38 research outputs found

    From patterned response dependency to structured covariate dependency: categorical-pattern-matching

    Get PDF
    Data generated from a system of interest typically consists of measurements from an ensemble of subjects across multiple response and covariate features, and is naturally represented by one response-matrix against one covariate-matrix. Likely each of these two matrices simultaneously embraces heterogeneous data types: continuous, discrete and categorical. Here a matrix is used as a practical platform to ideally keep hidden dependency among/between subjects and features intact on its lattice. Response and covariate dependency is individually computed and expressed through mutliscale blocks via a newly developed computing paradigm named Data Mechanics. We propose a categorical pattern matching approach to establish causal linkages in a form of information flows from patterned response dependency to structured covariate dependency. The strength of an information flow is evaluated by applying the combinatorial information theory. This unified platform for system knowledge discovery is illustrated through five data sets. In each illustrative case, an information flow is demonstrated as an organization of discovered knowledge loci via emergent visible and readable heterogeneity. This unified approach fundamentally resolves many long standing issues, including statistical modeling, multiple response, renormalization and feature selections, in data analysis, but without involving man-made structures and distribution assumptions. The results reported here enhance the idea that linking patterns of response dependency to structures of covariate dependency is the true philosophical foundation underlying data-driven computing and learning in sciences.Comment: 32 pages, 10 figures, 3 box picture

    On a semiparametric survival model with flexible covariate effect.

    Get PDF
    A semiparametric hazard model with parametrized time but general covariate dependency is formulated and analyzed inside the framework of counting process theory. A profile likelihood principle is introduced for estimation of the parameters: the resulting estimator is n1/2-consistent, asymptotically normal and achieves the semiparametric efficiency bound. An estimation procedure for the nonparametric part is also given and its asymptotic properties are derived. We provide an application to mortality data.

    Parameter Determination of Sensor Stochastic Models under Covariate Dependency

    Get PDF
    The proliferation of (low-cost) sensors provokes new challenges in data fusion. This is related to the correctness of stochastic characterization that is a prerequisite for optimal estimation of parameters from redundant observations. Different (statistical) methods were developed to estimate parameters of complex stochastic models. To cite a few, there is the maximum likelihood approach estimated via the so-called EM algorithm as well as a linear regression approach based on the log-log-representation of a quantity called Allan Variance. Nevertheless, all these methods suffer from various limitations ranging from numerical instability and computational inefficiency to statistical inconsistency. The relative recent approach called Generalized Method of Wavelet Moments (GMWM) that makes a use of the Wavelet Variance (WV) quantity of the error signal was proven to estimate stochastic models of considerable complexity in a numerically stable and statistically consistent manner with good computational efficiency. The situation is more challenging when stochastic errors are dependent on external factors (e.g. temperature, pressure, dynamics). This paper presents the essence of mathematical extension of the GMWM estimator that allows handling such a scenario rigorously by taking the external influences into consideration. We present the model of the multivariate stochastic process that composes firstly of the process of interest (signal of a sensor) and secondly of an explanatory process (e.g. environmental variable), where the latter is believed to have an impact on the stochastic properties of the former. Next, we assume that the input is composed of a real-valued “smooth” function dependent on external influence (values of which are perfectly observed) and a zero-mean process that is itself a sum of several independent latent processes. Then we define the covariate-dependent latent process (e.g. change of variance of white noise or auto-regressive process) as a class of piece-wise covariate-dependent latent time series models described by n-parameters. We propose to estimate the underlying vector parameter of interest using a modified version of the GMWM methodology that considers linear approximation of the dependency between noise parameters and the external influence. The intuition behind the new GMWM estimator is to select the parameter values that match the empirical WV on the data with the theoretical WV (i.e. those generated by the model parameters). We briefly demonstrate the asymptotic properties of the estimated parameter vector as well the consistency of the estimator

    A unifying representation for a class of dependent random measures

    Full text link
    We present a general construction for dependent random measures based on thinning Poisson processes on an augmented space. The framework is not restricted to dependent versions of a specific nonparametric model, but can be applied to all models that can be represented using completely random measures. Several existing dependent random measures can be seen as specific cases of this framework. Interesting properties of the resulting measures are derived and the efficacy of the framework is demonstrated by constructing a covariate-dependent latent feature model and topic model that obtain superior predictive performance

    Diagnostic ultrasound estimates of muscle mass and muscle quality discriminate between women with and without sarcopenia

