incoherence between the planning phase and the smoothing phase, so we

66

5 – Discrete Footstep Planning

have the guarantee that if the planner returns a collision free solution, then the
robot will execute a sequence which will also be collision free (this guarantee is
up to some details –discrepancies between simulation and real world, errors of
approximation, errors due to discretization, etc.–).

Let us give more details about the transition model and the specific RRT algorithm:

Finite transition model and swept volume approximations
We use about 300 points to cover an input space of 3 dimensions. Here each point
corresponds to a sequence of two half-steps. For each point of this grid we first simulate
the sequence of half-steps and check that it is feasible, i.e. that it contains no self-
collision and does not violate the joints limits. The points which correspond to feasible
trajectories will be the elements of our transition model. In section 5.1 we explain
the construction of this transition model and show how, for each of its elements, we
approximate the volume swept by the robot lower body during the execution of the
corresponding trajectory. These approximations will enable us to save a considerable
computation time online.

We use the walking pattern generator of Chapter 4 and at first it might seem strange
to combine precomputed swept volumes and a smoothing homotopy that modifies
trajectories, but in fact in the whole process the homotopy is only applied to one
feasible trajectory returned by the planning process during which the swept volume
approximations are extensively used. When the homotopy is applied we do not use
precomputed swept volumes for the collision checks.

Several efficient swept volume approximation algorithms exist, such as for example
the ones introduced in [Kim et al., 2003] and in [Himmelstein et al., 2009]. Using
such advanced specific algorithms will be part of our future work, but in this chapter
we validate our framework with a simpler approach. Since the highest priority is the
evaluation time (because approximations are used multiple times at each iteration of
the RRT algorithm), the approximation algorithm introduced in Chapter 3 is perfectly
suitable for this problem: it stores the swept volume approximations in compact tree
structures that can be used to very quickly check for collisions with obstacles of the
environment. The use of swept volumes is widespread in robotics, especially for path
planning (see [Schwarzer et al., 2002], [Hasegawa et al., 2003]), but relatively absent in
the field of humanoid robotics, where, for the sake of computational efficiency, simpler
bounding volumes are often preferred ([Yoshida et al., 2005], [Elmogy et al., 2009]).

An RRT variant for footstep planning
The last part of our framework is the planning phase. Since we have a large transi-
tion model, the traditional A* search would perform poorly. Alternatives to A* have
already been proposed. For example in [Harada, 2010], Harada uses a PRM (Prob-
abilistic Roadmap Method, see [Kavraki et al., 1996]) approach to plan footsteps: a
tree of “milestone configurations” is grown from an initial configuration to a goal con-
figuration. At first collisions are checked only at the milestone configurations, and
only once a candidate path is found, the full trajectory is verified. An issue of this
approach is that even though the milestones are collision-free, collisions might occur in
the candidate path. Thus the process might have to be restarted several times, leading
to lengthy computations.

The idea of using an RRT algorithm ([LaValle and Kuffner, 2000]) for footstep
planning was introduced in [Xia et al., 2009], where single-node-extending and multi-

67

5.1 - Building the transition model and the swept volume approximations

(0, 0)(0, 0)
x

(x, y)

y

Qleft

x

y

θ

Qright

Fig. 5.1: A raw sequence of two half-steps is entirely defined by three parameters: x, y,
and θ. The via point configurations Qleft and Qright were chosen such that the swing
foot is quite high. This provides good obstacle avoidance capabilities to raw sequences
of steps and in the absence of obstacles, smoothing significantly reduces the height.

node-extending RRT methods are proposed. In section 5.2 we follow the single-node-
extending method and present a new variant of the RRT algorithm for footstep plan-
ning, where we deal separately with the sets of left and right footsteps. When a new
transition (i.e. a new footstep) is considered by the RRT algorithm, we test the corre-
sponding approximated swept volume against the objects that are close enough, and
discard the transition if collisions are found.

The whole framework was used on the robot HRP-2 to quickly solve (in less than
30s) complicated problems of footstep planning in an environment cluttered with 3D
obstacles. The first experimental results are presented in Section 5.3. Then, in Sec-
tion 5.4, we present a more advanced integration of this framework in experiments
of online replanning where the position of the robot and the obstacles are acquired
through motion capture. This precedes a brief discussion on the extension of our
framework to a continuous transition model (Section 5.5).

5.1 Building the transition model and the swept volume
approximations

5.1.1 The transition model

Thanks to the walking pattern generator described in the previous chapter, we can
produce isolated half-steps with only three parameters. If we join a downward half-

68

5 – Discrete Footstep Planning

step with the corresponding upward half-step, we obtain a trajectory that goes from
Qleft to Qright or Qright to Qleft, and which is entirely defined by only three param-
eters, as shown on Fig. 5.1. We denote such a trajectory (expressed in the frame of
the left foot) by 〈Qleft, (x, y, θ), Qright〉 or (expressed in the frame of the right foot)
〈Qright, (x, y, θ), Qleft〉. We also pose:

Tl = {〈Qleft, (x, y, θ), Qright〉 | (x, y, θ) ∈ R2 × SO(2)},

and:

Tr = {〈Qright, (x, y, θ), Qleft〉 | (x, y, θ) ∈ R2 × SO(2)}.

We will interchangeably call the elements of Tl or Tr points, transitions (because the
transition model will be a finite set of elements of Tl and Tr), sequences (each element
corresponds to a downward half-step - upward half-step sequence), or trajectories. By
concatenating alternatively trajectories from Tl and trajectories from Tr, we obtain
walk motions. With a symmetric robot (like HRP-2), Tl and Tr are symmetric in
the sense that the feasibility of a sequence 〈Qleft, (x, y, θ), Qright〉 is equivalent to the
feasibility of the sequence 〈Qright, (x,−y,−θ), Qleft〉, and that the corresponding swept
volumes are symmetric. Therefore, only one transition model was built, on the space
Tl, but it can be used by symmetry on Tr. To build it, as explained on Fig. 5.2 we first
covered a reasonably large domain of Tl with regularly spaced points. Considering the
robot (HRP-2) dimensions and joint limits, this domain was defined as the following
box:

Bl = {〈Qleft, (x, y, θ), Qright〉 | x ∈ [−0.35m,+0.35m],

y ∈ [−0.37m,−0.02m], θ ∈ [−30◦,+30◦]}

We covered the box Bl with 600 points (15 possible values for x, 8 possible values for
y, 5 possible values for θ), and for each point, using discretized trajectories –one for
each body of the robot legs–, we verified the feasibility of the corresponding downward
half-step - upward half-step sequence. If any self-collision (which were checked using
the algorithm introduced in [Benallegue et al., 2009]) or joint limit violation occurred,
the point was discarded.

The 276 remaining points all correspond to feasible sequences, and they form the
transition model.

We denote by Ml ⊂ Bl this finite transition model, Mr ⊂ Br being defined by
symmetry. We denote by S(Ml,Mr) the set of finite feasible sequences (s1, s2, . . . sn)
alternating left and right support foot.

5.1.2 The swept volume approximations

For each of the 276 points of the transition model, we build an approximation of
the volume swept by the lower part of the robot (from the knees down) during the
corresponding downward half-step - upward half-step sequence. The algorithm used is
the one introduced in chapter 3: given a transition z ∈ Ml it approximates through
adaptive sampling the sign of the mapping Cz(p) which returns the distance (minus
a fixed margin –1cm in our case–) between a point p of the Euclidean space and the
finite set of polyhedra consisting of all the configurations of the robot legs bodies along
their discretized trajectories during the sequence corresponding to z.

The result of the approximation is stored in a tree structure which can be evaluated
extremely quickly. The computation time saved as a result is considerable: with the

69

5.1 - Building the transition model and the swept volume approximations

initial grid

37cm

70cm

y

x

pruned grid
after feasibility tests:
the transition model

Fig. 5.2: An initial grid of 600 points covers Bl. To each of the 120 values of (x, y)
correspond 5 possible orientations. All the corresponding trajectories (generated by
the walking pattern generator presented in Chapter 4) are sequences of two half-steps.
We test each of them, checking for self-collisions and joint limit violations, and remove
all the unfeasible ones. The 276 remaining points form the transition model Ml used
for planning.

Fig. 5.3: 3D representations of swept volumes approximations (we show the zero-level
surfaces of the approximations).

70

5 – Discrete Footstep Planning

Qleft

Qleft
Qleft

Qright Qright

Qleft

Qright3

1

2

1

2

3

Fig. 5.4: The advantage of separating left and right support feet during nearest neigh-
bor queries.
- On the left (global nearest neighbor): all the points in the gray region have the same
nearest neighbor (Qright, x, y, θ), but no successor of (Qright, x, y, θ) is inside the gray
region. Therefore numerous samples are required before expanding the search tree
towards the gray region.
- On the right (alternate nearest neighbors): when only states with left support foot
are considered, the nearest neighbor will not be (Qright, x, y, θ), but maybe one of its
successors. With the alternation strategy, the search tree is more likely to quickly grow
inside the gray region.

approximation, checking whether a point is outside or inside one of the swept volumes
we consider is done in 4µs. This is about 2,000 times faster than with the normal
evaluation of Cz(p).

For a transition z = 〈Qleft, (x, y, θ), Qright〉 ∈ Ml, we denote by Vz(p) the cor-
responding swept volume approximation (Vz(p) > 0 if and only if p is outside the
approximated swept volume). If z′ = 〈Qright, (x,−y,−θ), Qleft〉 ∈ Mr, we can easily
obtain the approximation Vz′ by applying a symmetry to Vz; thus only 276 swept vol-
ume approximations are needed. With an Intel(R) Xeon(R) 2.00Ghz CPU, it took a
bit less than 48 hours to generate them all, but we believe that by using state-of-the
art swept volume approximation algorithms (and maybe only afterwards apply our
algorithm to obtain reapproximations that can be evaluated very fast), we should be
able to significantly reduce this offline computation time.

Fig. 5.3 shows some of the 276 swept volume approximations.

5.2 Footstep planning with a variant of RRT

In this section, we present a simple adaptation of the RRT algorithm for footstep
planning, quite similar to the one introduced in [Xia et al., 2009].

Let us first define the search space. Since in our formalism we connect single
support phases, the search space is S = {(q, x, y, θ) | q ∈ {Qleft, Qright}, (x, y, θ) ∈ R2×

71

5.2 - Footstep planning with a variant of RRT

Algorithm 3 RRT variant for footstep planning

1: T.init(xinit ∈ S|E)
2: i← 0
3: stop condition← false
4: while ¬stop condition do
5: Pick a random state xrand ∈ S|E
6: i++
7: if i == 0 mod 2 then

8: xnear ←
{ among states with left support foot,

nearest neighbor of xrand in the tree T
9: Pick a random transition srand ∈Ml.

10: else

11: xnear ←
{ among states with right support foot,

nearest neighbor of xrand in the tree T
12: Pick a random transition srand ∈Mr.
13: end if
14: Using the approximated swept volumes, verify that starting from state xnear,

the transition srand does not collide with any point of the obstacle point clouds.
15: if NO COLLISION then
16: T.add node(δ(xnear, srand))
17: T.add edge(xnear, srand, δ(xnear, srand))
18: if δ(xnear, srand) is close enough to the goal and the path to δ(xnear, srand) is

short enough then
19: stop condition← true
20: end if
21: end if
22: end while

SO(2)}, where q is the support foot, (x, y) the position of the support foot (relatively
to a fixed reference), and θ its orientation (relatively to a fixed reference). We pose
Sl = {(Qleft, x, y, θ) | (x, y, θ) ∈ R2×SO(2)} and Sr = {(Qright, x, y, θ) | (x, y, θ) ∈ R2×
SO(2)}. The transition model being an alternation betweenMl andMr, we can apply
transitions to states of the search space using the operator δ : Sl×Ml∪Sr×Mr → S:

δ
(
(q, x, y, θ), 〈q, (x′, y′, θ′), q〉

)
= (q, x′cos(θ)− y′sin(θ), x′sin(θ) + y′cos(θ), θ + θ′),

where Qleft = Qright and Qright = Qleft. In practice, we will use only a compact
subset of the search space, depending on the environment E . We denote it by S|E . For
example, if the robot stays in a 5m× 5m room, we naturally use these dimensions to
define S|E and bound x and y. Considering the classical RRT algorithm (see [LaValle
and Kuffner, 2000]), the only operation that cannot be straightforwardly adapted to
the context of footstep planning is the extension towards random samples (to find
the nearest neighbor we use the Euclidean metric, ignoring the orientations). Let
(q, x, y, θ) ∈ S be a uniform random sample of the search space, and (q′, x′, y′, θ′) the
nearest state in the search tree. In [Xia et al., 2009], two options are considered: either
add to the tree all the successors of (q′, x′, y′, θ′), or just one random successor. Due
to the size of our transition model, we chose to follow the latter strategy. Fig. 5.4
shows one issue of this approach: in some cases, it is difficult to expand the search tree

72

5 – Discrete Footstep Planning

towards a given region. To cope with this problem, many options are possible. We
simply chose to alternatively look for nearest states with left support foot and nearest
states with right support foot. It leads to our RRT variant presented in Algorithm 3
(the while loop stops when a sufficiently short path to the goal region has been found,
“sufficiently short” being defined by a simple heuristic). We based our implementation
on a fast and modular open-source code by Karaman and Frazzoli which uses kd-trees
for fast nearest neighbor queries (this code implements RRT and RRT*, the algorithm
introduced in [Karaman and Frazzoli, 2010]).

Further analyses and improvements of the variants of RRT for footstep planning
can probably help to obtain faster results, but are out of the scope of this thesis.

5.3 Preliminary experimental results

The framework presented in this chapter was experimentally tested on the robot HRP-
2.

We studied the two Experimental Setups described on Fig. 5.5, where 2D obstacles
(holes in the ground) are combined with 3D obstacles. The 3D obstacles shown on
Fig. 5.5 have the same size as the ones in the real environment (see Fig. 5.6), but are
smaller than the ones used for the collision checks (a margin is needed because of the
robot drift during the real-world experiments).

The construction of the solution trajectory is divided into two parts: first, during
the planning phase, just as explained in the previous section, we use a specific variant
of RRT to find a sequence (s1, s2, . . . , sn) ∈ S(Ml,Mr) which reaches the goal. Then,
we use the homotopy of Section 4.2.2 to smooth the sequence (s1, s2, . . . , sn), so that
to obtain the final fast and dynamic trajectory that will be performed by the robot.

5.3.1 The planning phase: RRT vs. A*

We implemented a classical A* search algorithm and compared it with the RRT variant
introduced in the previous section. For the costs required by A* we used a simple
heuristic where the estimated remaining cost is derived from the Euclidean distance,
and the cost of a path is the sum of each (fixed) transition cost. Better heuristics
exist, such as for example heuristics derived from a mobile robot planner that looks
for continuous paths between the initial position and the goal, but because they do not
take stepping over capabilities into account, such heuristics tend to severly misjudge
costs in very constrained environments like the ones we consider here (for a review
on the association { A* + heuristic } see [Chestnutt, 2007], ch. 8). Finding a robust
heuristic that would perform well in challenging environments is as hard as solving
the problem without using A*: that is why we tried to directly apply RRT. Other
approaches of interest include planning algorithms based on inflated heuristics (see
[Gonzalez and Likhachev, 2011]): they usually find solutions faster than a classical
A* search, but they are not as efficient as RRT to avoid local minima. Their main
advantage over RRT is that they provide suboptimality bounds; however, due to the
particularity of the problem of footstep planning, it is not clear whether such bounds
can still be obtained in our context. Finally it might be interesting to try to adapt
control-based strategies such as [Sucan and Kavraki, 2008], but the adaptation would
be far from straightforward.

In Setup 1 and 2 (cf. Fig. 5.5) we fixed an upper bound, and stopped the execution
of RRT or A* as soon as a path of cost smaller than this upper bound was found.

73

5.3 - Preliminary experimental results

Fig. 5.5: Experimental setups and results of the planning. The computations are made
with an Intel(R) Xeon(R) 2.00Ghz CPU. Remark: in Setup 1, the exterior surface of
the 3D obstacles (the boxes on the ground) is covered by 250 points. In Setup 2, the
exterior surface of the 3D obstacles is covered by 75 points.

74

5 – Discrete Footstep Planning

Fig. 5.6: The robot HRP-2 executing planned trajectories. Above: the so-called toy
problem of walking in a child’s bedroom avoiding toys on the ground.

As shown by the results on Setup 1, without strong local minima, the time needed
by RRT and A* to find a solution is approximately the same, but A* finds a better
trajectory cost (it finds solutions with fewer steps).

On the other hand, we can see with the results on Setup 2 that when the transition
model is large, A* seems much more sensitive to local minima than RRT: indeed A*
fails to find a solution on Setup 2, whereas the RRT method consistently finds solutions
in less than 40 seconds (and 29.8 seconds in average).

This is easily explainable because A* usually has to explore a subtree of fixed
height h (which depends on the heuristic costs used) before being able to avoid a local

minimum. Therefore it will try about (|M|h − 1)
(
|M|
|M|−1

)
transitions (|M| being the

size of the transition model) before overcoming the local minimum. This can be done
if both |M| and h are relatively small, but since in our case |M| = 276, the complexity
can quickly become prohibitively large.

As a randomized approach, RRT does not have this caveat, and that is why we
think it is more suitable than A* when the transition model is large.

A remark on the time saved thanks to the swept volume approximations: on the
Setup 1 whose environment contains a lot of points (250), we can see that during their
execution both the RRT variant and A* make about 200,000 calls to a swept volume
approximation every second. Without the approximations, these 200,000 calls would
be replaced by more than 26 minutes spent in collision checking.

75

5.4 - Real-time replanning experiments

Fig. 5.7: Above: a raw sequence of two half-steps. Below : the smoothed sequence.
When there are no obstacles, the swing foot trajectory of the smoothed sequence
depends on the minimum time between two ZMP shifts, which is fixed in advance in
order to bound the speed of the feet.

5.3.2 The smoothing phase

Once a trajectory avoiding the obstacles has been found by the planner, since it con-
sists in a concatenation of isolated half-steps, we can use the homotopy described in
Section 4.2.2 to smooth it. One overlap parameter has to be set for each pair of consec-
utive half-steps, and since the overlaps are independent, they can be set sequentially.
This means that we can start to execute the trajectory on the robot even if only a few
initial overlaps have been set, the next overlaps being computed during the execution
of the trajectory. Let us notice that the dichotomy search for the best overlap time is
an “any-time process” that can be interrupted if the computation time is too long, the
current result being anyway not worse than the initial raw motion. Another impor-
tant remark: since we cannot know in advance the swept volumes for the trajectories
involved in the smoothing processes, we have to use classical collision checks. We
measured the overlaps computation time for 10 raw sequences of half-steps obtained
in Setup 1, and 10 raw sequences obtained in Setup 2. In all cases, the duration of the
smoothing was less than the final trajectory execution time. For the solutions in Setup
1, the average time needed for the smoothing was 14.4s, and the average execution time
of the final trajectory was 31.1s. For the solutions in Setup 2, the average duration
of the smoothing was 13.4, and the average execution time of the final trajectory was
41.6s. These results validate the possibility of smoothing trajectories while they are
being executed. Fig. 5.7 illustrate the effect of the smoothing on the foot trajectories.

