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Abstract

This paper studies the stability of nonlinear autoregressive models with conditionally
heteroskedastic errors. We consider a nonlinear autoregression of order p (AR(p)) with the
conditional variance specified as a nonlinear first order generalized autoregressive conditional
heteroskedasticity (GARCH(1,1)) model. Conditions under which the model is stable in
the sense that its Markov chain representation is geometrically ergodic are provided. This
implies the existence of an initial distribution such that the process is strictly stationary
and β–mixing. Conditions under which the stationary distribution has finite moments are
also given. The results cover several nonlinear specifications recently proposed for both the
conditional mean and conditional variance.
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1 Introduction

This paper is concerned with the stability of nonlinear autoregressive models with conditionally
heteroskedastic errors. We consider a nonlinear autoregression of order p (AR(p)) with the
conditional variance specified as a nonlinear first order generalized autoregressive conditional
heteroskedasticity (GARCH(1,1)) model. This time series model can be viewed as a Markov
chain, and our study makes heavy use of the stability theory developed for Markov chains. We
refer the reader to Meyn and Tweedie (1993) for a comprehensive account of the needed Markov
chain theory.

The stability concept employed in the paper is that of geometric ergodicity, or more precisely,
Q–geometric ergodicity as defined by Liebscher (2005). Geometric ergodicity is a useful property,
for it implies the existence of an initial distribution which makes the Markov chain strictly
stationary and β–mixing (or absolutely regular). The Q–geometric ergodicity is even more
useful in that it implies that certain moments of the stationary distribution exist and, moreover,
the β–mixing property also holds for a variety of nonstationary initial distributions. In this paper
we give conditions under which the Markov chain associated with our AR–GARCH model is
Q–geometrically ergodic and has moments of known order. An important consequence of these
results is that usual limit theorems can be applied and, therefore, it becomes possible to develop
a rigorous asymptotic estimation theory for these models.

Results similar to ours have previously been obtained for nonlinear homoskedastic autore-
gressions in Bhattacharya and Lee (1995), An and Huang (1996), An and Chen (1997), and
Lee (1998) among many others. These results have been extended to allow for ARCH, but not
GARCH, type conditional heteroskedasticity by Masry and Tjøstheim (1995), Lu (1998), Cline
and Pu (1998), Cline and Pu (1999), Lu and Jiang (2001), Chen and Chen (2001), Saikko-
nen (2005), and Liebscher (2005). For related results for pure GARCH models, see Carrasco
and Chen (2002), Meitz and Saikkonen (2005), and the references therein. To the best of our
knowledge, this paper provides the first practically applicable stability results for nonlinear
autoregressive models with GARCH errors.

A major difficulty in establishing geometric ergodicity in the present context is to prove
irreducibility and aperiodicity of the relevant Markov chain, which is typically required as a first
step in the proof of geometric ergodicity. This difficulty may actually explain the aforementioned
lack of related previous results and it is also a major reason why we focus on first order GARCH
models. Our approach is to apply results on nonlinear state space models given in Meyn and
Tweedie (1993, Chapter 7). This approach requires rather stringent smoothness assumptions
about the nonlinear functions used to specify the conditional mean and conditional variance and,
consequently, we are not able to handle threshold type nonlinearities characterized by discon-
tinuous functions (see, e.g., Tong (1990) and Chen and Tsay (1993) for models for conditional
mean and Glosten, Jaganathan, and Runkle (1993), and Rabemananjara and Zaköıan (1993)
for GARCH models). However, we are still able to cover a number of nonlinearities recently
considered in both theoretical and applied literature.

A convenient feature of the assumptions needed to obtain our results is that most of them
restrict the conditional mean and conditional variance of the model separately. Only one of
our assumptions is common to both the conditional mean and conditional variance and quite
often this assumption can be straightforwardly checked. In such cases the verification of our
assumptions reduces to separately checking the assumptions of a homoskedastic nonlinear au-
toregressive model and a pure GARCH model. As far as the conditional mean is concerned,
our results apply to smooth variants of the functional-coefficient autoregressive model of Chen
and Tsay (1993) which encompasses various well-known nonlinear autoregressive models such
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as the smooth transition autoregressive models (see Teräsvirta (1994), van Dijk, Teräsvirta, and
Franses (2002), and the references therein). The conditional variance may be specified as the
linear GARCH model of Bollerslev (1986) or even a GARCH model with a rather complicated
smooth nonlinear structure.

The rest of this paper is organized as follows. The model and the assumptions needed are
introduced in Section 2. In Section 3 the main result of the paper is presented, and examples are
provided in Section 4. Section 5 concludes. Proofs of all the results are given in an Appendix.

2 Model and Assumptions

Let yt, t = 1, 2, . . ., be a real valued stochastic process generated by

yt = f (yt−1, . . . , yt−p) + h
1/2
t εt, (1)

where ht is a positive function of ys, s < t, and εt is a sequence of (continuous) i.i.d.(0, 1) random
variables such that εt is independent of {ys, s < t}. The function f is supposed to be nonlin-
ear so that equation (1) defines a nonlinear autoregression with conditionally heteroskedastic
errors. We assume that ht, the conditional variance of yt, is generated by a (possibly) nonlinear
GARCH(1,1) process driven by regression errors. Specifically,

ht = g(ut−1, ht−1), (2)

where g is a function to be described shortly and

ut = yt − f (yt−1, . . . , yt−p) . (3)

From the definition of ut it is readily seen that Zt = [yt · · · yt−p ht]
′ def

= [Y ′
t ht]

′ is a Markov
chain on Z = R

p+1 ×R+ (here and in what follows the notation R+ = (0,∞) is used). To make
the Markov chain representation of Zt explicit, set

h (Zt−1) = g(yt−1 − f (yt−2, . . . , yt−1−p) , ht−1) (4)

and observe that then we can write














yt

yt−1
...

yt−p

ht















=















f (yt−1, . . . , yt−p)
yt−1

...
yt−p

ht (Zt−1)















+















h (Zt−1)
1/2 εt

0
...
0
0















(5)

or, more briefly,
Zt = F (Zt−1, εt) , (6)

where the function F : Z × R → Z is defined in an obvious way.
We set F1 = F and, for k ≥ 1, Fk+1 (z, e1, . . . , ek+1) = F (Fk (z, e1, . . . , ek) , ek+1), where z ∈

R
p+1 and ei ∈ R. Then, for any initial condition Z0 = z0 and any k ≥ 1, Zk = Fk (z0, ε1, . . . , εk).

Following Meyn and Tweedie (1993) we call {ei} a control sequence and zk = Fk (z0, e1, . . . , ek)
(k = 1, 2, . . .) the associated deterministic control model for the nonlinear state space model (6).
Our analysis of the Markov chain Zt makes use of this deterministic control model.

