88,302 research outputs found
Autoregressive conditional root model
In this paper we develop a time series model which allows long-term disequilibriums to have epochs of non-stationarity, giving the impression that long term relationships between economic variables have temporarily broken down, before they endogenously collapse back towards their long term relationship. This autoregressive root model is shown to be ergodic and covariance stationary under some rather general conditions. We study how this model can be estimated and tested, developing appropriate asymptotic theory for this task. Finally we apply the model to assess the purchasing power parity relationship.Cointegration; Equilibrium correction model; GARCH; Hidden Markov model; Likelihood; Regime switching; STAR model; Stochastic break; Stochastic unit root; Switching regression; Real Exchange Rate; PPP; Unit root hypothesis.
A note on the geometric ergodicity of a nonlinear AR–ARCH model
This note studies the geometric ergodicity of nonlinear autoregressive models with conditionally heteroskedastic errors. A nonlinear autoregression of order p (AR(p)) with the conditional variance specified as the conventional linear autoregressive conditional heteroskedasticity model of order q (ARCH(q)) is considered. Conditions under which the Markov chain representation of this nonlinear AR– ARCH model is geometrically ergodic and has moments of known order are provided. The obtained results complement those of Liebscher [Journal of Time Series Analysis, 26 (2005), 669–689] by showing how his approach based on the concept of the joint spectral radius of a set of matrices can be extended to establish geometric ergodicity in nonlinear autoregressions with conventional ARCH(q) errors.Nonlinear Autoregression, Autoregressive Conditional Heteroskedasticity, Nonlinear Time Series Models, Geometric Ergodicity, Mixing, Strict Stationarity, Existence of Moments, Markov Models
Augoregressive Conditional Kurtosis
This paper proposes a new model for autoregressive conditional heteroscedasticity and kurtosis. Via a time-varying degrees of freedom parameter, the conditional variance and conditional kurtosis are permitted to evolve separately. The model uses only the standard Student’s t density and consequently can be estimated simply using maximum likelihood. The method is applied to a set of four daily financial asset return series comprising US and UK stocks and bonds, and significant evidence in favour of the presence of autoregressive conditional kurtosis is observed. Various extensions to the basic model are examined, and show that conditional kurtosis appears to be positively but not significantly related to returns, and that the response of kurtosis to good and bad news is not significantly asymmetric. A multivariate model for conditional heteroscedasticity and conditional kurtosis, which can provide useful information on the co-movements between the higher moments of series, is also proposed.conditional kurtosis, GARCH, fourth moment, fat trails, student's t distribution
Stability of nonlinear AR-GARCH models
This paper studies the stability of nonlinear autoregressive models with conditionally heteroskedastic errors. We consider a nonlinear autoregression of order p (AR(p)) with the conditional variance specified as a nonlinear first order generalized autoregressive conditional heteroskedasticity (GARCH(1,1)) model. Conditions under which the model is stable in the sense that its Markov chain representation is geometrically ergodic are provided. This implies the existence of an initial distribution such that the process is strictly stationary and beta-mixing. Conditions under which the stationary distribution has finite moments are also given. The results cover several nonlinear specifications recently proposed for both the conditional mean and conditional variance.-
Parameter estimation in nonlinear AR–GARCH models
This paper develops an asymptotic estimation theory for nonlinear autoregressive models with conditionally heteroskedastic errors. We consider a general nonlinear autoregression of order p (AR(p)) with the conditional variance specified as a general nonlinear first order generalized autoregressive conditional heteroskedasticity (GARCH(1,1)) model. We do not require the rescaled errors to be independent, but instead only to form a stationary and ergodic martingale difference sequence. Strong consistency and asymptotic normality of the global Gaussian quasi maximum likelihood (QML) estimator are established under conditions comparable to those recently used in the corresponding linear case. To the best of our knowledge, this paper provides the first results on consistency and asymptotic normality of the QML estimator in nonlinear autoregressive models with GARCH errors.Nonlinear Autoregression, Generalized Autoregressive Conditional Heteroskedasticity, Nonlinear Time Series Models, Quasi-Maximum Likelihood Estimation, Strong Consistency, Asymptotic Normality
A General Framework for Observation Driven Time-Varying Parameter Models
We propose a new class of observation driven time series models that we refer to as Generalized Autoregressive Score (GAS) models. The driving mechanism of the GAS model is the scaled likelihood score. This provides a unified and consistent framework for introducing time-varying parameters in a wide class of non-linear models. The GAS model encompasses other well-known models such as the generalized autoregressive conditional heteroskedasticity, autoregressive conditional duration, autoregressive conditional intensity and single source of error models. In addition, the GAS specification gives rise to a wide range of new observation driven models. Examples include non-linear regression models with time-varying parameters, observation driven analogues of unobserved components time series models, multivariate point process models with time-varying parameters and pooling restrictions, new models for time-varying copula functions and models for time-varying higher order moments. We study the properties of GAS models and provide several non-trivial examples of their application.dynamic models, time-varying parameters, non-linearity, exponential family, marked point processes, copulas
- …