5.4 Real-time replanning experiments

In this section, we briefly present how the techniques for fast footstep planning pre-
sented throughout this chapter have been implemented and tested in real-time replan-

76

5 – Discrete Footstep Planning

ning experiments with the robot HRP-2, where the obstacles and the robot position
are acquired by motion capture. This implementation and these experiments are also
briefly mentioned in [Perrin et al., 2011a], and more precisely described in [Baudouin
et al., 2011].

In these experiments, we used two distinct computers to plan and execute the
robot motions: one computer for the planning, and one for the control, the latter
being equipped with a real-time operating system. A CORBA server organizes and
transfers communications between the 4 units of our architecture: the two comput-
ers just mentioned, the motion capture system responsible for obstacles and robot
localization, and a viewer that shows in real-time the new paths found by the robot.

The control of the robot motion is made with a module called Stack of Tasks (see
[Mansard and Chaumette, 2007], [Mansard et al., 2009]) which is a structure managing
priorities between the active controllers. In an execution thread, the planned trajectory
is progressively sent to the control part, while the localization information is read to
check for potential collisions. If a collision is detected along the planned trajectory, a
query is sent to the planner to generate a new path that tries to link the part of the
current trajectory before the expected collisions to the part of the current trajectory
after the expected collisions.

The planner sends four data flows. The first three flows are: 2D obstacles (which
are mostly used to simulate artificial obstacles), the current goal position, and the
current sequence of steps planned. They are only used by the viewer. The fourth
signal is the most important and contains leg joint trajectories as well as CoM and
ZMP trajectories.

The main difficulty for the CORBA server is to manage communications between
two systems running at different speeds. The control loop reads inputs every 5ms, and
the planner is obviously asynchronous. To cope with this issue the controller uses a
buffer to handle the large vectors sent by the planner. When the environment is not
changing, the planner uses its free time to try to improve parts of the current path, or
to smooth the currently planned sequences of steps.

The two-phase approach of the trajectory generation is very convenient for online
replanning because we control the independence between half-steps in the sense that
the smoothing between two consecutive half-steps can easily be canceled. For instance
it is easy to “unsmooth” a part of the currently planned sequence in order to delay a
step, or to modify it without modifying the previous steps. Since we approximately
know the time required for the smoothing (it does not vary a lot), resmoothing parts
of the trajectory can be done while the robot is performing the motion.

The way we dealt with collisions in the experiments of the previous section is clearly
not optimal: we represented obstacles by covering them with points on their exterior
surface, and all the points were always taken into account. The results showed that the
swept volume approximations can be called a great number of times in a short period,
proving that significant speed-up can be obtained compared to frequent collision checks
along a priori unknown trajectories. What is more, in some cases, point clouds are
a very natural input, and it would be interesting to see if we can organize them in a
good structure so that to use our approximation functions in an efficient way. This
is beyond the scope of this thesis, but we can already obtain better results by using
state-of-the-art collision detection algorithms. First, we can notice that our swept
volume approximations are defined by intersections of small boxes with planes (we
chose affine functions for the local approximations). Thus, it is easy to construct
meshes that describe the swept volume approximations (we actually use simplified

77

5.4 - Real-time replanning experiments

Fig. 5.8: On the left: in simulation, HRP-2 stepping over bars of section 8cm×8cm.
On the right: HRP-2 stepping over an horizontal cable 10cm above the ground.

Fig. 5.9: Details on the stepping over of a bar placed 8cm above the ground.

meshes, i.e. they have a slightly simpler geometry than the initially precomputed
approximations). With these 276 meshes, we use the PQP algorithm [Larsen et al.,
2000] for collision checks, and during the smoothing process we also use PQP to check
for collisions between the environment and convex hulls of the robot bodies (using
convex hulls is a bit more conservative and slightly reduces the number of triangles).
One of the main advantage we obtain by doing so is that PQP stores the obstacles in
bounding volume hierarchies that reduce the complexity of collision checks.

With this method a significant speed-up is reached: with the Setup 2 of Fig. 5.5,
we performed 1000 trials with a slightly faster CPU (Intel(R) Xeon(R) 2.40GHz) but
overall in similar conditions. A solution was always found, and the average time
required was only 1.60 seconds, which is almost 20 times faster than the preliminary
results. The average number of steps of the solution was 28.5 steps, and in average
18,000 collision checks were needed before finding a solution.

Fig. 5.8, Fig. 5.9, Fig. 5.10 and Fig. 5.11 illustrate some of our results in experiments
or simulations. The goal and 3D obstacles can be moved in real-time, and the robot
tries to adapt its trajectory consequently. An interesting point of the results is that
even when stepping over motions are required, the robot can often replan a trajectory
very quickly. However, there is some latency and the robot can typically replan the
trajectory only 1 or 2 steps after the current one.

78

5 – Discrete Footstep Planning

Fig. 5.10: On the left: a sequence of steps found in a complex environment. On the
right, we show for one sequence of steps the concatenation of the swept volumes made
of simplified meshes obtained from the original swept volume approximations. For the
upper body simpler bounding boxes are used for the collision checks.

5.5 Discussion on an extension to continuous transition
models

Even if the expressiveness of a continuous transition model can be approached by the
one of a large finite transition model, a continuous transition model would still be
preferable.

Several useful techniques would indeed be easier to apply with a continuous tran-
sition model: local footstep modifications ([Chestnutt et al., 2007], [Chestnutt et al.,
2006]), extraction of convex regions in the transition model in order to use optimiza-
tion techniques to determine foot placements ([Herdt et al., 2010]), path deformation
([Jaillet and Siméon, 2006]), etc.

RRT and other sampling-based algorithms (e.g. PRM, see [Kavraki et al., 1996])
would be easier to adapt with a continuous transition model, so it would cause no
problem at the planning phase. Besides, it would not be difficult to approximate the
feasibility regions so as to obtain continuous transition modelsMl andMr (although
it might be hard to obtain the guarantee that all transitions are indeed feasible). But
then, the main issue would be the need to approximate swept volumes that depend
on a continuous parameter z ∈ Ml, and as we have seen a bit in Chapter 4, this
is likely to be very computationally challenging. In that case rather than trying to
compute the swept volumes more efficiently, other collision detection routines should
be taken into account, such as continuous collision detection [Zhang et al., 2007], GPU-
based approaches [Lauterbach et al., 2010] or other variants (e.g. [Tang et al., 2010],
[Schmidl et al., 2004], . . .). But instead of exploring this direction, in the next chapter
we present a completely different approach for continuous footstep planning (although
based on the same walking pattern generator).

5.6 Conclusion and future work

In this chapter, we have described a novel and coherent framework for fast footstep
planning based on a finite but large transition model and on precomputed swept vol-
ume approximations. The experiments realized in changing environments show some
promising results: although planned very quickly the trajectories seem quite natural:
no pauses, no exaggerated motions to avoid small obstacles, and a large diversity of

79

5.6 - Conclusion and future work

Fig. 5.11: In this experiment a bar placed 5cm above the ground is moved while the
robot is executing its initial plan. (1): HRP-2 starts to execute the sequence initially
found. (2): the bar is suddenly moved, and the current sequence of step would lead
to collisions. (3): while walking, HRP-2 is able to compute a new sequence of steps
towards the goal (we show the concatenation of the swept volumes which indeed avoid
the bar). (4): the robot finally steps over the bar while at the same time it tries
to optimize the rest of the path towards the goal. Remark: due to uncertainty on
positions, we use a model of bar that is thicker than the actual one.

80

5 – Discrete Footstep Planning

foot placements. But they also show some limitations: for instance our approach is not
fast enough yet to provide modifications of the current step when obstacles suddenly
appear, and the trajectories found are not really optimal in terms of number of steps.

In future work we plan to develop new footprint planning techniques well adapted
to large transition models, possibly using parallel computations. Our hope is to obtain
a significant speed-up of the online planning phase, but this will not be useful with-
out developping also efficient and safe techniques for real-time short-term trajectory
replanning for the swing foot, ZMP and CoM.

81

Chapter 6

Continuous Footstep Planning

As we have seen, the problem of footstep planning, which has mostly a discrete
nature, is usually solved by making it completely discrete (by choosing a finite set of
possible steps). In this chapter we do the contrary and make it continuous.

In the previous chapter, one of the difficulties observed was the adaptation of RRT
to the problem of footprint planning. In classical rigid body motion planning problems,
we look for continuous paths, while in footprint planning we look for discrete “jumps”
between configurations. Because of this intrinsic difference the classical methods for
rigid body motion planning are rather difficult to apply to the problem of footprint
planning (see [O’Kane and LaValle, 2004] which examines the difficulties of applying
RRT to discrete search spaces). Yet, there are numerous efficient rigid body motion
planning algorithms which advantageously use the connectedness of the configuration
space, and it would be interesting to find a way to apply them to footstep planning.
It is possible to do it with tiered planning [Chestnutt and Kuffner, 2004], but in
that case it can be hard to know exactly what is lost when using several layers of
motion planning: indeed, a high level planner might miss existing solutions that would
have been found by the lower level planner. It is also possible to do it with the
bounding box method [Yoshida et al., 2005]: after planning a continuous motion for
the bounding box with a classical rigid body motion planner we can plan a discrete
sequence of steps following this trajectory. But as mentioned in the introduction
humanoid robots do not use their stepping over abilities with this approach. The
same problem tends to occur with the use of A* with a mobile robot heuristic (see
[Chestnutt, 2007], section 8.2). In this chapter we will eventually introduce a new
bounding box method which can still be used with continuous rigid body motion
planners, but which also captures well the stepping over abilities of humanoid robots.
Using the OMPL library [OMPL, 2010], we will compare several motion planning
algorithms such as KPIECE [Sucan and Kavraki, 2008], RRT-Connect [Kuffner and
Lavalle, 2000], PRM [Geraerts and Overmars, 2002], SBL [Sanchez and Latombe, 2001],
and will show that real-time footstep planning among 3D obstacles can be obtained
with this method. But first we start by introducing and studying in Section 6.1 a
very simple 2D planning problem that we call the “flea motion planning problem” and

82

6 – Continuous Footstep Planning

obstacle

"shortcut jump"

Fig. 6.1: The “flea motion planning problem”. On the left: from a collision-free
sequence of flea jumps to a continuous weakly collision-free path for the disk. On the
right: converting a continuous weakly collision-free path of the disk into a sequence of
flea jumps, using a greedy algorithm.

which shares a lot of similarities with footprint planning. In fact, on a conceptual
level flea motion planning and footprint planning are essentially the same problem.
Before presenting a polynomial-time algorithm which gives close-to-optimal solutions
in practice, we show an equivalence between discrete sequences of flea jumps and
continuous motions of a disk, using a modified notion of collision. Then in sections 6.2,
6.3, 6.4, 6.5, we adapt this equivalence result to a simple case of footprint planning,
and in Section 6.6 we discuss its potential applications. Finally, by introducing a
hybrid bounding box (Section 6.7), we show that it is possible to use our equivalence
result and the walking pattern generator of Chapter 4 as the foundations of an efficient
footstep planning algorithm. We implement this algorithm for HRP-2 and show results
of simulations in Section 6.8, and conclude this chapter in Section 6.9.

6.1 The preliminary problem of “flea motion planning”

We consider a flea moving on a flat surface among polygonal obstacles. This flea can
make jumps in any direction and of any length comprised between 0 and lmax. The
goal is to find a sequence of jumps from a location A(xA, yA) to a location B(xB, yB)
while avoiding the obstacles.

A sequence of jumps can be described by the sequence of configurations of the
flea on the surface (i.e. elements of R2). Let us assume that a sequence of jumps
has been found, and that it corresponds to the sequence of configurations f0 =
(x0, y0), f1, f2, . . . , fn = (xn, yn). We consider the continuous motion of a disk of
diameter lmax as depicted on Fig. 6.1 (on the left): it starts in position (xA, yA) =
(x0, y0), ends in position (xB, yB) = (xn, yn), and between two consecutive configura-
tions (xi, yi) and (xi+1, yi+1), it moves straight from (xi, yi) to (xi+1, yi+1). A time
parametrization of this motion gives us a continuous path (s(t))t∈[0,1] ∈ (R2)[0,1]. An
interesting property of this continuous disk motion is the following (it is a direct con-
sequence of the upper bound lmax on jump lengths):

Property 6.1.1. For all t ∈ [0, 1], the configuration s(t) of the disk contains at least
one of the flea configurations f0, f1, . . . , fn.

83

6.1 - The preliminary problem of “flea motion planning”

Therefore, if we define a new notion of collision as follows, then the continuous disk
motion is collision-free:

Definition 6.1.1. We say that a disk configuration (x, y) is collision-free if there
exists at least one flea configuration inside the disk which is collision-free. We call this
new notion of collision-freeness the “weak collision-freeness”, and say that the disk
configuration is “weakly collision-free”. Conversely, if all the flea configurations inside
the disk are in collision (i.e. the disk is entirely covered by the obstacles), we say that
the disk is in “strong collision”. We say that a continuous path is weakly collision-free
if all the configurations along the path are weakly collision-free.

What’s even more interesting than Property 6.1.1 is that the converse property is
true:

Property 6.1.2. If there exists a weakly collision-free continuous path of the disk from
A to B, then there exists a discrete sequence of jumps from A to B.

We do not actually demonstrate this property, but somehow it will be done later
since the proof is similar to and easier than the proof of Section 6.4. Together, Prop-
erty 6.1.1 and Property 6.1.2 form an equivalence between the weakly collision-free
paths of the disk and the collision-free sequences of jumps. Thus, in order to look for
a discrete sequence of jumps, it is equivalent to first look for a continuous disk path,
and that can be done with any classical rigid body motion planning algorithm (we just
have to implement collision checks according to Definition 6.1.1).

If obstacles are represented by polygons, this equivalence can be used to easily find
short sequences of jumps from an initial position to a goal. Indeed, the disk is in strong
collision with a polygonal obstacle P if and only if its center intersects the “shrunk”
obstacle P ′ whose construction is shown on the top of Fig. 6.2. What is more, the
disk is in strong collision with a union of disjoint polygonal obstacles if and only if
its center intersects the union of the shrunk obstacles. The shrunk obstacles are not
necessarily polygonal, but they can be constructed in polynomial time, and because
of the concavity of the non-polygonal parts, it is possible to adapt a polynomial-time
algorithm for the construction of a visibility graph (see [de Berg et al., 2000], ch. 15)
that will lead to an overall polynomial-time computation of the shortest collision-
free path for the disk center from the initial position to the goal among the shrunk
obstacles, i.e. the shortest weakly collision-free path for the disk. We will see later (in
Section 6.7.2) an efficient greedy technique to obtain a good sequence of jumps from
a weakly collision-free path. We do not have the guarantee that the shortest weakly
collision-free path of the disk leads to the shortest path or the smallest number of
jumps for the flea, but it is likely that bounds on sub-optimality can be proven (this
is however out of the scope of this thesis), and in practice this method, illustrated on
Fig. 6.2, is very efficient.

An interesting remark here is that if instead of considering the whole continuous
region of jumps we decide to select only a finite number of possible jumps for the flea,
then we would obtain a problem of discrete motion planning in a grid which would
be very close to the NP-hard problem of Chapter 2, Section 2.4. It is not completely
clear whether this fact feeds the intuition that discretizing the stepping capabilities
might actually increase the intrinsic complexity of footprint planning, but the parallel
between the efficient planning methods based on continuous weakly collision-free paths
on one hand, and the NP-hardness of the discrete problem of Section 2.4 on the other,

84

6 – Continuous Footstep Planning

Fig. 6.2: Computing a short sequence of jumps towards a goal.

is interesting nonetheless. A deeper study of this parallel could be fruitful, but is out
of the scope of this thesis.

That leaves us with a few interesting open questions related to the complexity of
flea motion planning:

• Can we actually bound the sub-optimality of the method illustrated on Fig. 6.2?

• Is there a polynomial algorithm that solves the flea motion planning problem in
an optimal way?

• Are all the non-trivial “discretized” versions of flea motion planning NP-hard?

• Are there efficient approximation algorithms for the discretized versions of flea
motion planning?

85

6.2 - A continuous footprint planning problem

Fig. 6.3: Footprint planning for a robot with circular feet.

6.2 A continuous footprint planning problem

In this section and the three next sections, we study an abstract case of footprint
planning (part of this work can be found in [Perrin et al., 2011c]). As part of the
related work, we can mention [Boissonnat et al., 1992] where a simple abstract problem
of footprint planning for a spider robot is studied (the main difference with our problem
is that there is only a fixed finite set of possible footprints for the spider robot).

Let us first describe the stepping capabilites of the robot we consider. As shown on
Fig. 6.3, its feet have the shape of a circle of diameter dF . The problem is the following:
the robot must find a discrete sequence of footprints that leads to a goal location
without intersecting any obstacle. A footprint (or foot configuration) is defined by
three parameters: two for its position and one for its orientation. A stance is defined
by two configurations of the feet (left and right foot). Now we start to define the
particular stepping capabilites that are needed for the theorem we prove below: for a
stance to be acceptable, both feet must be inside a portion of disk whose configuration
is fixed relatively to the other foot (see Fig. 6.4). More formally, if we denote by
(x, y, θ) the left foot configuration, then the set of acceptable positions for the right
foot is the set ER(x, y, θ) ⊂ R2 of positions (x′, y′) such that:

1. sin θ· (x′ − x)− cos θ· (y′ − y) ≥ h

2.
√

(x′ − x)2 + (y′ − y)2 ≤ r

Similarly, if we denote by (x, y, θ) the configuration of the right foot, then the set
EL(x, y, θ) of acceptable positions for the left foot is the set of positions (x′, y′) such
that:

86

6 – Continuous Footstep Planning

r

h

h

y

x

left foot

right foot
r

ER

EL

Fig. 6.4: A part of our hypothesis is that for a stance to be acceptable, a necessary con-
dition is that each foot must be inside a region defined by the position and orientation
of the other foot.