We make the following assumptions about the error term εt and the function f . We call a
function smooth if its (partial) derivatives exist up to any order and are continuous.
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Assumption 1 The i.i.d.(0, 1) random variables εt have a (Lebesgue) density which is positive
and lower semicontinuous on R. Furthermore, for some real r ≥ 1, E

[

ε2r
t

]

<∞.

Assumption 2 The function f is of the form

f (x) = a (x)′ x+ b (x) , x ∈ R
p,

where the functions a : R
p → R

p and b : R
p → R are bounded and smooth.

Assumption 1 is mild and met in most applications where no bounds for the values of the
considered process are assumed. Assumption 2 imposes a certain structure on the nonlinear
function f which specifies the conditional expectation of the process. As mentioned in the intro-
duction, similar structures have previously appeared in the functional-coefficient autoregressive
model of Chen and Tsay (1993) and its special cases such as smooth transition autoregressive
models. For these models the required smoothness assumption is also satisfied. This, as well as
Assumption 1, is needed to make use of the results for nonlinear state space models in Meyn
and Tweedie (1993, Chapter 7). For this reason we also need similar smoothness assumptions
for the function g used to model the conditional variance. These assumptions are satisfied by
several well-known models but, as discussed in the introduction, they rule out threshold type
nonlinearities.

For later purposes it will be convenient to introduce some notation. For any integer p ≥ 2
and x ∈ R

p we define the p× p matrix

Āp (x) =















x1 x2 · · · xp−1 xp

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0















.

Then, using the function a (x) in Assumption 2, set a (x) = [a1 (x) · · · ap (x)]′ and define the
(p+ 1) × (p+ 1) matrix

A (x) = Āp+1

(

[

a (x)′ 0
]′
)

=















a1 (x) a2 (x) · · · ap (x) 0
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0















.

With this notation the model takes the form

Yt = A
(

S′Yt−1

)

Yt−1 + ιb
(

S′Yt−1

)

+ ιh (Zt−1)
1/2 εt

ht = h (Zt−1) ,

where ι = [1 0 · · · 0]′ ((p+ 1) × 1) and S = [Ip : 0]′ ((p+ 1) × p). To be able to establish
geometric ergodicity we need to restrict the matrix A (x). A general way to do this is provided
by the following assumption where A∗ = {A (x) : x ∈ R

p}.

Assumption 3 There exists a matrix norm ‖·‖∗ induced by a vector norm, also denoted by
‖·‖∗, such that ‖A‖∗ ≤ ρ for all A ∈ A∗ and some 0 < ρ < 1.
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To make Assumption 3 operational in practice, two concrete cases are considered. For
the first one we need the concept of the joint spectral radius of a (bounded) set of (square)
matrices. To introduce this concept, let A be a set of bounded square matrices and Ak =
{A1A2 · · ·Ak : Ai ∈ A, i = 1, . . . , k}. Then the joint spectral radius of the set A is defined by

ρ (A) = lim sup
k→∞

(

sup
A∈Ak

‖A‖

)1/k

,

where ‖·‖ can be any matrix norm (the value of ρ (A) does not depend on the choice of this
norm). If the set A only contains a single matrix A then the joint spectral radius of A coincides
with ρ (A), the spectral radius of A. Several useful results about the joint spectral radius are
given in the recent paper by Liebscher (2005) where further references can also be found.

Sufficient conditions for Assumption 3 can now be given.

Lemma 1 Either of the following conditions is sufficient for Assumption 3 to hold.
(i) ρ (A∗) < 1 or, equivalently, ρ (A1) < 1, where A1 = {A1 (x) : x ∈ R

p} with the p × p matrix
A1 (x) defined by deleting the last row and last column of A (x) .
(ii)

∑p
j=1 αj < 1 or, equivalently, the roots of the characteristic polynomial λp −α1λ

p−1 − . . .−
αp = 0 are inside the unit circle, where αj = supx∈Rp |aj (x)| (j = 1, . . . , p).

As already indicated, Assumption 3 is needed to prove the geometric ergodicity of the Markov
chain Zt. A similar assumption based on the concept of joint spectral radius or Lemma 1(i) was
recently used by Liebscher (2005) who established geometric ergodicity for various nonlinear au-
toregressive models. In these models conditional heteroskedasticity was also allowed but only of
a limited nature. In particular, GARCH type or even ARCH type conditional heteroskedasticity
was ruled out. A practical difficulty with the application of Lemma 1(i) is that the computation
of the joint spectral radius is very computer-intensive unless the dimension of the matrix A (x)
is reasonably small (for a discussion, see Liebscher (2005)). In practice one should therefore
consider ρ (A1) rather than ρ (A∗). This computational difficulty has also been a motivation for
the second part of Lemma 1 which gives the condition used by Chen and Tsay (1993) to pro-
vide a sufficient condition for geometric ergodicity in their functional-coefficient autoregressive
model. The main advantage of this latter condition is its simplicity, for Liebscher (2005, Section
7) shows by an example that the condition based on the joint spectral radius can provide a
larger region in the parameter space ensuring geometric ergodicity than the condition given in
Lemma 1(ii).

The following assumption contains conditions which restrict the dynamics of the conditional
variance process.

Assumption 4

(a) The function g : R × R+ → R+ is smooth and, for some g > 0, inf(u,x)∈R×R+
g(u, x) = g.

(b) For all x ∈ R+, g(u, x) → ∞ as u→ ∞.

(c) There exists a real number h∗ ∈ R+ such that the sequence hk (k = 1, 2, . . .) defined by
hk = g(0, hk−1), k = 1, 2, . . ., converges to h∗ as k → ∞ for all h0 ∈ R+. If g(u, x) ≥ h∗

for all u ∈ R and all x ≥ h∗ it suffices that this convergence holds for all h0 ≥ h∗.
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(d) There exist nonnegative real numbers a and c, and a Borel measurable function ϕ : R → R+

such that
g(x1/2εt, x) ≤ (a+ ϕ (εt)) x+ c

for all x ∈ R+. Furthermore, a+ϕ (0) < 1 and E[(a+ ϕ (εt))
r] < 1 where the real number

r ≥ 1 is as in Assumption 1.

As mentioned above, the smoothness condition in Assumption 4(a) is needed to make use
of the results for nonlinear state space models in Meyn and Tweedie (1993, Chapter 7). The
same is true for Assumption 4(c) which is a high level assumption. Sufficient conditions for
this assumption are discussed below. The latter condition in Assumption 4(a) implies that the
conditional variance ht is bounded away from zero, a property shared by most GARCH models.
Assumption (b) is technical and needed in the proofs. It is also satisfied by most commonly
used first order GARCH models. Assumption 4(d) supplements Assumption 3 in that it is
needed to prove the geometric ergodicity of the Markov chain Zt. Assumptions closely related to
Assumption 4(d) have also been used by Lanne and Saikkonen (2005) and Meitz and Saikkonen
(2005).