    Get PDF
    Introduction: Age-related changes in muscle mass and muscle tissue composition contribute to diminished strength in older adults. The objectives of this study are to examine if an assessment method using mobile diagnostic ultrasound augments well-known determinants of lean body mass (LBM) to aid sarcopenia staging, and if a sonographic measure of muscle quality is associated with muscle performance.Methods: Twenty community-dwelling female subjects participated in the study (age = 43.4 ±20.9 years; BMI: 23.8, interquartile range: 8.5). Dual energy X-ray absorptiometry (DXA) and diagnostic ultrasound morphometry were used to estimate LBM. Muscle tissue quality was estimated via the echogenicity using grayscale histogram analysis. Peak force was measured with grip dynamometry and scaled for body size. Bivariate and multiple regression analyses were used to determine the association of the predictor variables with appendicular lean mass (aLM/ht2), and examine the relationship between scaled peak force values and muscle echogenicity. The sarcopenia LBM cut point value of 6.75 kg/m2 determined participant assignment into the Normal LBM and Low LBM subgroups.Results: The selected LBM predictor variables were body mass index (BMI), ultrasound morphometry, and age. Although BMI exhibited a significant positive relationship with aLM/ht2 (adj. R2 = .61, p \u3c .001), the strength of association improved with the addition of ultrasound morphometry and age as predictor variables (adj. R2 = .85, p \u3c .001). Scaled peak force was associated with age and echogenicity (adj. R2 = .53, p \u3c .001), but not LBM. The Low LBM subgroup of women (n = 10) had higher scaled peak force, lower BMI, and lower echogenicity values in comparison to the Normal LBM subgroup (n = 10; p \u3c .05).Conclusions: Diagnostic ultrasound morphometry values are associated with LBM, and improve the BMI predictive model for aLM/ht2 in women. In addition, ultrasound proxy measures of muscle quality are more strongly associated with strength than muscle mass within the study sample

    Diagnostic ultrasound estimates of muscle mass and muscle quality discriminate between women with and without sarcopenia

    Get PDF
    Introduction: Age-related changes in muscle mass and muscle tissue composition contribute to diminished strength in older adults. The objectives of this study are to examine if an assessment method using mobile diagnostic ultrasound augments well-known determinants of lean body mass (LBM) to aid sarcopenia staging, and if a sonographic measure of muscle quality is associated with muscle performance.Methods: Twenty community-dwelling female subjects participated in the study (age = 43.4 ±20.9 years; BMI: 23.8, interquartile range: 8.5). Dual energy X-ray absorptiometry (DXA) and diagnostic ultrasound morphometry were used to estimate LBM. Muscle tissue quality was estimated via the echogenicity using grayscale histogram analysis. Peak force was measured with grip dynamometry and scaled for body size. Bivariate and multiple regression analyses were used to determine the association of the predictor variables with appendicular lean mass (aLM/ht2), and examine the relationship between scaled peak force values and muscle echogenicity. The sarcopenia LBM cut point value of 6.75 kg/m2 determined participant assignment into the Normal LBM and Low LBM subgroups.Results: The selected LBM predictor variables were body mass index (BMI), ultrasound morphometry, and age. Although BMI exhibited a significant positive relationship with aLM/ht2 (adj. R2 = .61, p \u3c .001), the strength of association improved with the addition of ultrasound morphometry and age as predictor variables (adj. R2 = .85, p \u3c .001). Scaled peak force was associated with age and echogenicity (adj. R2 = .53, p \u3c .001), but not LBM. The Low LBM subgroup of women (n = 10) had higher scaled peak force, lower BMI, and lower echogenicity values in comparison to the Normal LBM subgroup (n = 10; p \u3c .05).Conclusions: Diagnostic ultrasound morphometry values are associated with LBM, and improve the BMI predictive model for aLM/ht2 in women. In addition, ultrasound proxy measures of muscle quality are more strongly associated with strength than muscle mass within the study sample

    Detecting multivariate interactions in spatial point patterns with Gibbs models and variable selection

    Get PDF
    We propose a method for detecting significant interactions in very large multivariate spatial point patterns. This methodology develops high dimensional data understanding in the point process setting. The method is based on modelling the patterns using a flexible Gibbs point process model to directly characterise point-to-point interactions at different spatial scales. By using the Gibbs framework significant interactions can also be captured at small scales. Subsequently, the Gibbs point process is fitted using a pseudo-likelihood approximation, and we select significant interactions automatically using the group lasso penalty with this likelihood approximation. Thus we estimate the multivariate interactions stably even in this setting. We demonstrate the feasibility of the method with a simulation study and show its power by applying it to a large and complex rainforest plant population data set of 83 species
    corecore