1. sin θ· (x′ − x) + cos θ· (y′ − y) ≥ h

2.
√

(x′ − x)2 + (y′ − y)2 ≤ r

So, a necessary condition for a stance
(
(x, y, θ), (x′, y′, θ′)

)
to be acceptable is that:

(x′, y′) ∈ ER(x, y, θ) and (x, y) ∈ EL(x′, y′, θ′)

This constraint defines also implicit restrictions on the orientations, but additional
restrictions can be imposed as well, and it will not change the stepping capabilities, as
long as the following property is verified:

Definition 6.2.1. A constraint C
(
(x, y, θ), (x′, y′, θ′)

)
on the stances is said to verify

the µ-property if there exists µ > 0 such that |θ′ − θ| < µ automatically implies that
the constraint is satisfied.

The fact that additional constraints verifying the µ-property do not change the
stepping capabilities is surprising: it means that even with very restrictive constraints
on the relative orientations of the feet, the same sequence of footprints can still be
followed, but possibly with more steps. This is true only because the feet have a
circular shape.

Our stepping capabilities are not only defined by the constraints on the set of
acceptable stances: an additional constraint that reduces the maximum length of fea-
sible steps is imposed. For this purpose we introduce the crucial 2D object shown
on Fig. 6.5: it is composed of two symmetric portions of disk, and can be obtained
by extruding an open stripe of width h from a disk of radius r/2 (where r and h are
the same as the ones used to define the first constraints on the acceptable stances).
Its configuration in the plane is defined by three parameters x, y and θ, where (x, y)
denote the position of its center and θ its orientation. We call Φ this object, and when
in configuration (x, y, θ), we denote by Φ(x, y, θ) the set of points it contains. Φ being

87

6.2 - A continuous footprint planning problem

h

θ

(x, y)
r/2

ΦR(x, y, θ)

ΦL(x, y, θ)

Fig. 6.5: The 2D object Φ.

divided into two parts, its orientation naturally defines a left and a right part. In
configuration (x, y, θ), we denote respectively by ΦL(x, y, θ) and ΦR(x, y, θ) the sets of
points contained in the left and right part of Φ.

A step of the robot can be described by three triples: the support foot configuration,
and the initial and final swing foot configurations. For example, if the left foot is
the support foot, we can call (xL, yL, θL), (xiR, y

i
R, θ

i
R) and (xfR, y

f
R, θ

f
R) these three

configurations.

Definition 6.2.2. A step defined by such configurations is said feasible if and only if
the following constraints are verified:

1. (xiR, y
i
R) ∈ ER(xL, yL, θL)

2. (xL, yL) ∈ EL(xiR, y
i
R, θ

i
R)

3. (xfR, y
f
R) ∈ ER(xL, yL, θL)

4. (xL, yL) ∈ EL(xfR, y
f
R, θ

f
R)

5. Possibly a finite number of additional constraints on the stances, all verifying the
µ-property (Definition 6.2.1).

6. There exists a configuration (x, y, θ) such that (xL, yL) ∈ ΦL(x, y, θ), (xiR, y
i
R) ∈

ΦR(x, y, θ) and (xfR, y
f
R) ∈ ΦR(x, y, θ).

These constraints (and, of course, the symmetric constraints with the right support
foot) completely describe the stepping capabilities of the robot. Fig. 6.6 shows a few
feasible and unfeasible steps.

Now, we precisely formulate the footprint planning problem and state the main
theorem of this chapter. The obstacles are defined by a finite number of closed sets
of points in the plane. The robot starts with both feet on the ground, the left and
right foot being respectively in configuration (x0

L, y
0
L, θ

0
L) = c0

L and (x0
R, y

0
R, θ

0
R) = c0

R,
which are supposed collision-free (i.e. the disks of radius dF

2 and centers (x0
L, y

0
L) and

(x0
R, y

0
R) don’t intersect with any obstacle, even on their borders). A collision-free goal

88

6 – Continuous Footstep Planning

feasible steps unfeasible steps

ER(xL, yL, θL) ER(xL, yL, θL)

Fig. 6.6: Some feasible and unfeasible steps.

configuration is given for both feet ((xGL , y
G
L , θ

G
L) = cGL and (xGR, y

G
R , θ

G
R) = cGR), and the

objective is to find a finite sequence of feasible steps that goes from (c0
L, c

0
R) to (cGL , c

G
R)

while avoiding all the obstacles. An example instance of this problem is shown on
Fig. 6.3.

Before stating the main theorem, we adapt the notion of “weak collision-freeness”
seen in the previous section to the object Φ:

Definition 6.2.3. A configuration Φ(x, y, θ) of Φ is said to be “weakly collision-free”
if and only if there exist (xl, yl) ∈ ΦL(x, y, θ) and (xr, yr) ∈ ΦR(x, y, θ) such that there
is no intersection between the obstacles and the two disks of radius dF

2 and centers
(xl, yl) and (xl, yl). If it is not the case Φ is said to be in “strong collision”.

Fig. 6.7 shows a weakly collision-free configuration, and a continuous weakly collision-
free path, i.e. a continuous path S : [0, 1] 7→ R2 × SO(2) such that ∀t ∈ [0, 1], Φ(S(t))
is weakly collision-free.

We can now state the main theorem of this chapter:

Theorem 6.2.1. There exists a collision-free sequence of feasible steps from
(
(x0
L, y

0
L, θ

0
L),

(x0
R, y

0
R, θ

0
R)
)

to the goal if and only if there exists a continuous weakly collision-free
path S : [0, 1] 7→ R2 × SO(2) such that:

1. (x0
L, y

0
L) ∈ ΦL(S(0)) and (x0

R, y
0
R) ∈ ΦR(S(0))

2. (xGL , y
G
L) ∈ ΦL(S(1)) and (xGR, y

G
R) ∈ ΦR(S(1))

In the next two sections we prove the two implications of this theorem.

89

6.3 - From a solution to a weakly collision-free path

a weakly collision-free a continuous weakly
collision-free pathconfiguration of Φ

Fig. 6.7: Weak collision-freeness.

6.3 From a solution to a weakly collision-free path

We first show that the existence of a finite sequence of feasible steps from the initial
configuration to the goal implies the existence of a continuous weakly collision-free
path for Φ.

Proof. Without loss of generality, we suppose that the first support foot is the right
one, and that the last support foot is the left one. Let us denote by (c0

R, c
0
L, c

1
L),

(c1
L, c

0
R, c

1
R), . . . , (cnL, c

n−1
R , cnR) = (cGL , c

n−1
R , cGR) a sequence of feasible steps that goes to

the goal while avoiding the obstacles, with ciR = (xiR, y
i
R, θ

i
R) and ciL = (xiL, y

i
L, θ

i
L) (we

recall that (caR, c
a
L, c

b
L) denotes the step from stance (caL, c

a
R) to (cbL, c

a
R), and (caL, c

a
R, c

b
R)

the step from stance (caL, c
a
R) to (caL, c

b
R)).

For any step (ciR, c
i
L, c

i+1
L), thanks to the constraint 6) in definition 6.2.2, we know

that there exists a configuration Φ(x2i, y2i, θ2i) such that (xiR, y
i
R) ∈ ΦR(x2i, y2iθ2i) and

(xiL, y
i
L) ∈ ΦL(x2i, y2i, θ2i) and (xi+1

L , yi+1
L) ∈ ΦL(x2i, y2i, θ2i). Since the steps avoid the

obstacles, this configuration is necessarily weakly collision-free. Similarly, for any step
(ci+1
L , ciR, c

i+1
R) there exists a weakly collision-free configuration Φ(x2i+1, y2i+1, θ2i+1)

containing the three points in the corresponding parts of Φ.

We show that there exists a continuous weakly collision-free path S : [0, 1] 7→
R2 × SO(2) such that for all k ∈ {0, . . . , 2n − 1}, S(k

2n−1) = (xk, yk, θk). To obtain
this result it is enough to prove that ∀k ∈ {0, . . . , 2n−2}, there is a continuous weakly
collision-free path Sk : [k

2n−1 ,
k+1

2n−1] 7→ R2 × SO(2) such that Sk(k
2n−1) = (xk, yk, θk)

and Sk(k+1
2n−1) = (xk+1, yk+1, θk+1). To avoid heavy notations we prove it for k = 0,

but exactly the same demonstration applies for any k ∈ {1, . . . , 2n − 2}. There are
4 foot positions to consider: (x0

R, y
0
R), (x0

L, y
0
L), (x1

R, y
1
R) and (x1

L, y
1
L). Φ(x0, y0, θ0)

contains (x0
R, y

0
R), (x0

L, y
0
L) and (x1

L, y
1
L) while Φ(x1, y1, θ1) contains (x1

L, y
1
L), (x0

R, y
0
R)

and (x1
R, y

1
R). Fig. 6.8 sums up the situation. The key point is that (x0

R, y
0
R) and

(x1
L, y

1
L) are contained in both Φ(x0, y0, θ0) and Φ(x1, y1, θ1). Because of the particular

90

6 – Continuous Footstep Planning

C

D

A

Φ(x0, y0, θ0)

(x1L, y
1
L)

Φ(x1, y1, θ1)

(x0L, y
0
L)

(x1R, y
1
R)

(x0R, y
0
R)

B

Fig. 6.8: On the left: a continuous weakly collision-free path from Φ(x0, y0, θ0) to
Φ(x1, y1, θ1), keeping (x1

L, y
1
L) and (x0

R, y
0
R) in Φ at all time. On the right, a dual

transformation: moving continuously the segment line AB towards CD while keeping
its extremities inside Φ.

shape of Φ, it is possible to show that we can go continuously from Φ(x0, y0, θ0) to
Φ(x1, y1, θ1) while keeping (x0

R, y
0
R) in ΦL and (x1

L, y
1
L) in ΦR. We will not explain

it in detail but this is a consequence of the following property: considering a fixed
configuration of Φ, for any couple of line segments of same length AB and CD, such
that A,C ∈ ΦL andB,D ∈ ΦR, it is possible to continuously move AB until it coincides
with CD, without ever moving A (resp. B) out of ΦL (resp. ΦR). On Fig. 6.8 A and C
would both correspond to (x1

L, y
1
L), and B and D would both correspond to (x0

R, y
0
R).

There are other shapes than Φ verifying the same property, but Φ is one of the simplest.
So, the continuous displacement from Φ(x0, y0, θ0) to Φ(x1, y1, θ1) always contains

(x0
R, y

0
R) and (x1

L, y
1
L), and thus it is clearly weakly collision-free. Connecting the paths

obtained for k = 0, 1, . . . , 2n− 2 gives us a continuous weakly collision-free path from
(x0, y0, θ0) to (x2n−1, y2n−1, θ2n−1), and that concludes the demonstration.

6.4 From a weakly collision-free path to a solution

In this section, we prove the converse implication: if there is a continuous weakly
collision-free path for Φ, then there exists a finite sequence of feasible steps from the
initial configuration to the goal. It might be noted that this property is a bit similar
to the reduction property in [Alami et al., 1994], where it is proven that a continuous
collision-free solution to a manipulation planning problem can always be converted
into a finite sequence of manipulation tasks with fixed grasping configurations.

First, we prove the following lemma:

Lemma 6.4.1. Let (x, y, θ) be a configuration of Φ, and (xaL, y
a
L), (xbL, y

b
L) two points

in ΦL(x, y, θ), and (xaR, y
a
R), (xbR, y

b
R) two points in ΦR(x, y, θ). We assume that these

four points are at a distance greater than dF
2 from the obstacles. Then from any

acceptable stance based on (xaL, y
a
L) and (xaR, y

a
R) there exists a collision-free sequence

of feasible steps to an acceptable stance based on (xbL, y
b
L) and (xbR, y

b
R).

91

6.4 - From a weakly collision-free path to a solution

(x, y)

(xbR, y
b
R)

(xbL, y
b
L)

EL(xaR, y
a
R, θ)

ER(xaL, y
a
L, θ)

(xaL, y
a
L)

(xaR, y
a
R)

θ

Fig. 6.9: There always exists a sequence of feasible steps from
((xaL, y

a
L, θ

a
L), (xaR, y

a
R, θ

a
R)) to ((xbL, y

b
L, θ), (x

b
R, y

b
R, θ)).

Proof. Let us denote by (xaL, y
a
L, θ

a
L) and (xaR, y

a
R, θ

a
R) the two initial configurations

of the feet. These two configurations form an acceptable stance, so we know that
(xaR, y

a
R) ∈ ER(xaL, y

a
L, θ

a
L) and (xaL, y

a
L) ∈ EL(xaR, y

a
R, θ

a
R), with possible additional

constraints verified. Because of the symmetry between EL and ER, we also have
(xaL, y

a
L) ∈ EL(xaR, y

a
R, θ

a
L). Besides, any constraint verifying the µ-property is satis-

fied by the stance
(
(xaL, y

a
L, θ

a
L), (xaR, y

a
R, θ

a
L)
)
. Since the point 6) of Definition 6.2.2 is

also verified, we deduce that the step
(
(xaL, y

a
L, θ

a
L), (xaR, y

a
R, θ

a
R), (xaR, y

a
R, θ

a
L)
)

is feasible.
After this step both feet have the same orientation. Let us also consider the configu-
rations (xaL, y

a
L, θ) and (xaR, y

a
R, θ) (we recall that θ is the orientation of Φ). As shown

on Fig. 6.9, we can easily verify that ER(xaL, y
a
L, θ) ⊃ ΦR(x, y, θ), and EL(xaR, y

a
R, θ) ⊃

ΦL(x, y, θ). Therefore we have (xaR, y
a
R) ∈ ER(xaL, y

a
L, θ), and (xaL, y

a
L) ∈ EL(xaR, y

a
R, θ).

Thanks to this and to the µ-property of the possible additional constraints on the
stances, it follows that there exists a finite sequence of feasible steps that goes from
stance

(
(xaR, y

a
R, θ

a
R), (xaR, y

a
R, θ

a
L)
)

to stance
(
(xaR, y

a
R, θ), (x

a
R, y

a
R, θ)

)
(but this might be

a long sequence, with each step resulting in just a slight orientation change). Once
the left and right foot are respectively in configurations (xaL, y

a
L, θ) and (xaR, y

a
R, θ), the

next 2 steps leading first to
(
(xbL, y

b
L, θ), (x

a
R, y

a
R, θ)

)
or
(
(xaL, y

a
L, θ), (x

b
R, y

b
R, θ)

)
, and

then to
(
(xbL, y

b
L, θ), (x

b
R, y

b
R, θ)

)
, are also feasible (see Fig. 6.9). As a consequence, we

obtained a sequence of collision-free feasible steps from
(
(xaL, y

a
L, θ

a
L), (xaR, y

a
R, θ

a
R)
)

to(
(xbL, y

b
L, θ), (x

b
R, y

b
R, θ)

)
, which is an acceptable stance, and that concludes the proof

of lemma 6.4.1.

We can now start the main demonstration.

Proof. Let S : [0, 1] 7→ R2 × SO(2) be a continuous weakly collision-free path of Φ
towards the goal. For a configuration (x, y, θ) of Φ, we denote by dLobs(x, y, θ) the max-
imum distance between any point of ΦL(x, y, θ) and the obstacles, and by dRobs(x, y, θ)

92

6 – Continuous Footstep Planning

Fig. 6.10: From a continuous weakly collision-free path to a finite sequence of feasible
collision-free steps.

the maximum distance between any point of ΦR(x, y, θ) and the obstacles. We also
pose:

dobs(x, y, θ) = min(dLobs(x, y, θ), d
R
obs(x, y, θ)),

and:

dmin(S) = min
t∈[0,1]

(dobs(S(t)))

Since S is weakly collision-free, and since both Φ and the obstacles are represented by
closed set of points, we know that:

dmin(S) > dF
2

Besides, S is uniformly continuous on [0, 1], and therefore for any ρ > 0 there exists
ε > 0 such that for all (t1, t2) ∈ [0, 1]2, |t1 − t2| < ε ⇒ ‖S(t1) − S(t2)‖∞ < ρ, where
‖(∆x,∆y,∆θ)‖∞ = max(|∆x|, |∆y|, |∆θ|) (with |∆θ| being the smallest value among
{|∆θ + k2π|, k ∈ Z}). It follows that for any η > 0, there also exists ε > 0 such that
|t1 − t2| < ε implies that from S(t1) to S(t2) the points of Φ are moved by at most η.
For a given η > 0, let us denote by ε(η) a satisfying value of ε, and let us denote by N
an integer such that 1

N < ε(η).

We consider the configurations S(0
N), S(1

N), . . . , S(NN).

There exists η small enough so that for any i ∈ {0, . . . N − 1}, every point in
ΦL(S

(
i
N)
)
∪ΦL(S

(
i+1
N)
)

is at distance at most (dmin(S)− dF
2)/2 from the non-empty

intersection ΦL

(
S(i

N)
)
∩ ΦL

(
S(i+1

N)
)
, with the same property for ΦR. In that case,

for any point (x, y) ∈ ΦL

(
S(i

N)
)

at distance at least dmin(S) from the obstacles,
there exists a point (x′, y′) ∈ ΦL

(
S(i

N)
)
∩ΦL

(
S(i+1

N)
)

at distance at least dmin(S)−

93

6.5 - Generalization to different stepping capabilities

(dmin(S) − dF
2)/2 > dF

2 from the obstacles. The result also applies for points in ΦR,
and it follows that we can extract two sequence of points (x1

L, y
1
L), . . . , (xNL , y

N
L) and

(x1
R, y

1
R), . . . , (xNR , y

N
R) that are all at distance greater than dF

2 from the obstacles, and
such that:

∀i ∈ {1, . . . , N}, (xiL, y
i
L) ∈ ΦL

(
S
(
i−1
N

))
∩ ΦL

(
S
(
i
N

))
,

and:

∀i ∈ {1, . . . , N}, (xiR, y
i
R) ∈ ΦR

(
S
(
i−1
N

))
∩ ΦR

(
S
(
i
N

))
.

As an almost direct consequence of Lemma 6.4.1, these points can be the support
of a sequence of feasible steps going from the initial configuration to the goal. That
concludes the demonstration, and Fig. 6.10 illustrates the whole construction.