In Assumption 4(c) the existence of a fixed point h∗ of the function g (0, x) is assumed. A
well-known sufficient condition which implies that a unique fixed point exists and can be found
by the stated recursion is the Lipschitz condition

|g (0, x1) − g (0, x2)| ≤ κ |x1 − x2| for some 0 ≤ κ < 1 and all x1, x2 ∈ R+ (7)

(this follows from the contraction map principle, see for example Simmons (1963, Appendix 1)).
This condition applies to the standard (linear) GARCH(1,1) model and, more generally, when
Assumption 4(d) holds with g(0, x) = (a+ ϕ (0)) x + c. However, when the function g (0, x)
is nonlinear the Lipschitz condition (7) may not hold or it can be difficult to verify. Then the
second condition of Assumption 4(c) may be useful. For instance, in some cases g(u, x) ≥ g(0, x)
for all (u, x) ∈ R × R+ and it suffices that the function g(0, x) is nondecreasing for x ≥ h∗.

The latter condition of Assumption 4(c), that is, g(u, x) ≥ h∗ for all u ∈ R and all x ≥ h∗,
combined with the other conditions of this assumption implies the convergence of the stated
recursion. This can be seen as follows. Note first that from Assumption 4(d) it follows that
g (0, x) ≤ (a+ ϕ (0))x + c ≤ (a+ ϕ (0) + ǫ) x for all x large enough and some ǫ > 0 such that
a+ϕ (0)+ ǫ < 1. From this and Assumption 4(a) it is straightforward to check that the function
g (0, x) has a maximal fixed point h∗ such that g (0, h∗) = h∗ and g (0, x) < x for all x > h∗.
This, together with the latter condition of Assumption 4(c), implies that for any initial value
h0 > h∗ the sequence hk, k ≥ 0, is nonincreasing and bounded from below by h∗. Therefore it
converges to, say, h∗ (≥ h∗) and, because g (0, hk) = hk+1, we also have g (0, hk) → h∗. On the
other hand, by the continuity of g (0, ·), g (0, hk) → g (0, h∗). Thus we must have g (0, h∗) = h∗
and, since h∗ is the maximal fixed point, h∗ = h∗.

Our final assumption concerns the deterministic control model zk = Fk (z0, e1, . . . , ek) (k =
1, 2, . . .) associated with the nonlinear state space model (6) and the concept of forward acces-
sibility (for a definition, see Meyn and Tweedie (1993, p. 151)).

Assumption 5 For each initial value z0 ∈ Z, there exists a control sequence e
(0)
1 , . . . , e

(0)
p+2 such

that the (p+ 2) × (p+ 2) matrix

∇F
(0)
p+2 =

[

∂

∂e1
Fp+2

(

z0, e
(0)
1 , . . . , e

(0)
p+2

)

: · · · :
∂

∂ep+2
Fp+2

(

z0, e
(0)
1 , . . . , e

(0)
p+2

)

]

is nonsingular.

6



By Proposition 7.1.4 of Meyn and Tweedie (1993), this assumption implies that the deter-
ministic control model zk = Fk (z0, e1, . . . , ek) is forward accessible. This property is needed
to apply the results obtained in Chapter 7 of Meyn and Tweedie (1993). Note that although
Assumption 5 is sufficient for forward accessibility it is not necessary, as the aforementioned
proposition of Meyn and Tweedie (1993) shows.

Although Assumption 5 may look difficult to verify in practice that is fortunately not the
case for several commonly used models. To get an idea of the structure of the derivative matrix

∇F
(0)
p+2, denote the components of the vector Fp+2 (z0, e1, . . . , ep+2) briefly by yp+2, . . . , y2 and

hp+2 (cf. equations (5) and the subsequent discussion). Then it is straightforward to check that

∇Fp+2 =























∂yp+2/∂e1 ∂yp+2/∂e2 ∂yp+2/∂e3 · · · ∂yp+2/∂ep+1 h
1/2
p+2

∂yp+1/∂e1 ∂yp+1/∂e2 ∂yp+1/∂e3 · · · h
1/2
p+1 0

...
...

...
...

...
...

...
...

∂y2/∂e1 h
1/2
2 0 · · · 0 0

∂hp+2/∂e1 ∂hp+2/∂e2 ∂hp+2/∂e3 · · · ∂hp+2/∂ep+1 0























,

where h
1/2
i = h (zi−1)

1/2 > 0 (i = 2, . . . , p + 2) and the superscript has been suppressed from

∇F
(0)
p+2 to indicate that the derivatives are evaluated at an arbitrary control sequence. Thus, for

Assumption 5 to hold it suffices to find e
(0)
1 , . . . , e

(0)
p+2 such that, for all initial values, ∂hp+2/∂e1 is

nonzero and ∂hp+2/∂e2, . . . , ∂hp+2/∂ep+1 are zero when evaluated at
[

e
(0)
1 · · · e

(0)
p+2

]′
. As will be

seen in Section 4, this holds for the standard linear GARCH model and even for some nonlinear
GARCH models without any further assumptions. However, for some models, including pure
ARCH models, the situation turns out to be different.

We close this section by noting that a convenient feature of the assumptions imposed on the
conditional mean and conditional variance is that, except for Assumption 5, they are separate.
Specifically, as Lemma 1 shows, Assumptions 2 and 3 restrict only the conditional mean in (1)
and this is done in the same way as in previous models without conditional heteroskedasticity.
On the other hand, Assumption 4 only concerns the GARCH model specified for the error term
in (1) and restricts it by conditions which are very similar to previous counterparts used in
pure GARCH(1,1) models. As for Assumption 5, it concerns both the conditional mean and
conditional variance but, as the examples of Section 4 show, this assumption is often easy to
check by only considering the model specified for conditional heteroskedasticity.

3 Geometric Ergodicity

Under the assumptions stated in the previous section we are able to show that the Markov chain
Zt is geometrically ergodic. We use the Q–geometric ergodicity of a Markov chain introduced by
Liebscher (2005). For convenience, we repeat the definition here in a slightly different, though
equivalent, form. We use Pn(z,A) = Pr (Zn ∈ A | Z0 = z), z ∈ Z, A ∈ B(Z), to signify the
n–step transition probability measure of the Markov chain Zt defined on B(Z), the Borel sets
of Z. (When n = 1 the notation P (z,A) will be used.)

Definition 1 (Liebscher (2005)) The Markov chain Zt on Z is Q–geometrically ergodic if there
exists a function Q : Z → [0,∞], a probability measure π on B(Z), and constants a > 0, b > 0,
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and 0 < ̺ < 1 such that
∫

Z π(dz)Q(z) <∞ and

sup
v:|v|≤1

∣

∣

∣

∣

∫

Z
Pn (z, dw) v(w) −

∫

Z
π(dw)v(w)

∣

∣

∣

∣

≤ (a+ bQ (z)) ̺n for all z ∈ Z and all n ≥ 1.

