604 research outputs found

    New phagotrophic euglenoid species (new genus Decastava; Scytomonas saepesedens; Entosiphon oblongum), Hsp90 introns, and putative euglenoid Hsp90 pre-mRNA insertional editing

    Get PDF
    We describe three new phagotrophic euglenoid species by light microscopy and 18S rDNA and Hsp90 sequencing: Scytomonas saepesedens; Decastava edaphica; Entosiphon oblongum. We studied Scytomonas and Decastava ultrastructure. Scytomonas saepesedens feeds when sessile with actively beating cilium, and has five pellicular strips with flush joints and Calycimonas-like microtubule-supported cytopharynx. Decastava, sister to Keelungia forming new clade Decastavida on 18S rDNA trees, has 10 broad strips with cusp-like joints, not bifurcate ridges like Ploeotia and Serpenomonas (phylogenetically and cytologically distinct genera), and Serpenomonas-like feeding apparatus (8–9 unreinforced microtubule pairs loop from dorsal jaw support to cytostome). Hsp90 and 18S rDNA trees group Scytomonas with Petalomonas and show Entosiphon as the earliest euglenoid branch. Basal euglenoids have rigid longitudinal strips; derived clade Spirocuta has spiral often slideable strips. Decastava Hsp90 genes have introns. Decastava/Entosiphon Hsp90 frameshifts imply insertional RNA editing. Petalomonas is too heterogeneous in pellicle structure for one genus; we retain Scytomonas (sometimes lumped with it) and segregate four former Petalomonas as new genus Biundula with pellicle cross section showing 2–8 smooth undulations and typified by Biundula (=Petalomonas) sphagnophila comb. n. Our taxon-rich site-heterogeneous rDNA trees confirm that Heteronema is excessively heterogeneous; therefore we establish new genus Teloprocta for Heteronema scaphurum

    The Evolutionary Reorganization of Ontogeny and Origin of Multicellularity

    Get PDF
    The formation of morphogenetic mechanisms during emergence of multicellularity is discussed in this article

    A new model for hemoglobin ingestion and transport by the human malaria parasite Plasmodium falciparum.

    Get PDF
    The current model for hemoglobin ingestion and transport by intraerythrocytic Plasmodium falciparum malaria parasites shares similarities with endocytosis. However, the model is largely hypothetical, and the mechanisms responsible for the ingestion and transport of host cell hemoglobin to the lysosome-like food vacuole (FV) of the parasite are poorly understood. Because actin dynamics play key roles in vesicle formation and transport in endocytosis, we used the actin-perturbing agents jasplakinolide and cytochalasin D to investigate the role of parasite actin in hemoglobin ingestion and transport to the FV. In addition, we tested the current hemoglobin trafficking model through extensive analysis of serial thin sections of parasitized erythrocytes (PE) by electron microscopy. We find that actin dynamics play multiple, important roles in the hemoglobin transport pathway, and that hemoglobin delivery to the FV via the cytostomes might be required for parasite survival. Evidence is provided for a new model, in which hemoglobin transport to the FV occurs by a vesicle-independent process

    Marine flora and fauna of the Northeastern United States. Protozoa: Ciliophora

    Get PDF

    A monograph on the protozoa of the large intestine of the horse

    Get PDF

    Morphological and Functional Aspects of Cytoskeleton of Trypanosomatids

    Get PDF
    Trypanosomatidae are protozoans that include monogenetic parasites, such as the Blastocrithidia and Herpetomonas genera, as well as digenetic parasites, such as the Trypanosoma and Leishmania genera. Their life cycles alternate between insect vectors and mammalian hosts. The parasite’s life cycle involves symmetrical division and different transitional developmental stages. In trypanosomatids, the cytoskeleton is composed of subpellicular microtubules organized in a highly ordered array of stable microtubules located beneath the plasma membrane, the paraflagellar rod, which is a lattice-like structure attached alongside the flagellar axoneme and a cytostome-cytopharynx. The complex life cycle, the extremely precise cytoskeletal organization and the single copy structures present in trypanosomatids provide interesting models for cell biology studies. The introduction of molecular biology, FIB/SEM (focused ion beam scanning electron microscopy) and electron microscopy tomography approaches and classical methods, such as negative staining, chemical fixation and ultrafast cryofixation have led to the determination of the three-dimensional (3D) structural organization of the cells. In this chapter, we highlight the recent findings on Trypanosomatidae cytoskeleton emphasizing their structural organization and the functional role of proteins involved in the biogenesis and duplication of cytoskeletal structures. The principal finding of this review is that all approaches listed above enhance our knowledge of trypanosomatids biology showing that cytoskeleton elements are essential to several important events throughout the protozoan life cycle

    An unusual case of disease in pet fish stocks caused by Coleps sp. (Protozoa: Kinetoflagminophorea)

    Get PDF
    In some stocks of fry of 3 aquarium fish species, Schulz's corydoras Corydoras schultzei, tiger barb Barbus tetrazona and black telescope eye goldfish Carassius auratus, 20 to 90 % mortality occurred. The mortality was caused by a ciliate protozoan which did not resemble any of the known fish ectoparasites. The deaths occurred in fry kept in densely populated aquaria. The protozoans were attached to the epithelium with their cytostoma and often covered the body surface in large masses. The protozoan was identified as a Coleps sp., previously known only as a coprophagous species or a predator of protozoans. This is the first report of losses caused by a Coleps sp. in fish fry
    • …
    corecore