6.5 Generalization to different stepping capabilities

The stepping capabilites considered so far are realistic, but the condition 6) in Defini-
tion 6.2.2 might seem a bit restrictive. Here we consider the stepping capabilites with
this constraint removed: in other words, a step is feasible as long as it involves two
acceptable stances. Actually, we make another very slight change: the sets EL and ER
are replaced by their interior. Thus, the definition of feasibility becomes:

Definition 6.5.1. The step defined by the 3 configurations ((xL, yL, θL), (xiR, y
i
R, θ

i
R),

(xfR, y
f
R, θ

f
R)) is feasible if and only if the following constraints are verified:

1. (xiR, y
i
R) ∈ E◦R(xL, yL, θL)

2. (xL, yL) ∈ E◦L(xiR, y
i
R, θ

i
R)

3. (xfR, y
f
R) ∈ E◦R(xL, yL, θL)

4. (xL, yL) ∈ E◦L(xfR, y
f
R, θ

f
R)

5. Possibly additional constraints verifying the µ-property (Property 6.2.1).

An equivalence similar to Theorem 6.2.1 can be obtained, but an additional oper-
ation on Φ is required. This operation depends on one parameter δ ∈ (−1, 1), and is
described on Fig. 6.11. It gives a fourth dimension to the configuration space of Φ,
which now becomes R2 × SO(2)× (−1, 1). And the theorem becomes:

Theorem 6.5.1. There exists a collision-free sequence of feasible steps from
(
(x0
L, y

0
L, θ

0
L),

(x0
R, y

0
R, θ

0
R)
)

to the goal if and only if there exists a continuous weakly collision-free
path S : [0, 1] 7→ R2 × SO(2)× (−1, 1) such that:

1. (x0
L, y

0
L) ∈ ΦL(S(0)) and (x0

R, y
0
R) ∈ ΦR(S(0))

2. (xGL , y
G
L) ∈ ΦL(S(1)) and (xGR, y

G
R) ∈ ΦR(S(1))

With a 4-dimensional configuration space, motion planning algorithms become a
bit slower, but this theorem might be even more useful than the first one because with
appropriate additional constraints the stepping capabilities obtained can be very close
to the ones of real humanoid robots. To change the stepping capabilities even more,
it might also be possible to change the shape of EL, ER, and Φ, or even the notion of
weak collision-freeness. It should be possible to obtain general criteria defining the set

94

6 – Continuous Footstep Planning

homothety of ratio
1 + δ = 1.80

homothety of ratio 1− δ = 0.20

1− δ = 1.15
homothety of ratio

homothety of ratio 1 + δ = 0.85

h
h

δ = −0.15δ = 0.80

Fig. 6.11: A new operation on Φ: if the first parameters of its configuration are x,
y, and θ, then for δ ∈ (−1, 1), ΦL undergoes an homothety of center (x, y) and ratio
1 − δ, while ΦR undergoes an homothety of center (x, y) and ratio 1 + δ (thus Φ is
unchanged if δ = 0).

of Φ shapes and weak collision-freeness definitions that can be used while keeping the
equivalence result, but this is out of the scope of this thesis. So far, we only considered
footprints with a circular shape; when the feet of the robot are rectangular, things are
a bit more complicated. The easiest way to deal with it is to be a bit overconservative
and use circles that contain the rectangular footprints. With a more precise approach,
results similar to Theorem 6.2.1 can be obtained with stepping capabilities based on
rectangular footprints, but they require new limitations. In the following sections
we present applications with rectangular footprints, but we do not explain how the
equivalence results are adapted.

6.6 Potential applications

For the same reason why the reduction property in [Alami et al., 1994] is useful for
manipulation planning, theorems 6.2.1 and 6.5.1 are useful for footstep planning, as
they turn an a priori specific problem of motion planning into an instance of a better-
studied and more fundamental problem. Indeed, the problem of searching for contin-
uous collision-free paths (in R2 × SO(2)) for a rigid 2D shape that can translate and
rotate, is the 2-dimensional version of the most studied problem of motion planning:
the classical piano mover’s problem. A large number of techniques have been designed
to solve efficiently this problem (and most of them also apply if the configuration space
is R2 × SO(2) × (−1, 1)), while fewer algorithms exist for footstep planning. For ex-
ample PRM and RRT are two widespread techniques of motion planning that cannot

95

6.7 - Footstep planning with a two-level hybrid bounding box

Fig. 6.12: The robot HRP-2 following a weakly collision-free path and avoiding a cable
on the ground

be directly applied to footstep planning in a sound way. Thanks to Theorem 6.2.1,
it becomes the case: indeed, for a robot with the stepping capabilities described in
section 6.2, a sound way to solve the footstep planning problem is to first use PRM
or RRT to find a continuous path for Φ, and then convert it into a finite sequence
of steps. Once a solution path S has been found, as we will see in Section 6.7.2 the
conversion can be done very efficiently by a greedy algorithm that always tries to put
the next stance of the robot in Φ(S(t)) with t as large as possible.

During the execution of PRM or RRT, only one thing has to be changed: the
collision checks must be replaced by strong collision checks, which are a bit more com-
putationally costly, but can be handled efficiently with appropriate data structures,
parallel or approximate approaches. It might also be interesting to use a “tuned cost”
for the paths lengths because lateral motions of the Φ object can produce many unnec-
essary lateral steps. Another way to solve this problem could be to apply nonholonomic
motion planning algorithms, which for example aim at planning the motion of a car
(see [Laumond, 1986], [Barraquand and Latombe, 1993], [Lamiraux et al., 2004]). In
our case, artificial constraints or control laws can be used to oblige the robot to favor
forward motions rather than backward or lateral walking, or simply to execute maneu-
vers that look natural. To do motion planning with these control laws an algorithm
such as KPIECE (for example) could be applied ([Sucan and Kavraki, 2008]).

Fig. 6.12 shows a preliminary result where the robot HRP-2 finds footprints that
avoid a cable on the ground. Unfortunately, so far we can only avoid 2D obstacles,
and for useful applications we must be able to take into account 3D obstacles. This is
the purpose of the next two sections.

6.7 Footstep planning with a two-level hybrid bounding
box

The bounding box used to conveniently plan the walking motions of a humanoid robot
is usually a single rigid body. For instance it can be a rectangular box that always
contains the whole robot or at least sweeps volumes that entirely contain the robot

96

6 – Continuous Footstep Planning

lower boxes

upper
box

hm

HRP-2 during a step

obstacle

(front view, lateral step) (side view, forward step)

The upper box
moves continuously
and sweeps a volume
that contains the upper
part of the robot,

but the lower boxes
move in a discrete way,
which allows the robot
to step over obstacles
(here the lower box
for the right foot is not
displayed).

previous configuration
of the left lower box

new configuration
of the left lower box

Fig. 6.13: HRP-2 and the improved bounding box, made of three rectangular boxes.

motions (see [Yoshida et al., 2008], [El Khoury et al., 2011]). A cylinder is also some-
times used, for example when motion planning methods for differential drive robots
are applied (see [Hayet et al., 2009]). Bounding boxes are also sometimes made of
several solid objects rigidly linked (see [Gutmann et al., 2005]).

In this section we introduce an improved bounding box that behaves somehow as
a single box but has in fact three parts: two lower rectangular boxes, and one upper
rectangular box. The upper box is similar to a classical bounding box in the sense
that it moves continuously. The volume swept by the upper box contains every part of
the robot above a fixed height hm, which corresponds to the maximum height of the
obstacles that can be stepped over. For the robot HRP-2, this height was chosen to be
20cm, which means that the robot will circumvent all the obstacles of height greater
than 20cm. Because of the similarity with the classical bounding box, the upper box
is of secondary importance in this section and the next. Instead, we focus on the two
lower boxes, which are used to capture the stepping over capabilities of the robot.
Fig. 6.13 shows how the discrete motion of the lower boxes enables the robot to step
over obstacles (without leaving the volume defined by the boxes union).

In order to use classical motion planning techniques for our two-level bounding
box, we present a footstep planning algorithm based on the equivalence proved in the
previous sections (Theorem 6.2.1). This algorithm also benefits from the features of
a slightly improved version of the walking pattern generator introduced in Chapter 4.
Its aim is to make HRP-2 walk from an initial location A to a goal B on a flat ground
cluttered with 3D obstacles, and it is divided into 3 phases:

1. Solve a classical rigid body motion planning problem to obtain a weakly collision-
free continuous path.

2. Convert the continuous path into a hybrid motion of the two-level bounding box.
The bounding box motion directly corresponds to slow and large steps avoiding
the obstacles, and we try to plan it so that to minimize the number of steps.

3. Keeping the same footprints, smooth and speed up the steps in order to reach
the goal faster and avoid the obstacles in a more efficient way.

These 3 phases are described in the next 3 sections.

97

6.7 - Footstep planning with a two-level hybrid bounding box

Fig. 6.14: A sequence of (raw) steps performed by HRP-2, with the corresponding
configurations of the lower boxes. The feet of the robot always leave and enter the
rectangular boxes from above, not from the sides. Thus, for all the obstacles whose
height is less than hm, the lower boxes can be used for conservative collision checks.

6.7.1 Weakly collision-free paths and hybrid bounding box trajecto-
ries

Since just like footprints, the configurations of the lower bounding boxes are defined
by elements of R2 × SO(2), it is quite straightforward to apply the equivalence result
(Theorem 6.2.1) just as we did for the preliminary application illustrated on Fig. 6.12.
To obtain a good approximation of the stepping capabilities of HRP-2 we use the
operation described on Fig. 6.11, and thus configurations of Φ are described by elements
of R2 × SO(2) × (−1, 1). The configuration of Φ is also used to set the configuration
of the upper bounding box which is centered between EL and ER, and shares the same
orientation as Φ. So, for a configuration Φ(x, y, θ, δ) of Φ, we test the collision with
the environment as follows:

• classical collision checks for the upper bounding box,

• strong collision checks for the lower bounding boxes: instead of checking 2D
collisions as in sections 6.2 to 6.5 we check collisions between the lower bounding
boxes and the lower part of the environment (no need to consider the obstacles
above height hm).

This is somehow an extension of the notion of weak collision-freeness, and the
geometry of the bounding boxes and Φ have been chosen so that weakly collision-free
paths can always be converted into (a) a continuous motion of the upper bounding
box and (b) a discrete sequence of configurations of the lower bounding boxes, so that
the overall hybrid motion of the two-level bounding box can be followed by a walking
motion of the robot which stays inside the bounding boxes, as depicted on Fig. 6.13.
On Fig. 6.14 we show such a walking motion and display only the lower bounding
boxes: we can see that the swing foot always enters or leaves them from above, and
thus follows ∩-shaped trajectories.

98

6 – Continuous Footstep Planning

Algorithm 4 SetNextLeftStep((t, (cL, cR))

Require: An upper bound on tnew − t: ∆max

Require: A precision parameter ε > 0
1: tmin ← t
2: tmax ← min(1, t+ ∆max)
3: while true do
4: tnew ← tmin+tmax

2
5: stepfound← false

6: if cR ∈ ΦR(s(tnew)) then
7: Try to find (through sampling) a feasible left step such that the next double

support configuration (cnew, cR) is in Φ(s(tnew)), and such that the lower box
in configuration cnew is collision-free.

8: if such a step is found then
9: stepfound← true

10: end if
11: end if
12: if stepfound then
13: if tmax − tnew < ε then
14: Break.
15: end if
16: tmin ← tnew
17: else
18: tmax ← tnew
19: end if
20: end while
21: Return (tnew, (cnew, cR))

6.7.2 Reduction to a finite sequence of steps

Now we assume that a continuous weakly collision-free path has been found for Φ,
and we show how to convert it into a hybrid motion of the rectangular boxes. First,
let us consider again the “flea example” of Section 6.1. We denote by (s(t))t∈[0,1] ∈
(R2 × SO(2))[0,1] the solution path for the disk. When we convert it into a sequence
of jumps, a natural objective is to try to minimize the number of jumps. To do so
we use the following greedy algorithm (see Fig. 6.1, on the right): assuming that the
current configuration of the flea is (x0, y0, θ0) inside the disk of configuration s(t0), we
search for the largest tnew > t0 such that it is possible to jump from (x0, y0, θ0) into the
disk of configuration s(tnew). This greedy algorithm can be straightforwardly adapted
to our “hybrid bounding box planning problem” and implemented with a dichotomy
(see Algorithm 4 which sets the next left step), but attention must be paid to one
important detail related to the upper box motion. Basically, during the planning
phase we continuously move the upper box along the path s(t), and we use classical
collision checks to determine the validity of the path (the weak collision checks are
for Φ, i.e. the lower boxes). However, in order to enable the kind of shortcut shown
on Fig. 6.1, some non-trivial properties of the upper box must be verified. Roughly,
the union of the first and last configurations of the upper box during a step must be
enough to encompass the whole motion of the upper part of the robot (i.e. everything
above height hm) during this step. In our current implementation we chose an upper

99

6.8 - Implementation and simulations

box big enough to empirically verify this property, but in future work we will consider
automated procedures to tune the upper box geometry in order to verify the required
properties while not being overconservative.

Another detail must be carefully addressed: if the continuous path (s(t))t∈[0,1] is
indeed made of weakly collision-free configurations, then the next step can always
be found. However planners usually decide the validity of a whole continuous path
based upon the validity of a discretization of this path. Therefore it can happen that
the solution path is in fact not entirely weakly collision-free, and in that case the
Algorithm 4 might not find a next step. Although there are several techniques to
avoid that, one convenient solution is to use a margin for the collision checks when
the continuous weakly collision-free solution path is searched for, but no margin (or
a smaller one) when the finite sequence of lower box configurations is constructed.
For more rigorous results we could try to adapt the method described in [Ferré and
Laumond, 2004].

6.7.3 Smoothing

As explained in section 6.7.1 and shown on Fig. 6.13 and Fig. 6.14, the steps have
initially ∩-shaped swing foot trajectories. Although ∩-shaped swing foot trajectories
can slightly reduce the stepping capabilities of the robot due to potential joint limits
violations, small variations of the CoM height during the steps compensate for this
effect (vertical motions of the CoM is one of the slight improvements of the walking
pattern generator used in this chapter compared with the original version presented
in Chapter 4). However, because of the distance traveled by the swing foot such steps
tend to be rather slow, and not energy-efficient. For this reason, we use the smoothing
process introduced in Section 4.2.2 to continuously modify the swing foot trajectories
at execution time, so that the swing foot will gently avoid the obstacle, stepping over
it without an unnecessarily large motion. The effect of this smoothing process is
depicted on Fig. 6.15. It can speed up the motion by up to a factor 3, and like the
steps construction (section 6.7.2), it is done progressively (i.e. we smooth one step at
a time).

6.8 Implementation and simulations

Let us first recall the 3 phases of our algorithm: 1) find a continuous path s(t), 2)
convert it into a sequence of steps, and 3) smooth the steps.

Fig. 6.16 illustrates the phases 1) and 2).

Phases 2) and 3) can require a non-negligible amount of time, especially if the
sequence of steps is long. However they have the good property of being built progres-
sively. On top of that, in practice we verify that the time needed for the construction
and smoothing of one step (when the continuous path is known) is much less than
the duration of the step. Thus we can use two threads (that are launched in parallel
just after the continuous path has been found): one that actually executes the walking
motion on the robot, and the other that progressively sets and smooths the steps. The
first thread makes the robot start to move as soon as the first step has been constructed
and smoothed by the second thread (it takes less than half a second). Then, while
the robot is performing the first step, the second thread sets (based on the continuous
path) and smooths the second step which can then be executed without interruption.
This parallel process continues further and since the steps are always constructed and

100

6 – Continuous Footstep Planning

obstacle

lower box
before smoothing
after smoothing

volume swept by
the upper box

Fig. 6.15: Swing foot trajectory before and after smoothing. We can see that after the
smoothing the robot trajectory is not necessarily contained in the boxes anymore.

smoothed faster than they are executed, no problem occurs. Consequently to this use
of threads the relevant time-complexity of the algorithm is only the one of phase 1),
unless the robot has to perform other online tasks with the same CPU(s).

As explained in previous sections, finding a continuous path s(t) is a classical
problem of rigid body motion planning, except for the configuration space and the
configuration validity test which are specific (strong collision checks). The library
OMPL ([OMPL, 2010]) provides exactly the API we need: we can easily redefine
the manifold representing the configuration space, and the configuration validity test
(called “state validity test” in OMPL). Then, any rigid body motion planner can be
directly used. We tried the algorithms KPIECE ([Sucan and Kavraki, 2008]), SBL
([Sanchez and Latombe, 2001]), PRM ([Geraerts and Overmars, 2002]), and RRT-
Connect ([Kuffner and Lavalle, 2000]), all readily available in OMPL, and compared
their performances.

We chose the following experimental setup: in a fixed environment (the one of
Fig. 6.17, which is a 4m×4m room cluttered with 3D obstacles lying on the floor), the
robot is given 8 consecutive random goals (the same random goals for every motion
planner). For each goal and each motion planner we execute our algorithm 10 times
and record the average time required to find a continuous solution path, as well as the
average number of steps of the sequences constructed. The computations are made
on two Intel(R) Core(TM) i7 1.60GHz CPUs. The results are shown on Fig. 6.18
and 6.19 where the goals are sorted by increasing difficulty. What we can see is that
RRT-Connect and KPIECE are the fastest algorithms (averaging both less than half a
second on the eight goals), but that KPIECE produces sensibly longer solution paths
that lead to larger sequences of steps.

As collision checking is the bottleneck of most motion planning algorithms, the
time costs not only depend on the algorithm chosen but also on the quickness of our
configuration validity tests, i.e. our strong collision checks.

In these tests, we have to check whether there exists a collision free configuration of
the lower box in ΦL and in ΦR. We do this by randomly sampling configurations in ΦL

and ΦR (which is a conservative approach). If the current ΦL (resp. ΦR) has a large
overlap with the previously checked Φ′L (resp. Φ′R), which happens often, for instance
when testing consecutive configurations s(tk) along a discretized segment line, then it

101

6.8 - Implementation and simulations

First, a continuous
solution path is found.

Then, the sequence
of lower boxes
configurations is
constructed.

Fig. 6.16: Phases 1) and 2) of the algorithm: two examples. The initial walking
trajectory (before smoothing) is such that below height hm no point outside the lower
boxes is touched by the robot (see Fig. 6.14).

102

6 – Continuous Footstep Planning

Fig. 6.17: A simulation of HRP-2 performing real-time footstep planning in an envi-
ronment cluttered with 3D obstacles. On the bottom-left corner of the image a beige
2D shape made of two portions of disks can be seen. It is a representation of a weakly
collision-free configuration s(t) from the continuous path that the robot follows (one
side is ΦL while the other is ΦR). Note that the configuration is weakly collision-free
even though the shape intersects an obstacle. The area swept by this 2D shape along
another continuous path is shown on the smaller image in the upper-left corner.

103

6.9 - Conclusion and future work

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14 SBL

RRT-Connect

PRM

KPIECE

(s)

Fig. 6.18: Average durations of the planning phase for random goals sorted by increas-
ing difficulty.

SBL

RRT-Connect
PRM

KPIECE

(steps)

0

20

40

60

80

100

Fig. 6.19: Average number of steps of the solutions obtained for the same goals as in
Fig. 6.18.

might be a waste of time to check new samples: indeed, maybe we already checked
a collision-free sample that belongs to both Φ′L and ΦL (resp. Φ′R and ΦR). For this
reason we keep track of the last few collision-free samples found and first test their
membership to ΦL (resp. ΦR). This method speeds up our validity tests a bit. Note
also that because many collision checks are grouped in each validity test, our algorithm
is particularly well suited for parallel computations.