(8)

Observing that the left hand side of (8) equals the total variation norm of the signed measure
Pn (z, ·) − π (·) shows that our definition of Q–geometric ergodicity is equivalent to that in
Liebscher (2005). Thus, geometric ergodicity entails that the n–step transition probability
measure Pn (z, ·) converges at a geometric rate to the probability measure π(·) with respect to
the total variation norm for all z ∈ Z. The probability measure π is often referred to as the
stationary probability measure of Zt. The reason is that geometric ergodicity implies stationarity
of Zt if the initial value Z0 is distributed according to the probability measure π (see Meyn and
Tweedie (1993, p. 230–231)). Another useful consequence of Q–geometric ergodicity is that it
implies that the Markov chain Zt is β–mixing for any initial value Z0 with a distribution such
that the expectation of Q (Z0) is finite (see Liebscher (2005)). Also, once Q–geometric ergodicity
has been established the finiteness of the expectation

∫

Z π(dw)Q(w) is automatically obtained.
This fact can be used to show that the stationary distribution of Zt has finite moments of some
order.

Note that one should be careful with the term Q–geometric ergodicity because, except for
the prefix Q, another similar concept is in use. This concept is defined by assuming Q ≥ 1 and
replacing the inequality |v| ≤ 1 and the bound a+ bQ (z) in (8) by |v| ≤ Q and Mz, respectively
(see Meyn and Tweedie (1993, p. 356)). This clearly results in a stronger convergence than
assumed in (8). This stronger convergence has also been established in various nonlinear autore-
gressive models and GARCH models (see Meyn and Tweedie (1993), Saikkonen (2005), Lanne
and Saikkonen (2005), and Meitz and Saikkonen (2005)). However, we have found it difficult to
establish it in the present context. Therefore, we use the weaker Q–geometric ergodicity which,
as discussed above, also provides us with useful results.

The standard method to establish Q–geometric ergodicity, as well as its aforementioned
stronger counterpart, is based on the so called drift criterion (see Meyn and Tweedie (1993,
Theorem 15.0.1) or Liebscher (2005)). Before the application of this criterion one needs to show
that the considered Markov chain is irreducible and aperiodic. In many nonlinear autoregressions
of the type (6) this can be done in a fairly straightforward way. That also applies to our model
if the function g in (2) is independent of ht−1 so that the conditional heteroskedasticity is of
pure ARCH type. Then the analysis can be reduced to that of the process Yt which is a Markov
chain and one can employ the ideas in Cline and Pu (1998) and Lu (1998) to show irreducibility
and aperiodicity. However, when the function g also depends on ht−1 we have to consider the
larger Markov chain Zt in which the deterministic dependence of ht on past values of the process
yt through the nonlinear function f makes the analysis complicated and the approach described
in Cline and Pu (1998) and Lu (1998) gets difficult. Similar difficulties occur when one tries
to establish the T–continuity of Zt which, in conjunction with irreducibility and aperiodicity,
implies that compact subsets of Z are small, a fact also pertinent for the application of the drift
criterion (see Theorems 6.2.5(ii) and 5.5.7 of Meyn and Tweedie (1993)).

Due to the aforementioned difficulties we establish the irreducibility, aperiodicity, and T–
continuity of Zt by using the approach described in Chapter 7 of Meyn and Tweedie (1993).
This approach is based on the deterministic control model associated with the nonlinear state
space model (6) and, as already discussed, its application assumes the smoothness conditions
imposed in Assumptions 2 and 4(a). We have the following lemma.
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Lemma 2 If Assumptions 1–4 hold then the Markov chain Zt on Z is an irreducible and ape-
riodic T–chain and, hence, all compact subsets of Z are small. Moreover, the set AN = {z ∈
Z : ‖y‖2r ≤ N,hr (z) ≤ N} is small for any vector norm and for all positive r and N such that
gr < N , where g is as in Assumption 4(a).

Thus, Lemma 1 provides the necessary prerequisites for the application of the drift criterion.
Note that Lemma 1 also shows that certain noncompact subsets of Z are small. Unlike in many
previous cases this result greatly facilitates the application of the drift criterion. This part of
the lemma is based on ideas used by Cline and Pu (1998, Theorem 2.5) who also discuss its
usefulness.

The following theorem presents the main result of the paper. In the proof of this theorem
we apply an m–step ahead drift criterion for a sufficiently large value of m (cf. Theorem 19.1.3
of Meyn and Tweedie (1993)). In most previous cases 1–step ahead versions of this criterion
have sufficed, but in the present model the combination of the assumed nonlinear autoregressive
structure both in the conditional mean and conditional variance seems to make the application
of this more conventional approach difficult. Although the possibility to make use of the m–step
ahead drift criterion in nonlinear autoregressions was already pointed out by Tjøstheim (1990)
it seems that its previous applications have been rather rare and confined to cases where a 1–
step ahead drift criterion would have worked without any difficulty. A new m–step ahead drift
criterion for Q–geometric ergodicity (Lemma 6), potentially of independent interest, is proven
in the Appendix.

Theorem 1 Suppose that Assumptions 1–4 hold, and let ‖·‖ be any vector norm. Then the
Markov chain Zt on Z is Q∗–geometrically ergodic in the sense of Liebscher (2005) with a
function Q∗(z) ≥ 1 + ‖y‖2r + hr(z).

As discussed after Definition 1, Theorem 1 implies that, with appropriate initial distributions,
the process (yt, ht) is β–mixing and that there exists a stationary initial distribution such that yt

and ht have moments of orders 2r and r, respectively (the latter moment result follows because
ht = h (Zt−1)). An important consequence of Theorem 1 is that usual limit theorems apply.
As far as we know, there is no equivalent to this result in the previous literature on nonlinear
autoregressions with GARCH errors.

4 Examples

We shall now consider concrete examples to which Theorem 1 applies. According to what was
said after Assumption 1, it suffices to discuss Assumptions 2–5 of which Assumptions 2 and
3 concern the conditional mean of the model, that is, the function f , whereas Assumption 4
restricts the form of permitted conditional heteroskedasticity. As already indicated, Assumption
5 can often be checked without paying attention to the conditional mean. In such cases it is
only necessary to check conditions imposed on the conditional mean and conditional variance
separately.