6.9 Conclusion and future work

In this chapter we have introduced a new bounding box method for humanoid robot
footstep planning. The two-level bounding box, whose upper part moves continuously
and lower part discretely, captures well the hybrid behaviour of humanoid robots (and
could easily be extended to robots with more legs). Based on this bounding box our
planning algorithm enables the robot to plan dynamic trajectories and accurately step
over obstacles at a low computational cost. In fact, we have shown through simulations
that even in a very cluttered environment, fast footstep planning can be achieved so
that after receiving a new goal, the robot almost always starts to move without any
noticeable delay.

Using an algorithm based on an original equivalence result, the motion of the
whole hybrid bounding box is governed by continuous paths. As a result classical
motion planning algorithms can be used effortlessly, and since the problem of footstep
planning is very specific and much less studied than rigid body motion planning, this

104

6 – Continuous Footstep Planning

generalization is clearly beneficial. In fact, our next objective is to reduce further
the computation times by using more advanced motion planning libraries such as g-
Planner ([Pan et al., 2010]) which takes advantage of GPU architectures to achieve
extremely fast motion planning. Using such a tool for footstep planning has never been
done before, and it should enable the construction of optimized path in constrained
environments in the blink of an eye, and thus pave the way towards practical and
robust real-time footstep planners. Adding new dimensions to the parameter space
would also be interesting (for example to tackle the problems of walking on stairs or
on uneven terrain) and more complex, but with the speed up brought by g-Planner
the footstep planning could remain computationnally efficient. Finally, using variants
of the notion of weak collision-freeness, we could try to adapt various motion planning
strategies for mobile robots (see for example [Alami et al., 2007], [Pignon et al., 1993]),
or improve other techniques of continuous footstep planning such as [Kanoun et al.,
2009] or [Dalibard et al., 2011].

105

Chapter 7

Conclusion

7.1 General contributions

We believe that footstep planning is an interesting problem for 3 main reasons:

1. Of course, the first one is its usefulness: humanoid robots are built because we
hope they will eventually be able to move like humans and reach their level of
agility. The ability to plan steps with ease seems like a natural intermediate goal
in this quest.

2. On a theoretical level, footsteps planning has both discrete and continuous as-
pects which makes it a very particular motion planning problem.

3. On a more practical level, it is too difficult a problem to be solved without
introducing simplifying hypotheses: it thus becomes challenging to find the good
simplifications that should at the same time lead to practical applications and
let the robot exploit well its stepping capabilities. It is also better to avoid
lists of heuristics because they are hard to reproduce and do not reveal general
principles.

Throughout this thesis, we proposed original solutions while keeping those three
points in mind.

In Chapter 2, we first considered the underlying “footprint planning” problem with
the following initial remark: when we discretize this problem, we can do it so that to
come down to a search problem on a 2D grid. We then wondered whether in that
case there exist more efficient methods than A*-like search algorithms, for example
by reasoning on the obstacles description more explicitely. That lead us to several
theoretical results which in the end leave little hope for this ambition.

In Chapter 3, we started with the following remark: the complexity of the footstep
planning problem is partly due to the obstacles which are a priori unknown, but
it is also due to the intrinsic complexity of the biped robot itself, which has many
restrictions and can self-collide in many ways. Since we know the model of the robot,

106

7 – Conclusion

we can study it offline so that to precompute efficient data structures that could help
us save a lot of time during online computations. Following this remark we built
approximations of some feasibility tests, and used them in a few experiments with the
robot HRP-2.

In Chapter 4, we introduced an original walking pattern generator with two special
features that make it well suited for precomputation-based footstep planning: a) being
based on half-steps, its input space has a reduced dimensionality, and b) the initially
planned trajectories are improved thanks to a very fast smoothing homotopy. We also
conducted a theoretical analysis of the sensitivity of this walking pattern generator,
and its two main features were advantageously used in the next two chapters.

In Chapter 5, we obtained a dense discretization of the walking pattern genera-
tor input space with about 300 half-steps, and for each of them we precomputed an
approximation of the volume swept by the legs of the robot. By combining these ap-
proximations with the features of the walking pattern generator we could realize fast
footstep planning while allowing a large variety of steps, and notably a large vari-
ety of stepping-over motions. Using this approach we performed several challenging
experiments with HRP-2.

In Chapter 6 we considered a continuous approach: starting with an equivalence
result shown in the context of footprint planning, we obtained a novel algorithm that
enables the transposition of footstep planning problems into more classical problems of
continuous motion planning. Thanks to a hybrid bounding box for HRP-2, we used this
algorithm to design an efficient method capable of quickly planning sequences of steps
in very constrained environments where the robot has to step over many obstacles.

7.2 Limitations and perspectives

In this thesis we only considered footstep planning as a motion planning problem,
when in fact it is obviously not limited to that. Even though we did use a stabilization
algorithm in our implementations, we made the implicit assumption that trajectories
can be followed with high accuracy. And with this assumption we could indeed solve
some challenging problems with the real HRP-2 robot. However, in order to get a
safer, more robust and more flexible behaviour, it would be better to take into ac-
count uncertainty and increase the robot compliance. To do this efficient methods for
local trajectory correction and advanced control are needed. Nevertheless, fast mo-
tion planning will remain essential for local methods are all prone to local minima.
Hence, for better planning and control of walking motions, the best combination is
probably to first quickly generate a decent reference trajectory, and then convert it
into sequences of control laws that will enable to roughly follow the reference while
keeping the ability to cope with uncertainty and external perturbations, and possibly
optimize important balance or energy-related criteria. The situation where the robot
becomes unable to follow the reference trajectory must also be addressed, avoiding to
fall being the number one priority.

In light of these facts, the three main axes of our future work will be uncertainty,
compliance and control.

107

Appendix A

Proof of Theorem 2.2.2

Let (Q,T) be a 2-counter machine verifying the U-turn property, and, without loss of
generality, let (q0, 0, 0) be the initial configuration.

We propose an algorithm of time complexity O(|(Q,T)|B) (we recall that |(Q,T)|B
denotes the size of a classical binary encoding of (Q,T)) which decides whether all
configurations are reachable or not. The algorithm works in four steps, and returns
true if all the configurations are reachable, false otherwise. Here, we present it along
with the proof of its correctness.

1. Let us consider (Q,T) as a graph, where the elements of Q are the vertices
and the elements of T oriented edges. We first verify that all the vertices are
reachable from q0 (if not, return false). Then, we consider only the maximal
strongly connected subgraph (Q̃, T̃) containing q0, which can be extracted in
time O(|(Q,T)|B). The universal reachability property holds for (Q̃, T̃) if and
only if it holds for (Q,T), because since all the vertices are reachable from q0,

the universal reachability property is equivalent to ∀(x, y) ∈ Z2, q0
∗−−−→

(x,y)
q0, and

sequences of transitions going from q0 to q0 necessarily contain only transitions
of (Q̃, T̃).

2. We consider now the 1-counter machine (Q̃, T̃1) obtained from (Q̃, T̃) by replacing
each transition (q, x, y, q′) by (q, x, q′). First, we check if there is any odd number

2k + 1 such that we have q0
∗−−−−→

(2k+1)
q0. To do so, we replace temporarily each

transition (q, x, q′) by (q, x mod 2, q′), merging the identical results. We create
then a new graph with twice as many vertices as (Q̃, T̃1) and unweighted edges:
for each q ∈ Q̃ we create q(odd) and q(even), for each transition (q1, 0 mod 2, q2) ∈
T̃1 we create the edges (q

(odd)
1 , q

(odd)
2) and (q

(even)
1 , q

(even)
2), and for each transition

(q1, 1 mod 2, q2) ∈ T̃1 we create the edges (q
(odd)
1 , q

(even)
2) and (q

(even)
1 , q

(even)
2). An

example of this construction is shown on Fig. A.1.

A configuration of the form (q0, 2k+1) is reachable in (Q̃, T̃1) if and only if there

is a path from q
(even)
0 to q

(odd)
0 in the newly created graph. We can verify that

easily by using a breadth-first search algorithm (of complexity O(|(Q,T)|B)).

If no configuration (q0, 2k + 1) is reachable, it means that in (Q,T), configura-
tions of the form (q0, 2k + 1, k′) are not reachable, and therefore the algorithm

108

A – Proof of Theorem 2.2.2

q
(even)
1

q
(odd)
1

q1 q2

−3

+10
0+8

q
(even)
2

q
(odd)
2

Fig. A.1: Checking whether an odd value is reachable for a 1-counter machine.

can return false. Otherwise, we proceed to next step.

3. We still consider (Q̃, T̃1). Let us pose {x1, x2, . . . , xK} = {x ∈ Z|∃(q, x, q′) ∈ T̃1}.
We can calculate gcd(x1, . . . , xK) (in time linear in the encoding of x1, x2, . . . , xK)
along with a linear combination

∑K
i=1 aixi = gcd(x1, . . . , xK). If gcd(x1, . . . , xK)

is not 1, then (q0, 1) cannot be reached, and we can return false. Thus we
can assume gcd(x1, . . . , xK) = 1. Let us show now that for each xi, (q0, 2zxi) is
reachable for any z ∈ Z.

Let q0
∗−−→

(M)
q
∗−−→

(xi)
q′

∗−−→
(N)

q0 be a path from q0 to itself. Thanks to the U-turn

property, we know that the following path also exists:

q0
∗−−→

(0)
(q0)>

∗−−−→
(−M)

q>
∗−−→

(0)
q
∗−−→

(xi)
q′

∗−−→
(0)

(q′)>
∗−−−→

(−N)
(q0)>

∗−−→
(0)

q0

If we follow this path just after the previous one, we obtain a path leading
to the configuration (q0, 2xi), which we can repeat to reach any configuration
(q0, 2zxi) with z ∈ N. Thanks to the U-turn property, any of these paths can
be transformed into a path leading to configuration (q0,−2zxi). Therefore, the
configuration (q0, 2zxi) is reachable for any z ∈ Z.

We deduce that we can combine several paths in order to reach the configuration
(q0, 2gcd(x1, . . . , xK)), that is to say (q0, 2). The configuration (q0,−2) is also
reachable.

Since we know that there exists a reachable configuration of the form (q0, 2k+1),
we can combine several paths in order to finally obtain a path reaching (q0, 1).

4. We now use the path q0
∗−−→

(1)
q0 just obtained, but this time on the 2-counter

machine (Q̃, T̃), and from the configuration (q0, 0, 0). It reaches a configuration
(q0, 1, a). a can be computed efficiently if during the previous step, we keep
updating the number of occurences of each transition in all the paths that were
combined now to reach (q0, 1, a).

We then change every transition (q, x, y, q′) ∈ T̃ into (q, x, y− ax, q′). Let us call
(Q̃, T̂) the 2-counter machine consequently obtained. (Q̃, T̂) keeps the U-turn

109

property, and every path q
∗−−−→

(x,y)
q′ in (Q̃, T̃) corresponds to a path q

∗−−−−−→
(x,y−ax)

q′

in (Q̃, T̂). The function f : (x, y) 7→ (x, y−ax) is a bijection of Z2, and therefore
we deduce that the universal reachability property holds for (Q̃, T̃) if and only
if it holds for (Q̃, T̂). In (Q̃, T̂), we have a path from the initial configuration
(q0, 0, 0) to (q0, 1, a − a) = (q0, 1, 0). Thanks to the U-turn property, we can
transform it into a path from (q0, 0, 0) to (q0,−1, 0), and since we can repeat

these paths at will, we have: ∀z ∈ Z, q0
∗−−−→

(z,0)
q0.

Let us now consider the 1-counter machine (Q̃, T̂2) obtained from (Q̃, T̂) by
replacing each transition (q, x, y, q′) by (q, y, q′). We prove that (Q̃, T̂) verifies

the universal reachability property if and only if (Q̃, T̂2) verifies ∀z ∈ Z, q0
∗−−→

(z)
q0.

The direct implication is trivial (q0
∗−−−→

(w,z)
q0 in (Q̃, T̂) implies q0

∗−−→
(z)

q0 in

(Q̃, T̂2)). Conversely, if (Q̃, T̂2) verifies ∀z ∈ Z, q0
∗−−→

(z)
q0, let (x, y) be a couple

of integers. We have q0
∗−−→

(y)
q0. This path can be directly applied to (Q̃, T̂) in

which it leads, for some b ∈ Z, to q0
∗−−−→

(b,y)
q0. On top of that, (Q̃, T̂) verifies

∀z ∈ Z, q0
∗−−−→

(z,0)
q0, so we have also: q0

∗−−−−−−→
(−b+x,0)

q0. If we combine this path

to q0
∗−−−→

(b,y)
q0, we obtain a path q0

∗−−−→
(x,y)

q0. It follows that (Q̃, T̂) verifies the

universal reachability property.

So, we just have to check whether (Q̃, T̂2) verifies ∀z ∈ Z, q0
∗−−→

(z)
q0. This is done

with the same techniques as the ones used in steps 2 and 3 on (Q̃, T̃1) (using the
greatest common divisor of the transition costs and the U-turn property). If the
property is verified, the algorithm returns true, otherwise it returns false.

110

Appendix B

Proof of Theorem 2.3.2

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

d∆ + 1

(g, x′, y′)

(s, x, y)

psolobstacles

p
[s]
(0,∆)

p
[g]
(0,−∆)

S(dobs + d∆ + 1)

Fig. B.1: A construction to avoid the obstacles.

Let (Q,T) be a 2-counter machine with finite guards verifying the Four-Vectors
property. Let u = (u1, u2) and v = (v1, v2) be two non-colinear vectors such that for

each q ∈ Q, we have (when we ignore the guards): q
∗−→
u
q, q

∗−−→
−u

q, q
∗−→
v
q, and q

∗−−→
−v

q.

Let us pose ∆ = u2 × v1 − u1 × v2 6= 0. With simple combinations of the previous
relations, we obtain: q

∗−−−→
(0,∆)

q, q
∗−−−−→

(0,−∆)
q, q

∗−−−→
(∆,0)

q, and q
∗−−−−→

(−∆,0)
q. For each state

q ∈ Q, we choose in the graph (Q,T) four finite paths implementing these relations,

and denote them by p
[q]
(0,∆), p

[q]
(0,−∆), p

[q]
(∆,0), p

[q]
(−∆,0).

For d ∈ N, we denote by S(d) the set of positions (v1, v2) ∈ Z2 such that |v1| ≤
d∧|v2| ≤ d. Since the obstacles are finite, there exists an integer dobs such that S(dobs)
contains all the obstacles.

Besides, there exists d∆ ∈ N such that for all q ∈ Q, the paths p
[q]
(0,∆), p

[q]
(0,−∆),

p
[q]
(∆,0), and p

[q]
(−∆,0), starting from configuration (q, 0, 0), are all entirely contained in

S(d∆).

With these definitions, we are ready to prove the following lemma:

Lemma B.0.1. Let (g, x′, y′) be a configuration to reach from a configuration (s, x, y),
such that both (x′, y′) and (x, y) are outside S(dobs + d∆ + 1). In these conditions,

111

(g, x′, y′) is reachable from (s, x, y) in the environment with the obstacles if and only
if it is also reachable from (s, x, y) in the free environment.

Of course, if (g, x′, y′) is reachable from (s, x, y) in the environment with the ob-
stacles, it is also reachable from (s, x, y) in the free environment.

The demonstration of the other implication uses a construction illustrated on

Fig. B.1: from (s, x, y), among p
[s]
(0,∆), p

[s]
(0,−∆), p

[s]
(∆,0), and p

[s]
(−∆,0), there is at most

one path which, repeated, would lead to an obstacle. The same is true for (g, x′, y′)
even if we apply the paths backwards. Thus, there exist two corresponding paths (say

p
[s]
(0,∆) and p

[g]
(0,−∆), without loss of generality) which can be repeated endlessly from

both configurations (backwards for p
[g]
(0,−∆)), without ever leading to a collision with

the obstacles. If there exists a path psol from (s, x, y) to (g, x′, y′) in the free environ-
ment, then in the environment with obstacles, we can first “go far from the obstacles”,

repeating p
[s]
(0,∆) from (s, x, y), then apply psol without any collision, and then come

back with p
[g]
(0,−∆), until ultimately reaching (g, x′, y′) without any collision along the

whole path. This concludes the demonstration of Lemma B.0.1.

Now we can use Lemma B.0.1 to finish the proof of Theorem 2.3.2. We demonstrate
the decidability in the 4 following cases:

1. If (s, x, y) and (g, x′, y′) are both outside S(dobs + d∆ + 1), then Lemma B.0.1
applies and we just have to check the reachability in the free environment, which
has been shown decidable (∈ NP, Theorem 2.2.1).

2. If (s, x, y) ∈ S(dobs + d∆ + 1) and (g, x′, y′) 6∈ S(dobs + d∆ + 1), then if psol is a
path going from (s, x, y) to (g, x′, y′), there must be a first configuration (q, a, b)
outside S(dobs + d∆ + 1) in psol. Since there is a finite number of transitions,
their “length” is bounded, and there is only a finite number of candidates for
such a configuration (q, a, b). Besides, the path from (s, x, y) to (q, a, b) contains
only one configuration outside S(dobs + d∆ + 1). Since S(dobs + d∆ + 1) contains
(2 × (dobs + d∆ + 1) + 1)2 positions, there are (2 × (dobs + d∆ + 1) + 1)2 × |Q|
possible configurations in it (where |Q| is the number of states), and thus a path
of size at least (2× (dobs + d∆ + 1) + 1)2× |Q|+ 1 necessarily passes through the
same configuration twice, and therefore its size can be reduced. It implies that
we can search for paths from (s, x, y) to a candidate configurations (q, a, b) with
an upper bound on the paths lengths: (2× (dobs+d∆ + 1) + 1)2×|Q|+ 2. Hence,
the total number of paths to consider is finite, and for each reachable candidate
(q, a, b), we can check if there is a path leading to (g, x′, y′) without considering
the obstacles, since both configurations are outside S(dobs + d∆ + 1).

3. If (s, x, y) 6∈ S(dobs + d∆ + 1) and (g, x′, y′) ∈ S(dobs + d∆ + 1), we can reverse
all transitions in (Q,T), and come down to case 2, considering the reachability
of (s, x, y) from (g, x′, y′).