4.1 Conditional mean

First consider the conditional mean. A very general specification only assumes that the function
f has the general structure imposed in Assumption 2. In this case, general sufficient condi-
tions for Assumption 3 are obtained from Lemma 1. This approach is relevant for the general
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functional-coefficient autoregressive model of Chen and Tsay (1993). For more concrete exam-
ples, we have to be more specific about the function a in Assumption 2. For instance, suppose
that

f (yt−1, . . . , yt−p) = φ0 + ψ0G(yt−1, . . . , yt−p) +

p
∑

j=1

(φj + ψjG(yt−1, . . . , yt−p))) yt−j, (9)

where φj, ψj ∈ R, j = 0, . . . , p, and G is a smooth function with range [0, 1]. In this case Lemma
1(ii) shows that a sufficient condition for Assumption 3 is

p
∑

j=1

max {|φj | , |φj + ψj|} < 1, (10)

a condition previously obtained by Chen and Tsay (1993, Example 2) for a special choice of the
function G.

To apply Lemma 1(i) to the specification (9), define A1 = Āp((φ1, . . . , φp)
′) and A2 =

Āp((φ1 +ψ1, . . . , φp +ψp)
′). From Theorem 1 and Proposition 5 of Liebscher (2005) we can then

conclude that a sufficient condition for Lemma 1(i), and hence, Assumption 3 is that the joint
spectral radius of the set of two matrices {A1, A2} is smaller than one, or that

ρ ({A1, A2}) < 1. (11)

Liebscher (2005, Section 7) provides a numerical example of this condition with p = 2 and
G(yt−1, . . . , yt−p) = exp

(

−γy2
t−1

)

(γ > 0). This choice of the function G corresponds to the
exponential autoregressive (EXPAR) model introduced by Haggan and Ozaki (1981) and also
studied by Tong (1990, p. 108). In this numerical example condition (11) holds but the simpler
condition (10) is violated. Clearly, the same conclusion is obtained even if the general function
G is assumed.

The EXPAR model discussed above is closely related to the exponential smooth transition
autoregressive (ESTAR) model which, along with other smooth transition autoregressive models,
have been considered by Teräsvirta (1994) and van Dijk, Teräsvirta, and Franses (2002) amongst
others. In the ESTAR case, (9) applies with G(yt−1, . . . , yt−p) = 1−exp

(

−γ(yt−d − c)2
)

whereas
the logistic smooth transition autoregressive (LSTAR) specification is given byG(yt−1, . . . , yt−p) =
(1 + exp (−γ(yt−d − c)))−1 (γ > 0, c ∈ R, 1 ≤ d ≤ p). A generalization of the latter is obtained
by

G(yt−1, . . . , yt−p) =



1 + exp



−γ

k
∏

j=1

(yt−d − cj)









−1

,

where γ and d are as above and c1 < · · · < ck. Of course, conditions (10) and (11) which apply
to the general specification (9) also apply to all these special cases. It may also be noted that,
although our smoothness assumption rules out the possibility that G is an indicator function,
an approximating smooth counterpart such as a logistic function is allowed.

4.2 Conditional variance: GARCH

Now consider the conditional variance. Although the conditions imposed on the function g
in Assumption 4 rule out threshold GARCH models they apply to smooth transition GARCH
models introduced in Hagerud (1996) and González-Rivera (1998), and further discussed in
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Lundbergh and Teräsvirta (2002), Lanne and Saikkonen (2005), and Meitz and Saikkonen (2005).
In one variant of this model the dynamics of the conditional variance process are governed by

ht = g (ut−1, ht−1) = ω + αu2
t−1 + βht−1 + α∗G(ut−1)u

2
t−1, (12)

where G is a smooth function with range [0, 1] and the parameters satisfy ω > 0, α > 0, β > 0,
and α+α∗ > 0. This model reduces to the linear GARCH model of Bollerslev (1986) when α∗ =
0. Again, the possibility thatG is an indicator function is ruled out but an approximating smooth
counterpart is allowed giving a smooth version of the GJR specification of Glosten, Jaganathan,
and Runkle (1993). Checking the validity of Assumption 4 for this model is straightforward.
Assumptions 4(a) and 4(b) clearly hold with the lower bound in the former given by g = ω. For
Assumption 4(d) we choose a = β, ϕ(εt) = max{α,α + α∗}ε2t , and c = ω, giving the moment
condition E[

(

β + max{α,α + α∗}ε2t
)r

] < 1 which reduces to β+max{α,α+α∗} < 1 when r = 1.
Finally, note that g(0, x) = ω + βx so that, because β < 1, the Lipschitz condition (7), and
hence Assumption 4(c), is satisfied.

We shall now demonstrate that Assumption 5 holds for the GARCH model (12). Following

the discussion in Section 2 we consider the last row of the derivative matrix ∇F
(0)
p+2. The needed

derivatives can be straightforwardly obtained from equation (12) and, unless otherwise stated, all

derivatives below are evaluated at e
(0)
2 = · · · = e

(0)
p+2 = 0. First note that ∂hi/∂ej = β∂hi−1/∂ej ,

i = 3, . . . , p+2, j = 1, . . . , i−2, and ∂hi/∂ei−1 = 0, i = 3, . . . , p+2, and thus the last row of the

matrix ∇F
(0)
p+2 becomes

[

∂hp+2/∂e1 0 · · · 0
]

. To obtain ∂hp+2/∂e1 we calculate ∂h2/∂e1
(evaluated at an arbitrary e1) and find that

∂hp+2/∂e1 = 2βph(z0)e1

(

α+ α∗G
(

h(z0)
1/2e1

))

+βpα∗h(z0)
3/2G′

(

h(z0)
1/2e1

)

e21.

For the standard linear GARCH model α∗ = 0 so that, since α > 0 and β > 0 is assumed,
∂hp+2/∂e1 = 2βpαh(z0)e1 is nonzero for any e1 6= 0 whereas ∂hp+2/∂e2, . . . , ∂hp+2/∂ep+1 are
zero. Thus, as discussed in Section 2, Assumption 5 holds. The same conclusion is obtained even
if α∗ 6= 0. In this case ∂hp+2/∂e1 6= 0 may not hold for all e1 6= 0 without further assumptions
on the derivative G′ but it clearly holds for some e1 6= 0, which suffices for Assumption 5.

In an alternative smooth transition GARCH model, suggested by Lanne and Saikkonen
(2005), the conditional heteroskedasticity is specified as

ht = g (ut−1, ht−1) = ω + αu2
t−1 + βht−1 + (ω∗ + β∗ht−1)G(ht−1), (13)

where G is again a smooth function with range [0, 1] and the parameters satisfy ω > 0, α > 0,
β > 0, ω∗ ≥ 0, and β∗ ≥ 0. Again, the validity of Assumptions 4(a) and (b) is clear with g = ω
in the former. For Assumption 4(d), we may choose a = β + β∗, ϕ(εt) = αε2t , and c = ω + ω∗.
This gives the condition E[

(

β + β∗ + αε2t
)r

] < 1 or β + β∗ + α < 1 when r = 1. To verify
Assumption 4(c), the Lipschitz condition (7) appears inconvenient, and the latter part of this
assumption becomes useful. For this model, g(u, x) ≥ g(0, x) for all (u, x) ∈ R × R+. Thus, if
we assume that the function G(x) is nondecreasing the same is true for g(0, x) (x > 0) and it
follows that Assumption 4(c) holds (see the discussion after Assumption 4). That Assumption
5 holds will be discussed below in the context of a related model.