4. If (s, x, y) ∈ S(dobs + d∆ + 1) and (g, x′, y′) ∈ S(dobs + d∆ + 1), either the path
between (s, x, y) and (g, x′, y′) stays inside S(dobs+d∆+1) and we need to consider
only paths of length at most (2 × (dobs + d∆ + 1) + 1)2 × |Q| + 1, or there is a
first configuration outside S(dobs + d∆ + 1): (q1, a1, b1), and a last configuration
outside S(dobs + d∆ + 1): (q2, a2, b2). Using similar arguments as in cases 2 and
3, there are only a finite number of candidates for such configurations, and we

112

B – Proof of Theorem 2.3.2

can check the reachability of (q1, a1, b1) from (s, x, y) as well as the reachability
of (g, x′, y′) from (q2, a2, b2) with paths of bounded lengths. The reachability of
(q2, a2, b2) from (q1, a1, b1) comes down to case 1.

113

Appendix C

Proof of Theorem 2.3.3

q>

(0, 0)

h

q (x, y)

(2x, 2y)

q′

(−a′,−b′)

(x, y)

(q′)>

(0, 0)

h>

(−a′′,−b′′)

h

(a′, b′)

q q′

(a′′, b′′)

h

(−a,−b)

h>

(0, 0)

(a, b)

q

q>
(0, 0)

Fig. C.1: Combinations of paths to obtain h
∗−−−−→

(2x,2y)
h

Let (Q,T) be a strongly connected 2-counter machine with at least two non-colinear
transitions, and verifying the U-turn property.
Let (q, x, y, q′) and (p, z, t, p′) be two non-colinear transitions, i.e. such that (x, y)
and (z, t) are not colinear. For any h ∈ Q, since (Q,T) is strongly connected, we

have for some (a, b) ∈ Z2, h
∗−−−→

(a,b)
q, and therefore, h

∗−−−−−−→
(a+x,b+y)

q′. We have also for

some (a′, b′) ∈ Z2, q′
∗−−−→

(a′,b′)
q (because (Q,T) is strongly connected). So we have also

q′
∗−−−−−−−→

(a′+x,b′+y)
q′. We can combine that to q′

∗−−−→
(0,0)

(q′)> and (q′)>
∗−−−−−−→

(−a′,−b′)
(q)> in

order to obtain: q′
∗−−−→

(x,y)
q. Hence, h

∗−−−−−−−−→
(a+2x,b+2y)

q.

Now we show q
∗−−−−−→

(−a,−b)
h. Since (Q,T) is strongly connected, we have again for

some (a′′, b′′) ∈ Z2, q
∗−−−−→

(a′′,b′′)
h. Using h>

∗−−−−−→
(−a,−b)

q> after a U-turn from h, we get:

h
∗−−−−−→

(−a,−b)
q>. Since we have also q>

∗−−−−−−→
(−a′′,−b′′)

h>, we can combine the three paths

and a U-turn to obtain q
∗−−−−−→

(−a,−b)
h.

114

C – Proof of Theorem 2.3.3

We combine q
∗−−−−−→

(−a,−b)
h to h

∗−−−−−−−−→
(a+2x,b+2y)

q, which finally leads to:

h
∗−−−−→

(2x,2y)
h

Fig. C.1 sums up the combinations used to obtain h
∗−−−−→

(2x,2y)
h.

Using the U-turn property, we easily obtain also:

h
∗−−−−−−→

(−2x,−2y)
h

With the same reasoning, but this time based on the transition (p, z, t, p′), we
obtain:

h
∗−−−−→

(2z,2t)
h

and
h

∗−−−−−−→
(−2z,−2t)

h

Since (2x, 2y) and (2z, 2t) are not colinear, it concludes the demonstration.

115

Appendix D

NP-hardness of a 2D discrete
shortest path problem

Let us recall the input of our problem: an initial position S ∈ Z2, a goal G ∈ Z2, and
a list of disjoint polygons whose vertices are in Z2, the total number of vertices being
n. The question is: considering the point robot described on Fig. 2.8 (it can jump in
the 4 main directions, with jumps of length 1, 2, 3 or 4), what is the minimum number
of jumps necessary to go from S to G while avoiding the obstacles?

To show that this problem is NP-hard, we reduce 3-SAT to it, and although we
will also have to introduce radically different techniques, we mainly follow some of the
key ideas of the proof in [Canny and Reif, 1987] where the 3D Euclidean shortest path
problem is shown NP-hard.

Let us describe an instance of the 3-SAT problem: we have k variables v1, . . . , vk,
and denote all the literals (ie. variables or their negation) by l1, . . . , l2k, with li = vi
for i ≤ k and lk+i = ¬vi. There are K clauses, each clause being the disjunction of 3
literals. Thus, we can write the whole formula as follows:

K∧
i=1

(lpi ∨ lqi ∨ lri),

and the question is: is there an assignment of the variables that evaluates this boolean
formula to 1? We will now construct an instance of our problem which, if solved, gives
an answer to this question.

Let us first introduce an operation of path splitting. In [Canny and Reif, 1987],
the technique of path splitting is used to double the number of shortest path classes
with only a constant number of obstacles. In our case, we do not reason on shortest
path classes but on single shortest paths, and a similar path splitting tool cannot be
obtained. Nevertheless we can create an exponential number of points at the same
distance from the source with only a polynomial number of obstacles. As in the rest
of the proof, a formal description of our gadgets would be very tedious, so we will
highly rely on figures to convey the main ideas of the demonstration which is easier to
“visualize” than to formally describe. We first illustrate our path splitting operation
with Fig. D.1 which shows in broad outline how to easily obtain points that are at the
same “distance” (in number of jumps) from the source, but with a large number of
obstacles. The goal is to create somehow a tree of paths, and one important property
is that for 2k “output paths” there are only k strata of obstacles, and on each stratum,
the obstacles are regularly spaced, i.e. their organization is periodic. We denote by

116

D – NP-hardness of a 2D discrete shortest path problem

Fig. D.1: The global structure of a path splitter.

Fig. D.2: The obstacles for a stratum of path splitting.

(f, e) this periodicity: an obstacle of length f , then no obstacles for e columns, then
an obstacle of length f , etc. On Fig. D.2, we show how one stratum can actually be
obtained with 4 obstacles of 4 vertices each. Of course f and e can be changed at
will, and using this construction for each stratum of the tree structure of Fig. D.1, we
can obtain 2k points at the same distance from the source with a number of obstacles
polynomial in k. In fact, we modify the structure a bit in order to obtain 2k groups
of 3 points, as shown on Fig. D.3. These points correspond to shortest paths of same
length, and for all the other points on the same horizontal line, at least one additional
jump is required to reach them from S. Here we do not specify the distance between
two consecutive groups or two consecutive points in the same group, but it should be
quite large, and the distance between two consecutive groups must be a multiple of
the distance between two consecutive points in the same group.

So, this operation of path splitting is represented by the symbol of Fig. D.3, and
if we use the same construction upside down, we obtain a “path merger” that we put
just above the goal G. This gives 3× 2k columns that will be of prime importance in
the rest of the demontration.

In fact, to each group of 3 columns corresponds an assignment of the variables
vi. To get it we simply number the groups (from 0 to 2k − 1), and each assignment
follows the binary encoding of its group: vi takes the value 0 if the i-th bit is 0, and 1
otherwise. The 3-SAT formula has clauses with exactly 3 literals, and in each group
the columns correspond to the first, second and third literal of a clause.

Here is an outline of the proof:

• We will consider the clauses one by one and for each clause, we will “filter” groups
of columns, i.e. add some “delay” relatively to a “reference” (the meaning of these

117

Fig. D.3: 3× 2k columns between S and G.

terms will become clearer as the demonstration goes on), with the following rule:
columns are delayed if and only if they belong to a group whose assignment does
not satisfy the clause.

• We will repeat this filtering sequentially, and in the end, there will exist a group
of columns that has never been delayed if and only if the whole 3-SAT formula is
satisfiable. For such columns the length ref of the shortest path (in number of
jumps) from S to G can be computed, and what follows is that the satisfiability
of the 3-SAT formula will be equivalent to the existence of a path of at most ref
jumps going from S to G.

We now start explaining the proof in more details by illustrating the principles of
“delaying” and “filtering”. On Fig. D.4, there are five columns; on each column, the
objective of the point robot is to go down as fast as it can, and thus if possible to
perform jumps of length 4. What we call reference is somehow a maximum speed: it
corresponds to the jumps performed by a point robot that came from S onto a virtual
column which is unaffected by specific obstacles (i.e. this virtual column only “meets”
the obstacles that affect all columns). This reference is also what we call “delay 0”.
On top of Fig. D.4, all the columns are assumed to be at delay 0. But because of the
obstacles, the delay is increased on the second and fourth column. Indeed, when trying
to follow the reference, just before the obstacle the point robot is obliged to make a
smaller jump. On the example of Fig. D.4 a jump of length 3 has to be made, which
sets the delay to +1. Then, a global obstacle that does not affect the reference further
increases this delay, and it becomes +4 on columns 2 and 4.

A remark on delays: since the reference corresponds to jumps of length 4, delays
cannot be deliberately reduced, but they can be deliberately increased by making
smaller jumps. Thus, although we will keep the notations +1, +2, +3, etc., refering to
minimum delays, a more accurate way to describe them would be to use the notations
≥ 1, ≥ 2, ≥ 3, etc.

The difficulty will be to delay a large number of columns with only a constant
number of obstacles. To show how this is done, we start with the first clause: lp1 ∨
lq1 ∨ lr1 . We will 3 “filters”, one for each literal. With the first filter, our objective is to
delay the columns whose assignment does not evaluate lp to true (e.g. if lp is ¬vi, we

118

D – NP-hardness of a 2D discrete shortest path problem

Fig. D.4: Adding delay with obstacles: an example.

want to delay the columns whose number has the i-th bit equal to 1). However, since
we are dealing with the first literal of the clause we want to only affect the first column
of each group. So, as a preliminary operation we somehow separate these columns
from the other ones with the construction illustrated on Fig. D.5. It uses only one
very large but thin obstacle which sets the delay on the first column of each group to
+2. To put this obstacle at the right position, it is necessary to know where the jumps
of the reference are, but this is something we can always keep track of. While Fig. D.5
shows the details, Fig. D.6 represents the same construction on a wider scale.

So, the first column of each group has now a delay of (at least) +2. Then we filter all
the columns belonging to a group whose assignment does not evaluate lp1 to true. The
details of the construction are shown on Fig. D.7, and a more schematic view for two
distinct examples is shown on Fig. D.8: by adapting the periodicity of the obstacles
with values f and e, we can decide which groups are filtered. This corresponds to
the “literal filtering” operation in [Canny and Reif, 1987]. As shown on Fig. D.7,
the construction uses 4 obstacles of 4 vertices each, and has a very specific effect on
delays. After the obstacle of Fig. D.6, there are two types of columns: the ones with
delay 0, and the ones with delay +2. For the columns whose assignment evaluates
lp1 to true, the delay is unchanged. Otherwise, we can verify that the construction of
Fig. D.7 increases the delay by either 1 or 2. The construction of Fig. D.7 might seem
unnecessarily complicated, but it is actually one of the key gadgets of the proof, and a
similar “literal filtering” could not be obtained if, for example, the point robot could
only make jumps of length 3 or less. So, after this “literal filtering”:

• for each group whose assignment evaluates lp1 to true, the first column has delay
+2,

• for each group whose assignment evaluates lp1 to true, the second and third

119

Fig. D.5: Delaying the first column of each group.

Fig. D.6: Delaying the first column of each group: representation on a wider scale.

120

D – NP-hardness of a 2D discrete shortest path problem

Fig. D.7: Detail of the obstacles used for literal filtering.

Fig. D.8: Adapting e and f for literal filtering: two examples.

Fig. D.9: The symbol for literal filtering.

121

Fig. D.10: By repeating this construction twice, the lowest delay becomes the delay of
all three columns.

column have delay 0,

• for each group whose assignment evaluates lp1 to false, the second and third
column have delay +1 or +2,

• for each group whose assignment evaluates lp1 to false, the first column has delay
+3 or +4,

We notice that only the first columns of the groups whose assignment evaluates lp1 to
false have a delay of at least +3. With an obstacle similar to the one at the bottom of
Fig. D.4, it is easy to make the delays 0 and +1 become +2 (it will also make delays
+4 become +6). After this obstacle, all the columns have a delay of at least +2, and
this defines a new reference (so delay +2 becomes delay 0). Thus after this obstacle
we have the following:

• for each group whose assignment evaluates lp1 to false, the first column has a
delay of at least +1,

• all the other columns have delay 0.

We managed to do what we aimed for: only the first columns of groups whose assign-
ment evaluates lp1 to false have been delayed. Using again an obstacle similar to the
one at the bottom of Fig. D.4, we increase this delay to at least +4. We sum up all
this literal filtering process with the symbol shown on Fig. D.9.

Once the filtering of lp1 on the set of first columns is done, we use similar construc-
tions to do the filtering of lq1 on the set of second columns, and then lr1 on the set of
third columns. After this, in any group, there exists a column of delay 0 if and only if

122

D – NP-hardness of a 2D discrete shortest path problem

Fig. D.11: Levelling the delays of all groups of columns.

Fig. D.12: The symbol for the “delay levelling” operation.

the clause lp1 ∨ lq1 ∨ lr1 is verified by the group assignment. What we do next is that
we use some merging and splitting so that in each group, the lowest delay becomes
the delay of all three columns. We call this “levelling the delays”, and it is done by
repeating twice the construction shown on Fig.D.10.

Fig. D.11 illustrates this operation on a wider scale, and to simplify, we will just
represent it with circles, as shown on Fig. D.12. What follows is that if we repeat the
literal filtering and this process for all the clauses, in the end there exists a column
of delay 0 if and only if the 3-SAT formula

∧K
i=1(lpi ∨ lqi ∨ lri) is satisfiable. The

whole construction is summed up on Fig. D.13, and this concludes the demonstration,
because if we denote by ref the reference number of jumps that would be necessary to
go from S to G with delay 0 (and ref can be effectively calculated), then the 3-SAT
formula is satisfiable if and only if the solution to our shortest path problem is equal
to ref (in number of jumps). Besides, it is easy to verify that firstly, the total number
of vertices is polynomial in k and K, and secondly, the space needed for the whole
construction is exponential in k and K and thus the encoding of all the input points
(obstacle vertices, S and G) is polynomial in k and K. As a consequence, our 2D
discrete shortest path problem is NP-hard.

The NP-hardness of this problem raises a few natural questions. First, we could

123

Fig. D.13: The whole construction that reduces 3-SAT to our 2D discrete shortest
path problem.

124

D – NP-hardness of a 2D discrete shortest path problem

wonder whether its decision version (i.e. we add a number b to the input, and the
question becomes: can we go from S to G with less than b jumps?) is NP-complete.
Of course, it is not the case because certificates (paths) can be exponentially large.
However, if we denote the jumps by ↓1, ↓2, ↓3, ↓4, ↑1, ↑2, . . . , →4 (the subscript is the
length of the jump), then the sequence ↓4←1↓4←1↓4←1↓4←1↓4←1↓4↓4→2 could also
be written (↓4←1)5(↓4)2 →2. With this notation, some exponentially large sequences
of jumps can be described with a polynomial encoding. Before trying to obtain some
NP-completeness result, an interesting question would be: is there a polynomial P
such that, if n is the total number of vertices of the environment, one can always find
a shortest path (if one exists) described in the above fashion with at most P (n) bits?

We let this question open, as well as the following question: if we restrict the
jumping capabilities even further, allowing only unit jumps, is the discrete shortest
path problem still NP-hard?

125

Appendix E

Bounds for α1 and α2: proof of
inequalities (4.46) and (4.47)

Fig. E.1 illustrates the first phase of the leg motion, where the correct hip joint -
ankle joint axis is set. It shows several equalities and inequalities. First, α being
the angle between ~L and ~L + ~∆L (α ∈ [0, π]), κ, the displacement undergone by the
ankle after the two first rotations, is such that κ = 2l sin(λ/2)· 2 sin(α/2). Then, since
2l sin(λ/2)· sin(α) is the distance between the initial position of the ankle joint and the
axis defined by ~L+ ~∆L, we have: 2l sin(λ/2)· sin(α) ≤ ‖ ~∆L‖. Furthermore, if γ denotes
the angle between the vertical axis ν and ~∆L, then the distance between the interme-
diate axis and the final position of the ankle joint is equal to 2l sin(λ/2) cos γ· sinα2

(α2 ∈ [0, π]), and it is necessarily less than than κ, thus:

2l sin(λ/2) cos γ· sinα2 ≤ 2l sin(λ/2)· 2 sin(α/2) (E.1)

cos γ· sinα2 ≤ 2 sin(α/2) (E.2)

Assuming 2 sin(α/2)
cos γ ≤ 1 and α2 ∈ [0, π2] (since we have γ < π/3, these two assumptions

hold when ‖ ~∆L‖ is relatively small):

α2 ≤ arcsin

(
2 sin(α/2)

cos γ

)
(E.3)

|2 sin(α2/2)| ≤ 2 sin

(
1

2
arcsin

(
2 sin(α/2)

cos γ

))
(E.4)

As it can be seen on the view from the side (Fig. E.1), κ1, the displacement un-
dergone by the ankle joint through the first rotation of angle α1 (with α1 ∈ [0, π]), is
equal to 2l sin(λ/2)· 2 sin(α1/2), and it can be shown that it is also less than κ (this
can be seen on the view from the front: the intermediate position of the ankle joint is,
on the blue dashed circle, the closest point to the inital position of the ankle joint), so
we have:

2l sin(λ/2)· 2 sin(α1/2) ≤ 2l sin(λ/2)· 2 sin(α/2) (E.5)

|2 sin(α1/2)| ≤ 2 sin(α/2) (E.6)

From the inequality 2l sin(λ/2)· sin(α) ≤ ‖ ~∆L‖, and assuming α ∈ [0, π2], we deduce:

α ≤ arcsin

(
‖ ~∆L‖

2l sin(λmin2)

)
= αmax (E.7)

126

E – Bounds for α1 and α2: proof of inequalities (4.46) and (4.47)

α1

First axis of rotation (hip pitch)
Second axis of rotation (orthogonal to the first one

and horizontal)

κ1

View from the side

knee

α2

α1

ν

γ

α

κ

2l sin(λ
2
)

~∆L
~F

View from the front

α2

2l sin(λ
2
) cos γ

Fig. E.1: The two first rotations, to obtain the correct hip joint - ankle joint axis.
Here “front” means that we watch the leg so that the hip, knee and ankle are aligned;
the “view from the side” is orthogonal to the view from the front.