In the preceding model one can also consider the case ω > 0, ω∗ > 0, α > 0, and β = β∗ = 0.
This special case was applied by Lanne and Saikkonen (2005) with the function G (strictly)
increasing. As above, one can check that Assumption 4 holds for this specification with the
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moment condition in part (d) given by E[αrε2r
t ] < 1 or α < 1 when r = 1. More generally,

the assumption that the (increasing) function G is bounded can be relaxed by requiring that
G (x) = o (x) as x → ∞. It suffices to discuss Assumptions 4(c) and (d). Regarding the latter,
one can write

g(x1/2εt, x) = ω + ω∗G (x) + αxε2t

=

(

ω + ω∗G (x)

x
1 (x > M) + αε2t

)

x+ (ω + ω∗G (x)1 (x ≤M)) ,

where 1 (·) signifies the indicator function. Choosing M large enough the last expression can
be bounded from above by

(

ǫ+ αε2t
)

x+ c where 0 < ǫ < 1 is so small that E
[(

ǫ+ αε2t
)r]

< 1
holds whenever E[αrε2r

t ] < 1. Thus, Assumption 4(d) holds. Since g(u, x) ≥ g(0, x) for all
(u, x) ∈ R × R+ also Assumption 4(c) holds.

Now consider Assumption 5 in the preceding model. In the same way as in the standard
GARCH model discussed in the context of model (12), it is straightforward to check that,

when evaluated at e
(0)
2 = · · · = e

(0)
p+2 = 0, ∂hi/∂ej = ω∗G′(hi−1)∂hi−1/∂ej , i = 3, . . . , p + 2,

j = 1, . . . , i − 2, and ∂hi/∂ei−1 = 2αhi−1ei−1, i = 3, . . . , p + 2. Thus, since the function G is

increasing we can choose e1 = e
(0)
1 6= 0 such that ∂hp+2/∂e1 evaluated at e

(0)
1 and e

(0)
2 = · · · =

e
(0)
p+2 = 0 becomes nonzero while ∂hp+2/∂e2 = · · · = ∂hp+2/∂ep+1 = 0. Hence Assumption 5

holds. The same reasoning applies to model (13), for it suffices to consider the (increasing)
function βx+ (ω∗ + β∗x)G(x) in place of ω∗G (x).

4.3 Conditional variance: ARCH

In the preceding cases the verification of Assumption 5 required that the considered GARCH
models do not reduce to pure ARCH models. We shall now demonstrate that Assumption 5
can also be verified when the conditional heteroskedasticity is modeled by a pure ARCH model.
Because in many fields of application pure ARCH models are seldom adequate and, as discussed
in the introduction, stability results for them are already available we shall only consider the
standard ARCH model ht = ω+αu2

t−1 (α > 0) and, for simplicity, assume that p = 1. It suffices
to show that the matrix

D1 =

[

∂y2/∂e1 ∂y2/∂e2
∂h3/∂e1 ∂h3/∂e2

]

is nonsingular when the partial derivatives are evaluated at suitable values of e1 and e2. By
straightforward derivation,

∂y2/∂e1 = h(z0)
1/2f ′

(

f (y0) + h(z0)
1/2e1

)

+ h (z0)h
−1/2
2 αe1e2

∂y2/∂e2 = h
1/2
2

∂h3/∂e1 = 2α2h(z0)e1e
2
2

∂h3/∂e2 = 2αh2e2.

Assuming that e2 is nonzero, we can transform D1 to

D2 =

[

h
1/2
2 h(z0)

1/2f ′
(

f (y0) + h(z0)
1/2e1

)

0
αh(z0)e1e2 1

]

,

a matrix whose rank equals that of D1 (multiply the first row of D1 by h
1/2
2 , divide the second

row and second column by 2αe2 and h2, respectively, and substract the second row from the
first one). Thus, assuming that the function f is not constant, we can find an e1 such that
the element of D2 in the upper left hand corner is nonzero. Then D2, or equivalently, D1 is
nonsingular, and because this can be done for each initial value z0, Assumption 5 holds.
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5 Conclusion

In this paper we have studied a nonlinear autoregressive model of order p with conditionally
heteroskedastic errors specified as a nonlinear GARCH(1,1) model. We gave conditions under
which the Markov chain representation of the model is Q–geometrically ergodic in the sense of
Liebscher (2005) and, hence, β–mixing. Conditions for existence of moments of the stationary
distribution were also obtained. The assumptions needed to obtain these results are convenient
because in most cases they restrict the conditional mean and conditional variance separately. To
the best of our knowledge, these are the first practically applicable stability results for nonlinear
autoregressions with GARCH errors. They are of importance as they open up the way for the
development of rigorous asymptotic estimation theory for these models.

Due to the approach taken to obtain the results of the paper, rather stringent smoothness
assumptions on the permitted nonlinearity were needed, and hence threshold type nonlinear
models could not be covered. It would be of interest to consider alternative approaches in which
such smoothness assumptions would not be required. For simplicity, we also focused on the
leading case of GARCH(1,1) errors and left the extension to the general GARCH(r,s) case for
future work.
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Appendix: Proofs

Proof of Lemma 1. First note that A∗ and A1 are both bounded sets of matrices. That
ρ (A∗) < 1 implies Assumption 3 follows from Theorem 1 of Liebscher (2005). To see that
ρ (A1) < 1 is equivalent to this condition, notice that

A(x1)A(x2) · · ·A(xk) =

[

A1(x1)A1(x2) · · ·A1(xk) 0
ι′pA1(x2)A1(x3) · · ·A1(xk) 0

]

,

where ιp = [0 · · · 0 1 ]′ (p× 1). Thus, the stated equivalence can be established by choosing the
norm in the definition of the joint spectral radius as the maximum of absolute row sums (the
matrix norm induced by the l∞–norm).

To justify the second part of the lemma, use the notation introduced in Section 2 and denote
A = Āp+1((α1, . . . , αp, 0)

′). By direct calculation, the characteristic polynomial of A is (up to
a factor ±1) λ(λp − α1λ

p−1 − . . . − αp). To see the equivalence of the two conditions, denote
f1(λ) = λp − α1λ

p−1 − . . . − αp, f2(λ) = λp − f1(λ), and first suppose that
∑p

j=1 αj < 1. Now
for |λ| ≥ 1, |f1(λ)| ≥ |λ|p − |f2(λ)| ≥ |λ|p (1 −

∑p
j=1 αj) > 0, and hence the roots are inside the

unit circle. On the other hand, if
∑p

j=1 αj ≥ 1, then f1(1) ≤ 0 while f1(λ) → +∞ as λ → +∞
and hence there is a root on or outside the unit circle. Thus under either condition ρ (A) < 1
(cf. Chen and Tsay (1993, Proof of Theorem 1.1)).