And from the equations (E.4) and (E.6) it follows (assuming 2 sin(αmax/2)
cos γmax

≤ 1):

|2 sin(α2/2)| ≤ 2 sin

(
1

2
arcsin

(
2 sin(αmax/2)

cos γmax

))
(E.8)

|2 sin(α1/2)| ≤ 2 sin(αmax/2) (E.9)

127

Appendix F

Bound for β: proof of inequality
(4.48)

During the second phase of the motion of the leg, pitch rotations are used to put the
ankle joint at the correct position (see Fig. F.1). Typically, this sliding motion is the
one that produces the largest displacements, by potentially moving the knee much
more than the ankle. The positive or negative angle β (variation of the hip pitch) is
such that:

2l sin

(
λ

2
+ β

)
= 2l sin(

λ

2
) + δ (F.1)

λ
2 + β stays in the range [λmin2 , λmax2] ⊂ (0, π2), and therefore we have:

λ

2
+ β = arcsin

(
sin

(
λ

2

)
+
δ

2l

)
(F.2)

It follows:

β =

∫ sin(λ/2)+δ/(2l)

sin(λ/2)

dt√
1− t2

(F.3)

We know: sin(λ2) + δ
2l ∈ [λmin2 , λmax2], and |δ| ≤ ‖ ~∆L‖, so since x 7→ 1√

1−t2 is an

increasing function, we can deduce:

|β| ≤
∫ sin(λmax/2)

sin(λmax/2)−‖ ~∆L‖/(2l)

dt√
1− t2

(F.4)

Assuming sin
(
λmax

2

)
≥ ‖ ~∆L‖2l − 1 (true when ‖ ~∆L‖ is relatively small), we obtain:

|β| ≤ λmax
2
− arcsin

(
sin

(
λmax

2

)
− ‖

~∆L‖
2l

)
︸ ︷︷ ︸

≤π

= βmax (F.5)

It implies: |2 sin(|β|/2)| ≤ 2 sin(βmax/2).

128

F – Bound for β: proof of inequality (4.48)

β

δ

2lsin(λ2)

β

δ

λ

~F

l

λ

λ+ 2β

Fig. F.1: Sliding the ankle along the hip joint - ankle joint axis.

129

Appendix G

Bound for δθ: proof of inequality
(4.49)

After the second phase of the motion of the leg, the ankle is at the correct position and
~F is still unchanged, so what remains to be done is the modification of θ. To modify
θ, we rotate the leg about the axis defined by ~L+ ~∆L, and use the ankle pitch to keep
the foot horizontal. Applying a rotation of angle δθ about this axis will not necessarily
modify the foot yaw by δθ. As shown on Fig. G.1, let us consider the horizontal frame
(~n1, ~n2) attached to the ankle joint, and such that ~n1 has the same yaw as ~L + ~∆L.
We also call P the plane containing the ankle joint and orthogonal to ~L+ ~∆L. During
a rotation of angle δθ about the axis defined by ~L + ~∆L, the transformation applied
to the foot can be decomposed into: 1) an orthogonal projection of ~F on the plane
P, then 2) a rotation of angle δθ about this axis, and finally 3) a projection along the
direction defined by ~L+ ~∆L onto the horizontal frame (~n1, ~n2), followed by a resizing.

If we denote by ~n′1 the orthogonal projection of ~n1 on P, and if ~F = x· ~n1 + y· ~n2,

then its projection on P is x· cos γ· ~n′1 + y· ~n2. Then, if we take (~n′1, ~n2) as a basis
of the plane P, after the rotation of angle δθ, the vector obtained has the following
coordinates:(

cos δθ − sin δθ
sin δθ cos δθ

)(
cos γ·x
y

)
=

(
cos γ· cos δθ − sin δθ
cos γ· sin δθ cos δθ

)(
x
y

)
(G.1)

And after the projection back onto the plane generated by (~n1, ~n2), the vector ~F ′ =
x′· ~n1 + y′· ~n2 will be obtained, with x′ and y′ such that:(

x′

y′

)
=

(1
cos γ 0

0 1

)(
cos γ· cos δθ − sin δθ
cos γ· sin δθ cos δθ

)(
x
y

)
(G.2)

(
x′

y′

)
=

(
cos δθ − sin δθ

cos γ

cos γ· sin δθ cos δθ

)(
x
y

)
=

(
cos δθ − sin δθ
sin δθ cos δθ

)(
x
y

)
+

sin δθ·
(

0 1− 1
cos γ

cos γ − 1 0

)(
x
y

) (G.3)

After the resizing, the new value of ~F will be
~F ′

‖ ~F ′‖
. Let us call ~Fδθ the result of the

rotation of ~F by angle δθ in the frame (~n1, ~n2). From the equation (G.3) we deduce

130

G – Bound for δθ: proof of inequality (4.49)

ν

plane P

γ

View from the side:

ankle joint

hip joint knee joint

~n1~n2

~n′1

View from above:

~n2

~n1

~F

Fig. G.1: The frame (~n1, ~n2).

~Fδθ
~u

ankle joint

~n2

~n1

|δθ|

~F

Fig. G.2: Finding an upper bound of the angle between ~F and ~Fδθ.

131

that ~F ′ = ~Fδθ + ~u, with:

‖~u‖ ≤ | sin δθ|·max

(
|1− 1

cos γ
|, | cos γ − 1|

)
(G.4)

‖~u‖ ≤ | sin δθ|·max

(
|1− 1

cos γ
|, | cos γ|· |1− 1

cos γ
|
)

(G.5)

‖~u‖ ≤ | sin δθ|· |1− (cos γ)−1| (G.6)

Since γ < π
3 , cos γ > 1

2 , and thus 0 ≤ (cos γ)−1 − 1 < 1, so ‖~u‖ < 1. As a result (see

Fig. G.2) the angle between ~Fδθ and ~F ′ is at most:

arcsin
(
| sin δθ|·

(
(cos γ)−1 − 1

))
(G.7)

Since arcsin is convex on [0, 1], we can also deduce that this value is bounded by(
(cos γ)−1 − 1

)
· arcsin(sin |δθ|), and therefore also by:(

(cos γ)−1 − 1
)
· |δθ| (G.8)

It follows that, in order to obtain a rotation of angle ∆θ in the frame (~n1, ~n2), the
rotation about the axis defined by ~L+ ~∆L must be of angle δθ such that:

|δθ −∆θ| ≤ ((cos γmax)−1 − 1)· |δθ| (G.9)

And, as a result:

|δθ| ≤ cos γmax
2 cos γmax − 1

· |∆θ| (G.10)

Assuming cos γmax
2 cos γmax−1 · |∆θ| ≤ π (true for ∆θ relatively small):

|2 sin(|δθ|/2)| ≤ 2 sin

(
cos γmax

4 cos γmax − 2
· |∆θ|

)
(G.11)

132

Bibliography

Alami, R., Krishna, K. M., and Siméon, T. (2007). Provably safe motion strategies
for mobile robots in dynamic domains. In Autonomous Navigation in Dynamic
Environments, volume 35 of Springer Tracts in Advanced Robotics, pages 85–106.
Springer Berlin / Heidelberg.

Alami, R., Laumond, J.-P., and Siméon, T. (1994). Two manipulation planning algo-
rithms. 1st Workshop on the Algorithmic Foundations of Robotics (WAFR’94).

Asano, T., Kirkpatrick, D., and Yap, C. K. (1996). d1-optimal motion for a rod. In
12th Symp. on Computational Geometry, SCG ’96, pages 252–263. ACM.

Ayaz, Y., Munawar, K., Malik, M. B., Konno, A., and Uchiyama, M. (2006). Human-
like approach to footstep planning among obstacles for humanoid robots. In
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS’06).

Bardin, S., Finkel, A., Leroux, J., and Petrucci, L. (2003). Fast: Fast accelera-
tion of symbolic transition systems. In Int. Conf. on Computer Aided Verification
(CAV’03), pages 118–121. LNCS 2725, Springer-Verlag.

Barraquand, J. and Latombe, J.-C. (1993). Nonholonomic multibody mobile robots:
Controllability and motion planning in the presence of obstacles. Algorithmica,
10(2):121–155.

Baudouin, L., Perrin, N., Moulard, T., Lamiraux, F., Stasse, O., and Yoshida,
E. (2011). Real-time replanning using 3D environment for humanoid robot. In
IEEE/RAS Int. Conf. on Humanoid Robots (Humanoids’11).

Beatty, M. F. (1986). Principles of Engineering Mechanics: Kinematics. Plenum
Press.

Benallegue, M., Escande, A., Miossec, S., and Kheddar, A. (2009). Fast c1 proximity
queries using support mapping of sphere-torus-patches bounding volumes. In IEEE
Int. Conf. on Robotics and Automation (ICRA’09), pages 483–488.

Boichut, Y., Héam, P.-C., and Kouchnarenko, O. (2009). How to tackle integer
weighted automata positivity. In 3rd Int. Workshop on Reachability Problems
(RP’09), pages 79–92.

Boissonnat, J.-D., Devillers, O., Donati, L., and Preparata, F. P. (1992). Motion plan-
ning for spider robots. In IEEE Int. Conf. on Robotics and Automation (ICRA’92),
pages 2321–2326.

133

Bibliography

Bourgeot, J.-M., Cislo, N., and Espiau, B. (2002). Path-planning and tracking in a 3d
complex environment for an anthropomorphic biped robot. In IEEE Int. Conf. on
Intelligent Robots and Systems (IROS’02), volume 3, pages 2509–2514.

Byl, K., Shkolnik, A., Prentice, S., Roy, N., and Tedrake, R. (2009). Reliable dynamic
motions for a stiff quadruped. In Experimental Robotics, volume 54 of Springer
Tracts in Advanced Robotics, pages 319–328. Springer Berlin / Heidelberg.

Canny, J. and Reif, J. H. (1987). Lower bounds for shortest path and related problems.
In 28th IEEE Symp. on Foundations of Computer Science (SFCS’87), pages 49–60.

Chestnutt, J. (2007). Navigation Planning for Legged Robots. PhD thesis, Carnegie
Mellon University.

Chestnutt, J. and Kuffner, J. J. (2004). A tiered planning strategy for biped navigation.
In IEEE/RAS Int. Conf. on Humanoid Robots (Humanoids ’04), pages 422–436.

Chestnutt, J., Kuffner, J. J., Nishiwaki, K., and Kagami, S. (2003). Planning biped
navigation strategies in complex environments. In IEEE/RAS Int. Conf. on Hu-
manoid Robots (Humanoids’03).

Chestnutt, J., Lau, M., Cheung, G., Kuffner, J. J., Hodgins, J., and Kanade, T. (2005).
Footstep planning for the honda asimo humanoid. In IEEE Int. Conf. on Robotics
and Automation (ICRA’05), pages 631–636.

Chestnutt, J., Michel, P., Nishiwaki, K., Kuffner, J. J., and Kagami, S. (2006). An
intelligent joystick for biped control. In IEEE Int. Conf. on Robotics and Automation
(ICRA’06), pages 860–865.

Chestnutt, J., Nishiwaki, K., Kuffner, J. J., and Kagami, S. (2007). An adaptive action
model for legged navigation planning. In IEEE/RAS Int. Conf. on Humanoid Robots
(Humanoids’07), pages 196–202.

Chestnutt, J., Takaoka, Y., Suga, K., Nishiwaki, K., Kuffner, J. J., and Kagami,
S. (2009). Biped navigation in rough environments using on-board sensing. In
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS’09).

Clarkson, K., Kapoor, S., and Vaidya, P. (1987). Rectilinear shortest paths through
polygonal obstacles in o(n(logn)2) time. In 3rd Symp. on Computational Geometry
(SCG’87), pages 251–257.

Comon, H. and Jurski, Y. (1998). Multiple counters automata, safety analysis and
presburger arithmetic. In Int. Conf. on Computer Aided Verification (CAV’98),
pages 268–279. Springer.

Dalibard, S., El Khoury, A., Lamiraux, F., Taix, M., and Laumond, J.-P. (2011).
Small-time controllability of a walking humanoid robot. In IEEE/RAS Int. Conf.
on Humanoid Robots (Humanoids’11).

de Berg, M., van Kreveld, M., Overmars, M. H., and Schwarzkopf, O. (2000). Com-
putational Geometry: Algorithms and Applications. Springer-Verlag.

El Khoury, A., Taix, M., and Lamiraux, F. (2011). Path Optimization for Humanoid
Walk Planning: an Efficient Approach. In Int. Conf. on Informatics in Control,
Automation and Robotics (ICINCO’11).

134

Bibliography

Elmogy, M., Habel, C., and Zhang, J. (2009). Online motion planning for hoap-2
humanoid robot navigation. In IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems (IROS’09).

Ferré, E. and Laumond, J.-P. (2004). An iterative diffusion algorithm for part disas-
sembly. In IEEE Int. Conf. on Robotics and Automation (ICRA’04).

Finkel, A. and Sangnier, A. (2010). Mixing coverability and reachability to analyze
vass with one zero-test. In 36th Conf. on Current Trends in Theory and Practice of
Computer Science (SOFSEM’10), pages 394–406.

Fischer, M. J. and Rabin, M. O. (1974). Super-exponential complexity of presburger
arithmetic. Technical report, Massachusetts Institute of Technology.

Frisken, S. F., Perry, R. N., Rockwood, A. P., and Jones, T. R. (2000). Adaptively
sampled distance fields: a general representation of shape for computer graphics.
In Int. Conf. on Computer Graphics and Interactive Techniques (SIGGRAPH’00),
pages 249–254.

Garey, M. R. and Johnson, D. S. (1990). Computers and Intractability; A Guide to
the Theory of NP-Completeness. W. H. Freeman & Co.

Geraerts, R. and Overmars, M. H. (2002). A comparative study of probabilistic
roadmap planners. In 5th Workshop on the Algorithmic Foundations of Robotics
(WAFR’02).

Gonzalez, J. P. and Likhachev, M. (2011). Search-based planning with provable subop-
timality bounds for continuous state spaces. In 4th Symp. on Combinatorial Search
(SOCS’11).

Goswami, A. (1999). Postural stability of biped robots and the foot-rotation indicator
(FRI) point. Int. Journal of Robotics Research, 18:523–533.

Greibach, S. A. (1978). Remarks on blind and partially blind one-way multicounter
machines. Theor. Comput. Sci., 7(3):311–324.

Gutmann, J.-S., Fukuchi, M., and Fujita, M. (2005). Real-time path planning for
humanoid robot navigation. In Int. Joint Conf. on Artificial Intelligence (IJCAI05),
pages 1232–1237.

Hachisuka, T., Jarosz, W., Weistroffer, R., Dale, K., Humphreys, G., Zwicker, M., and
wann Jensen, H. (2008). Multidimensional adaptive sampling and reconstruction
for ray tracing. In Int. Conf. on Computer Graphics and Interactive Techniques
(SIGGRAPH’08), pages 1–10, New York, NY, USA. ACM.

Halava, V. and Harju, T. (1998). Undecidability in integer weighted finite automata.
Fundamenta Informaticae, 38(1-2):189–200.

Halava, V. and Harju, T. (1999). Languages accepted by integer weighted finite au-
tomata. In Jewels are Forever, Contributions on Theoretical Computer Science in
Honor of Arto Salomaa, pages 123–134. Springer-Verlag.

Harada, K. (2010). Motion planning for a humanoid robot based on a biped walk-
ing pattern generator. In Motion Planning for Humanoid Robots, pages 192–197.
Springer.

135

Bibliography

Harada, K., Kajita, S., Kaneko, K., and Hirukawa, H. (2006). An analytical method
for real-time gait planning for humanoid robots. Int. Journal of Humanoid Robotics,
3(1):1–19.

Hardwick, P. and Stout, Q. F. (1998). Flexible algorithms for creating and analyzing
adaptive sampling procedures. In Developments and Applications in Experimental
Design, IMS Lec. Notes – Monograph Series 34, pages 91–105.

Hasegawa, T., Nakagawa, K., and Murakami, K. (2003). Collision-free path planning
of a telerobotic manipulator based on swept volume of teleoperated manipulator. In
5th IEEE Int. Symp. on Assembly and Task Planning.

Hauser, K. (2008). Motion Planning for Legged Humanoid Robots. PhD thesis, Stanford
University.

Hayet, J.-B., Esteves, C., Arechavaleta, G., and Yoshida, E. (2009). Motion planning
for a vigilant humanoid robot. In Proceedings of 9th IEEE-RAS International Conf.
on Humanoid Robots, pages 196–201.

Herdt, A., Perrin, N., and Wieber, P.-B. (2010). Walking without thinking about it.
In IEEE Int. Conf. on Intelligent Robots and Systems (IROS’10), pages 190–195.

Himmelstein, J. C., Ferre, E., and Laumond, J.-P. (2009). Swept volume approximation
of polygon soups. IEEE Trans. on Automation Science and Engineering, 7(1):177–
183.

Hopcroft, J. E., Motwani, R., and Ullman, J. D. (2006). Introduction to Automata
Theory, Languages, and Computation (3rd Edition). Addison-Wesley Longman Pub-
lishing Co., Inc.

Hopcroft, J. E. and Pansiot, J. (1976). On the reachability problem for 5-dimensional
vector addition systems. Technical report, Cornell University.

Jaillet, L. and Siméon, T. (2006). Path deformation roadmaps. In 7th Workshop on
the Algorithmic Foundations of Robotics (WAFR’06).

Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., and Yokoi, K. (2003).
Biped walking pattern generation by using preview control of zero-moment point.
In IEEE Int. Conf. on Robotics and Automation (ICRA’03), pages 1620–1626.

Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Yokoi, K., and Hirukawa, H. (2002).
A realtime pattern generator for biped walking. In IEEE Int. Conf. on Robotics and
Automation (ICRA’02), pages 31–37, Washington, USA.

Kajita, S. and Tani, K. (1991). Study of dynamic biped locomotion on rugged terrain
–derivation and application of the linear inverted pendulum mode–. In IEEE Int.
Conf. on Robotics and Automation (ICRA’91), volume 2, pages 1405–1411.

Kalakrishnan, M., Buchli, J., Pastor, P., Mistry, M., and Schaal, S. (2010). Fast, robust
quadruped locomotion over challenging terrain. In IEEE Int. Conf. on Robotics and
Automation (ICRA’10), pages 2665–2670.

Kallmann, M. and Mataric, M. (2004). Motion planning using dynamic roadmaps. In
IEEE Int. Conf. on Robotics and Automation (ICRA’04), New Orleans, Louisiana.

136

Bibliography

Kambites, M. (2006). Word problems recognisable by deterministic blind monoid
automata. Theor. Comput. Sci., 362(1):232–237.

Kanoun, O., Laumond, J.-P., and Yoshida, E. (2011). Planning foot placements for a
humanoid robot: A problem of inverse kinematics. Int. Journal of Robotics Research,
30(4):476–485.

Kanoun, O., Yoshida, E., and Laumond, J.-P. (2009). An optimization formulation for
footsteps planning. In IEEE/RAS Int. Conf. on Humanoid Robots (Humanoids’09).

Karaman, S. and Frazzoli, E. (2010). Incremental sampling-based algorithms for opti-
mal motion planning. In Robotics Science and Systems VI.