Now, using the same argument as in Ling and McAleer (2003, Proof of Lemma A.2) we can
find a (p+ 1)×1 vector κ with positive components such that the components of the row vector
ν ′ = κ′ (Ip+1 −A) are positive and, furthermore, 0 < ν/κ < 1 where ν and κ are the smallest
and largest components of ν and κ, respectively. Next define the vector norm ‖·‖∗ in R

p+1 by
‖y‖∗ =

∑p+1
j=1 κj |yj| = κ′ |y| where |y| = [|y1| . . . |yp+1|]

′. For arbitrary A = A(x) ∈ A∗ and

y ∈ R
p+1, y 6= 0, we have

‖A(x)y‖∗ = κ′ |A(x)y|

≤ κ1

p
∑

j=1

αj |yj | +

p
∑

j=1

κj+1 |yj|

= κ′A |y|

= κ′ |y| − κ′(Ip+1 −A) |y|

= κ′ |y| − ν ′ |y|

= κ′ |y|

(

1 −
ν ′ |y|

κ′ |y|

)

≤ ‖y‖∗
(

1 −
ν

κ

)

,

where 0 < 1 − ν/κ < 1. This shows that the matrix norm induced by ‖·‖∗ satisfies Assumption
3.
Proof of Lemma 2. We consider Zt as a nonlinear state space model and use the results
in Chapter 7 of Meyn and Tweedie (1993) (note that under our assumptions, the conditions
(NSS1)–(NSS3) in Meyn and Tweedie (1993, pp. 32 and 156) are satisfied). For this we need to
show that the deterministic control model associated with Zt is forward accessible and attains
a globally attracting state (for definitions of these concepts, see pp. 155 and 160 of Meyn
and Tweedie (1993), respectively). As discussed in Section 2, forward accessibility follows from
Assumption 5 and Proposition 7.1.4 of Meyn and Tweedie (1993). The existence of a globally
attracting state is shown below in Lemma 3. Thus, from Propositions 7.1.5 and 7.2.5(i), and
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Theorem 7.2.6 of Meyn and Tweedie (1993) we can conclude that the Markov chain Zt is an
irreducible T–chain. Aperiodicity is obtained from Theorems 7.3.3 and 7.3.5(ii) of the same
reference (see also the proof of Proposition 7.4.1) because any cycle of the associated control
model must contain the globally attracting state (in Lemma 3 we also show that there exists a
control sequence such that the deterministic control model converges to the globally attracting
state, and thus the period in Theorem 7.3.3 of ibid. necessarily equals one). That every compact
set is small now follows from Theorems 6.2.5(ii) and 5.5.7 of Meyn and Tweedie (1993). Finally,
in Lemma 4 below it is shown that the set AN is also small.

Thus, the proof of Lemma 2 is completed by the following two lemmas.

Lemma 3 Under Assumptions 1–4 the deterministic control model associated with the Markov
chain Zt attains a globally attracting state.

Proof. For a z∗ ∈ Z to be a globally attracting state for the associated deterministic control
model it suffices to establish that, for any initial value z0 ∈ Z, there exists a control sequence
et such that zt converges to z∗ as t → ∞ (see Meyn and Tweedie (1993, p. 160)). First suppose
that the convergence in Assumption 4(c) holds for all h0 ∈ R+ so that for every z0 ∈ Z, ht → h∗

as t→ ∞.
By Assumption 3 there exist an induced matrix norm ‖·‖∗ and a real number ρ ∈ (0, 1)

such that ‖A‖∗ ≤ ρ for all A ∈ A∗. As in Assumption 3 we also use ‖·‖∗ for the vector norm
corresponding to the matrix norm ‖·‖∗. Because the function b is bounded by assumption we
can find a positive real number c such that ‖ιb (x)‖∗ ≤ c/2 for all x ∈ R

p. Define the compact
set K =

{

y ∈ R
p+1 : ‖y‖∗ ≤ c/ (1 − ρ)

}

and note that the mapping y 7→ A (S′y) y + ιb (S′y)
(

y ∈ R
p+1
)

is continuous. Furthermore, when y ∈ K, the range of this mapping is contained in
K because, for y ∈ K,

∥

∥A
(

S′y
)

y + ιb
(

S′y
)∥

∥

∗
≤

∥

∥A
(

S′y
)∥

∥

∗
‖y‖∗ +

∥

∥ιb
(

S′y
)∥

∥

∗

≤ ρ ‖y‖∗ + c/2

≤ ρc/ (1 − ρ) + c/2

= c (1 + ρ) /2 (1 − ρ)

≤ c/ (1 − ρ) .

Thus, it follows from Schauder’s fixed point theorem (see e.g. Simmons (1963, Appendix 1))
that there exists a state y∗ ∈ K such that y∗ = A (S′y∗) y∗ + ιb (S′y∗).

We shall now demonstrate that, from any z0 ∈ Z, it is possible for the associated control
model to reach a state z∗ whose first p+ 1 components are y∗1, . . . , y

∗
p+1, the components of the

vector y∗, and the last component is h∗. Let z0 = [y′0 h0]
′ ∈ Z where y0 = [y0,1 · · · y0,p+1]

′.
From the first step of the associated control model one then obtains

y1 =
[

a
(

S′y0

)′
: 0
]

y0 + b
(

S′y0

)

+ h (z0)
1/2 e1

h1 = h (z0)

and with e1 = h (z0)
−1/2 (y∗p+1 −

[

a (S′y0)
′ : 0

]

y0 − b (S′y0)
)

we get y1 = y∗p+1. Next, setting

ȳ∗1 =
[

y∗p+1 y0,1 · · · y0,p

]′
and z∗1 = [ȳ∗′1 h1]

′ the second step of the associated control model
gives

y2 =
[

a
(

S′ȳ∗1
)′

: 0
]

ȳ∗1 + b
(

S′ȳ∗1
)

+ h (z∗1)
1/2 e2

h2 = h (z∗1) ,
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which with e2 = h (z∗1)−1/2 (y∗p −
[

a (S′ȳ∗1)
′ : 0

]

ȳ∗1 − b (S′ȳ∗1)
)

yields y2 = y∗p. The next step

is to set ȳ∗2 =
[

y∗p y
∗
p+1 y0,1 · · · y0,p−1

]′
and z∗2 = [ȳ∗′2 h2]

′ and choose e3 = h (z∗2)−1/2 ×
(

y∗p−1 −
[

a (S′ȳ∗2)
′ : 0

]

ȳ∗2 − b (S′ȳ∗2)
)

. This gives y3 = y∗p−1 and z∗3 = [ȳ∗′3 h3]
′ defined in an ob-

vious way. Continuing in this way we reach the state z∗p+1 =
[

y∗1 · · · y∗p+1 h
(

z∗p
)]′

= [y∗′ hp+1]
′

in p+ 1 steps.
Next form z∗t with et = 0, t = p+ 2, p + 3, . . .. Because y∗ = A (S′y∗) y∗ + ιb (S′y∗) the first

p + 1 components of z∗t will be the components of y∗ for all t ≥ p + 2. Thus, z∗t = [y∗′ h∗t ]
′

(t ≥ p+ 2) where the last component satisfies h∗t = g(0, h∗t−1) for t ≥ p+3. Because Assumption
4(c) implies that h∗t → h∗ as t → ∞ we can conclude that z∗ is a globally attracting state for
the associated control model.