Karp, R. M. and Miller, R. E. (1969). Parallel program schemata. Journal of Computer
and System Sciences, 3(2):147–195.

Kavraki, L. E., Svestka, P., Latombe, J.-C., and Overmars, M. H. (1996). Probabilistic
roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans.
on Robotics and Automation, 12:566–580.

Kim, Y. J., Varadhan, G., Lin, M. C., and Manocha, D. (2003). Fast swept volume
approximation of complex polyhedral models. In 8th ACM Symp. on Solid Modeling
and Applications, pages 11–22.

Kuffner, J. J. and Lavalle, S. (2000). RRT-Connect: An efficient approach to single-
query path planning. In IEEE Int. Conf. on Robotics and Automation (ICRA’00),
pages 995–1001.

Kuffner, J. J., Nishiwaki, K., Kagami, S., Inaba, M., and Inoue, H. (2001). Footstep
planning among obstacles for biped robots. In IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems (IROS’01), pages 500–505.

Kuffner, J. J., Nishiwaki, K., Kagami, S., Kuniyoshi, Y., Inaba, M., and Inoue, H.
(2002). Self-collision detection and prevention for humanoid robots. In IEEE Int.
Conf. on Robotics and Automation (ICRA’02), pages 2265–2270, Washington, USA.

Kuffner, J. J., Nishiwaki, K., Kagami, S., Kuniyoshi, Y., Inaba, M., and Inoue, H.
(2003). Online footstep planning for humanoid robots. In IEEE Int. Conf. on
Robotics and Automation (ICRA’03).

Lamiraux, F., Bonnafous, D., and Lefebvre, O. (2004). Reactive path deformation for
nonholonomic mobile robots. IEEE Trans. on Robotics, 20(6):967–977.

Laroussinie, F., Markey, N., and Schnoebelen, P. (2004). Model checking timed au-
tomata with one or two clocks. In 15th Int. Conf. on Concurrency Theory (CON-
CUR’04), pages 387–401.

Larsen, E., Gottschalk, S., Lin, M. C., and Manocha, D. (2000). Fast proximity
queries with swept sphere volumes. In IEEE Int. Conf. on Robotics and Automation
(ICRA’00), pages 3719–3726.

Laumond, J.-P. (1986). Feasible trajectories for mobile robots with kinematic and
environment constraints. In Int. Conf. on Intelligent Autonomous Systems, pages
346–354.

137

Bibliography

Lauterbach, C., Mo, Q., and Manocha, D. (2010). gProximity: Hierarchical GPU-
based operations for collision and distance queries. Comput. Graph. Forum, pages
419–428.

LaValle, S. M. and Kuffner, J. J. (2000). Rapidly-exploring random trees: Progress and
prospects. In 4th Workshop on the Algorithmic Foundations of Robotics (WAFR’00),
pages 293–308.

Leroux, J. (2009). The general vector addition system reachability problem by
presburger inductive invariants. In IEEE Symp. on Logic in Computer Science
(LICS’09), pages 4–13.

Leven, P. and Hutchinson, S. (2000). Toward real-time path planning in changing en-
vironments. 4th Workshop on the Algorithmic Foundations of Robotics (WAFR’00).

Mansard, N. and Chaumette, F. (2007). Task Sequencing for Sensor-Based Control.
IEEE Trans. on Robotics, 23(1):60–72.

Mansard, N., Stasse, O., Evrard, P., and Kheddar, A. (2009). A versatile generalized
inverted kinematics implementation for collaborative working humanoid robots: The
stack of tasks. In Int. Conf. on Advanced Robotics (ICAR’09)., pages 1–6.

Mirtich, B. (1998). V-clip: fast and robust polyhedral collision detection. ACM Trans.
on Graphics (TOG), 17(3):177–208.

Mitrana, V. and Stiebe, R. (1997). The accepting power of finite automata over groups.
In New trends in formal languages, pages 39–48. Springer.

Mitrana, V. and Stiebe, R. (2001). Extended finite automata over groups. Discrete
Appl. Math., 108(3):287–300.

Moenning, C. and Dodgson, N. A. (2003). Fast marching farthest point sampling for
point clouds and implicit surfaces. Technical report.

Morisawa, M., Harada, K., Kajita, S., Nakaoka, S., Fujiwara, K., Kanehiro, F., Kaneko,
K., and Hirukawa, H. (2007). Experimentation of humanoid walking allowing im-
mediate modification of foot place based on analytical solution. In IEEE Int. Conf.
on Robotics and Automation (ICRA’07), pages 3989–3994.

Nakamura, Y. and Hanafusa, H. (1987). Optimal redundancy control of robot manip-
ulators. Int. Journal of Robotics Research, 6(1):32–42.

Nakhaei, A. and Lamiraux, F. (2008). Motion planning for humanoid robots in envi-
ronments modeled by vision. In IEEE-RAS Int. Conf. on Humanoid Robots (Hu-
manoids’08), Daejeon, Korea.

Nishiwaki, K. and Kagami, S. (2010). Strategies for adjusting the zmp reference trajec-
tory for maintaining balance in humanoid walking. In IEEE Int. Conf. on Robotics
and Automation (ICRA’10), pages 4230–4236.

Nishiwaki, K., Nagasaka, K., Inaba, M., and Inoue, H. (1999). Generation of reactive
stepping motion for a humanoid by dynamically stable mixture of pre-designed mo-
tions. In 1999 IEEE International Conference on Systems, Man, and Cybernetics,
pages 902 – 907 vol.1.

138

Bibliography

Nishiwaki, K., Sugihara, T., Kagami, S., Inaba, M., and Inoue, H. (2001). Online
mixture and connection of basic motions for humanoid walking control by footprint
specification. In Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE
International Conference on, volume 4, pages 4110 – 4115 vol.4.

Nykänen, M. and Ukkonen, E. (1999). Finding paths with the right cost. In 16th Conf.
on Theoretical Aspects of Computer Science (STACS’99), pages 345–355.

O’Kane, J. and LaValle, S. (2004). Sampling-based methods for discrete planning. In
Doctoral Consortium of the Int. Conf. on Automated Planning and Scheduling.

OMPL (2010). The Open Motion Planning Library. http://ompl.kavrakilab.org.

Pan, J., Lauterbach, C., and Manocha, D. (2010). g-Planner: Real-time motion plan-
ning and global navigation using GPUs. In 24th AAAI Conf. on Artificial Intelli-
gence.

Papadimitriou, C. H. (1985). An algorithm for shortest-path motion in three dimen-
sions. Information Processing Letters, 20(5):259–263.

Parikh, R. J. (1966). On context-free languages. Journal of the ACM, 13(4):570–581.

Perrin, N., Stasse, O., Baudouin, L., Lamiraux, F., and Yoshida, E. (2011a). Fast
humanoid robot collision-free footstep planning using swept volume approximations.
IEEE Trans. on Robotics, 27(5).

Perrin, N., Stasse, O., Lamiraux, F., Evrard, P., and Kheddar, A. (2009). On the
problem of online footsteps correction for humanoid robots. In 27th Conf. of the
Robotics Society of Japan.

Perrin, N., Stasse, O., Lamiraux, F., and Yoshida, E. (2010a). Adaptive sampling-
based approximation of the sign of multivariate real-valued functions. Technical re-
port. Available at http://hal.archives-ouvertes.fr/docs/00/54/48/91/PDF/

approx.pdf.

Perrin, N., Stasse, O., Lamiraux, F., and Yoshida, E. (2010b). Approximation of
feasibility tests for reactive walk on HRP-2. In IEEE Int. Conf. on Robotics and
Automation (ICRA’10), pages 4243–4248.

Perrin, N., Stasse, O., Lamiraux, F., and Yoshida, E. (2011b). A biped walking pattern
generator based on ”half-steps” for dimensionality reduction. In IEEE Int. Conf. on
Robotics and Automation (ICRA’11), pages 1270–1275.

Perrin, N., Stasse, O., Lamiraux, F., and Yoshida, E. (2011c). Weakly collision-free
paths for continuous humanoid footstep planning. In IEEE Int. Conf. on Intelligent
Robots and Systems (IROS’11), pages 4408–4413.

Pignon, P., Laumond, J.-P., and Hasegawa, T. (1993). Structuration de l’espace pour
la planification hiérarchique des trajectoires d’un robot mobile. Revue d’Intelligence
Artificielle, 7(4):431–449.

Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T. (1992). Numer-
ical Recipes in C: The Art of Scientific Computing.

139

Bibliography

Reif, J. H. and Wang, H. (1998). The complexity of the two dimensional curvature-
constrained shortest-path problem. In 3rd Int. Workshop on the Algorithmic Foun-
dations of Robotics (WAFR’98), pages 49–57, Natick, MA, USA.

Reinhardt, K. (2008). Reachability in petri nets with inhibitor arcs. Electronic Notes
in Theor. Comput. Sci., 223:239–264.

Render, E. and Kambites, M. (2009). Rational subsets of polycyclic monoids and
valence automata. Information and Computation, 207(11):1329–1339.

Rybina, T. and Voronkov, A. (2002). Brain: Backward reachability analysis with inte-
gers. In Algebraic Methodology and Software Technology, pages 489–494. Springer.

Sanchez, G. and Latombe, J.-C. (2001). A single-query bi-directional probabilistic
roadmap planner with lazy collision checking. In Int. Symp. on Robotics Research,
pages 403–417.

Schittkowski, K. (2005). Ql: A fortran code for convex quadratic programming - user’s
guide, version 2.11. Technical report, University of Bayreuth.

Schmidl, H., Walker, N., and Lin, M. C. (2004). CAB: Fast update of OBB trees for
collision detection between articulated bodies. Journal of Graphics Tools, 9:1–9.

Schrijver, A. (1986). Theory of linear and integer programming. John Wiley & Sons,
Inc., New York, NY, USA.

Schürer, R. (2002). Adaptive quasi-monte carlo integration based on miser and vegas.
In 5th Int. Conf. on Monte Carlo and Quasi-Monte Carlo Methods in Scientific
Computing.

Schwartz, J. T., Sharir, M., and Hopcroft, J. E., editors (1986). Planning, geometry,
and complexity of robot motion. Ablex Publishing Corp.

Schwarzer, F., Saha, M., and Latombe, J.-C. (2002). Exact collision checking of robot
paths. In 5th Workshop on the Algorithmic Foundations of Robotics (WAFR’02).

Seidl, H., Schwentick, T., Muscholl, A., and Habermehl, P. (2004). Counting in trees
for free. In Automata, Languages and Programming, LNCS 3142. Springer.

Sellen, J., Choi, J., and Yap, C. K. (1995). Precision-sensitive euclidean shortest path
in 3-space. In 11th ACM Symp. on Computational Geometry, pages 350–359.

Sharir, M. and Schorr, A. (1986). On shortest paths in polyhedral spaces. SIAM
Journal of Computing, 15(1):193–215.

Siciliano, B. and Khatib, O., editors (2008). Springer Handbook of Robotics.

Smola, A. J. and Schölkopf, B. (2004). A tutorial on support vector regression. Statis-
tics and Computing, 14(3):199–222.

Stasse, O., Evrard, P., Perrin, N., Mansard, N., and Kheddar, A. (2009a). Fast
foot prints re-planning and motion generation during walking in physical human-
humanoid interaction. In IEEE/RAS Int. Conf. on Humanoid Robots (Hu-
manoids’09), pages 284–289.

140

Bibliography

Stasse, O., Perrin, N., Wieber, P.-B., Mansard, N., and Lamiraux, F. (2009b). Very
fast decision making for whole body motion generation with humanoid robots. In
IEEE RO-MAN Workshop on Human-Synergy.

Stentz, T. (1994). Optimal and efficient path planning for partially-known environ-
ments. In IEEE Int. Conf. on Robotics and Automation (ICRA’94), pages 3310–
3317.

Stilman, M., Nishiwaki, K., Kagami, S., and Kuffner, J. J. (2006). Planning and exe-
cuting navigation among movable obstacles. In IEEE/RSJ Int. Conf. On Intelligent
Robots and Systems (IROS’06), pages 820–826.

Storer, J. A., Unilwslty, B., and Reif, J. H. (1994). Shortest paths in the plane with
polygonal obstacles. J. ACM, 41:982–1012.

Sucan, I. A. and Kavraki, L. E. (2008). Kinodynamic motion planning by interior-
exterior cell exploration. In 8th Workshop on the Algorithmic Foundations of
Robotics (WAFR’08).

Sugiyama, M., Hachiya, H., Towell, C., and Vijayakumar, S. (2007). Value function
approximation on nonlinear manifolds for robot motor control. In IEEE Int. Conf.
on Robotics and Automation (ICRA’07.

Takubo, T., Tanaka, T., Inoue, K., and Arai, T. (2007). Emergent walking stop using
3-d zmp modification criteria map for humanoid robot. In IEEE Int. Conf. on
Robotics and Automation (ICRA’07), pages 2676–2681.

Tang, M., Kim, Y. J., and Manocha, D. (2010). CCQ: Efficient local planning using
connection collision query. In 9th Workshop on the Algorithmic Foundations of
Robotics (WAFR’10), pages 229–247.

Tate, S. R. (1991). Arithmetic Circuit Complexity and Motion Planning. PhD thesis,
Duke University.

Ting, J.-A., D’Souza, A., Vijayakumar, S., and Schaal, S. (2008). A bayesian approach
to empirical local linearization for robotics. In IEEE/RAS Int. Conf. on Robotics
and Automation (ICRA’08), pages 2860–2865.

Vardi, M. Y. and Wolper, P. (1986). An automata-theoretic approach to automatic
program verification (preliminary report). In IEEE Symp. on Logic in Computer
Science (LICS’86), pages 332–344.

Verma, K. N. and Goubault-Larrecq, J. (2004). Karp-miller trees for a branching
extension of vass. Technical report, Laboratoire Spécification et Vérification.

Vukobratovic, M. and Borovac, B. (2004). Zero-moment point – thirty five years of its
life. Int. Journal of Humanoid Robotics, 1(1):157–173.

Vukobratovic, M. and Juricic, D. (1969). Contribution to the synthesis of biped gait.
IEEE Trans. on Biomedical Engineering, BME-16(1):1 –6.

Xia, Z., Chen, G., Xiong, J., Zhao, Q., and Chen, K. (2009). A random sampling-based
approach to goal-directed footstep planning for humanoid robots. In IEEE/ASME
Int. Conf. on Advanced Intelligent Mechatronics (AIM’09), pages 168–173.

141

Bibliography

Yoshida, E., Belousov, I., Esteves, C., and Laumond, J.-P. (2005). Humanoid mo-
tion planning for dynamic tasks. In IEEE/RAS Int. Conf. on Humanoid Robots
(Humanoids’05), pages 1–6.

Yoshida, E., Esteves, C., Belousov, I., Laumond, J.-P., Sakaguchi, T., and Yokoi,
K. (2008). Planning 3D collision-free dynamic robotic motion through iterative
reshaping. IEEE Trans. on Robotics, 24(5):1186–1198.

Zhang, X., Redon, S., Lee, M., and Kim, Y. J. (2007). Continuous collision detection
for articulated models using taylor models and temporal culling. In Int. Conf. on
Computer Graphics and Interactive Techniques (SIGGRAPH’07).

142

	Contents
	Remerciements
	Chapter 1 : Introduction
	1.1 Overview of thesis
	1.2 Walking robots and footstep planning: a brief history
	1.3 Summary of contributions

	Chapter 2 : Discrete Motion Planning in the Plane
	2.1 From discrete stepping capabilities to 2-counter machines
	2.2 The reachability and universal reachability problemsin a free unbounded environment
	2.2.1 NP-completeness of the reachability problem
	2.2.2 The U-turn property

	2.3 With finitely described obstacles
	2.3.1 A result of undecidability
	2.3.2 An open problem and a result of decidability

	2.4 A NP-hard 2D discrete shortest path problem
	2.5 Conclusion

	Chapter 3 : Offline Precomputations
	3.1 Problem statement
	3.2 Related work
	3.3 Mapping approximation
	3.3.1 How to pick a new leaf-box
	3.3.2 How to get new samples
	3.3.3 How to split the boxes
	3.3.4 How to locally approximate
	3.3.5 Convergence result

	3.4 Reducing the dimensionality of the parameter space
	3.4.1 Unique trajectories from 6 parameters
	3.4.2 From 6 to 4 parameters

	3.5 Experimental results of online footstep correction
	3.5.1 Analysis of the approximation
	3.5.2 Preliminary experiments
	3.5.3 Experiment: steering HRP-2 with a gamepad

	3.6 Conclusion

	Chapter 4 : Walking Pattern Generation
	4.1 Related work
	4.2 A walking pattern generator based on half-steps and a smoothing homotopy
	4.2.1 Producing isolated half-steps
	4.2.2 Smoothing a sequence of half-steps

	4.3 On the sensitivity of the walking pattern generator
	4.3.1 Problem statement
	4.3.2 Sensitivity of the trajectory generation
	4.3.3 Sensitivity of the inverse kinematics of a simple humanoid robot leg
	4.3.4 Global bound
	4.3.5 Numerical estimates and potential applications

	4.4 Conclusion

	Chapter 5 : Discrete Footstep Planning
	5.1 Building the transition model and the swept volume approximations
	5.1.1 The transition model
	5.1.2 The swept volume approximations

	5.2 Footstep planning with a variant of RRT
	5.3 Preliminary experimental results
	5.3.1 The planning phase: RRT vs. A*
	5.3.2 The smoothing phase

	5.4 Real-time replanning experiments
	5.5 Discussion on an extension to continuous transition models
	5.6 Conclusion and future work

	Chapter 6 : Continuous Footstep Planning
	6.1 The preliminary problem of "flea motion planning"
	6.2 A continuous footprint planning problem
	6.3 From a solution to a weakly collision-free path
	6.4 From a weakly collision-free path to a solution
	6.5 Generalization to di�erent stepping capabilities
	6.6 Potential applications
	6.7 Footstep planning with a two-level hybrid bounding box
	6.7.1 Weakly collision-free paths and hybrid bounding box trajectories
	6.7.2 Reduction to a finite sequence of steps
	6.7.3 Smoothing

	6.8 Implementation and simulations
	6.9 Conclusion and future work

	Chapter 7 : Conclusion
	7.1 General contributions
	7.2 Limitations and perspectives

	Appendix A : Proof of Theorem 2.2.2
	Appendix B : Proof of Theorem 2.3.2
	Appendix C : Proof of Theorem 2.3.3
	Appendix D : NP-hardness of a 2D discrete shortest path problem
	Appendix E : Bounds for 1 and 2: proof of inequalities (4.46) and (4.47)
	Appendix F : Bound for : proof of inequality(4.48)
	Appendix G : Bound for : proof of inequality(4.49)
	Bibliography