Now suppose that the convergence in Assumption 4(c) holds for all h0 ≥ h∗. By Assumption

4(b) we can first choose an e1 such that h2 = g(h
1/2
1 e1, h1) > h∗. As seen above, we can

next choose e2, . . . , ep+2 to reach a state whose first p + 1 components are y∗1, . . . , y
∗
p+1, the

components of the vector y∗. This can be done regardless of the initial value z0. Because

h2 > h∗, the relevant part of Assumption 4(c) implies h3 = g(h
1/2
2 e2, h2) ≥ h∗ and similarly

hk ≥ h∗ for k = 4, . . . , p + 2. Thus, after p + 2 steps we are in a state z∗p+2 =
[

y∗
′

hp+2

]′
and

we continue by forming z∗t with et = 0, t = p+ 3, p + 4, . . .. Then the first p+ 1 components of
z∗t will not change and, because hp+2 ≥ h∗, the last one tends to h∗ as t → ∞. Thus we have
again shown that a globally attracting state exists for the associated control model.

Lemma 4 Under Assumptions 1–4 the set AN = {z ∈ Z : ‖y‖2r ≤ N,hr (z) ≤ N} is small for
any vector norm and for all positive r and N such that gr < N .

Proof. Writing equation (5) as Zt = F0 (Zt−1) + ιh (Zt−1)
1/2 εt we have

E [‖Zt‖ | Zt−1 = z] = E
∥

∥

∥
F0 (z) + ιh (z)1/2 εt

∥

∥

∥

≤ ‖F0 (z)‖ + ‖ι‖h (z)1/2E |εt|

and, since the functions F0 and h are bounded on the set AN , we can find an MN < ∞ such
that

sup
z∈AN

E [‖Zt‖ | Zt−1 = z] < MN . (14)

Now define the set BN = {z ∈ Z : ‖z‖ ≤MN , h ≥ g} (where h is the last component of z). This
set is small because it is compact, as noted above. We have

inf
z∈AN

Pr (Zt ∈ BN | Zt−1 = z) = 1 − sup
z∈AN

Pr (Zt /∈ BN | Zt−1 = z)

≥ 1 − sup
z∈AN

Pr (‖Zt‖ ≥MN | Zt−1 = z)

≥ 1 − sup
z∈AN

E [‖Zt‖ | Zt−1 = z] /MN

> 0.

Here the first inequality is justified by the fact that, for all z, Pr (Zt /∈ BN | Zt−1 = z) =
Pr
(

‖Zt‖ > MN or h(z) < g | Zt−1 = z
)

but h(z) < g is impossible by Assumption 4(a). The
second inequality is Markov’s and the third one is due to (14). That the set AN is small can
now be concluded from Proposition 5.2.4 of Meyn and Tweedie (1993).
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Proof of Theorem 1. First note that, by Lemma 2, Zt is irreducible and aperiodic and the
set AN is small. Let ‖·‖ be any vector norm, and let ‖·‖∗ be an induced matrix norm with
properties described in Assumption 3, i.e., a norm that satisfies ‖A‖∗ ≤ ρ for all A ∈ A∗ and
with ρ ∈ (0, 1). Since all vector norms are equivalent in finite-dimensional real (or complex)
vector spaces, there exists a finite positive constant C such that ‖y‖ ≤ C1/2r‖y‖∗ for all y ∈ R

p+1

(see e.g. Horn and Johnson (1985, Section 5.4)). Denote V∗(z) = 1+C‖y‖∗2r +hr(z). In Lemma
5 the conditional expectation E[V∗(Zt) | Zt−m = z] is examined and it is demonstrated that it
satisfies an m–step ahead drift criterion (for a large m chosen in the proof of the lemma). More
precisely, in this lemma it is shown that condition (19.15) of Meyn and Tweedie (1993) holds
for the function V∗(z) (with the choice n(z) ≡ m). Finally an application of our Lemma 6 below
establishes that Zt is V∗–geometrically ergodic in the sense of Liebscher (2005).

Thus, the following two lemmas complete the proof of Theorem 1.

Lemma 5 Suppose the assumptions of Theorem 1 are satisfied and define the function V∗(z) =
1 + C‖y‖∗2r + hr(z). Then, there exist a small set K, a positive integer m, and positive real
numbers λ < 1 and b such that

E[V∗(Zt) | Zt−m = z] ≤ λ1/2
(

1 + C‖y‖∗2r + hr(z) + 1K (z)
)

. (15)

In other words, the drift condition (19.15) of Theorem 19.1.3 of Meyn and Tweedie (1993) holds
(with the choice n(z) ≡ m).

Proof. First note that, by Hölder’s inequality,
(

n
∑

i=1

xi

)r

≤

n
∑

i=1

xr
i · n

r−1 (16)

for any positive xi, 1 ≤ i ≤ n, n ∈ Z+, and r > 1 (and this trivially holds also for r = 1).
To analyze the conditional expectation in the lemma we first consider the quantity h(Zt−1).

From equations (1), (4), and (5) we obtain h(Zt−m+1) = g(h1/2(Zt−m)εt−m+1, h(Zt−m)), and,
by using Assumption 4(d) with the notation ct−1 = a + ϕ(εt−1), this quantity can be bounded
from above with h(Zt−m)ct−m+1 + c. Therefore we have, for k ≥ 1, and interpreting that an
empty summation equals zero,

h(Zt−m+k) ≤

k
∏

j=1

ct−m+j · h(Zt−m) + c



1 +

k−2
∑

j=0

j
∏

i=0

ct−m+k−i



 .

Using (16) we obtain

(k + 1)1−rhr(Zt−m+k) ≤

k
∏

j=1

crt−m+j · h
r(Zt−m) + cr



1 +

k−2
∑

j=0

j
∏

i=0

crt−m+k−i



 .

By Assumption 4(d), E[crt ] < 1 and we denote this expectation by δ.
Next note that (trivially) E [hr(Zt−m) | Zt−m = z] = hr(z). Furthermore, using the notation

d = cr/(1 − δ) and the independence of the ct’s,

(k + 1)1−rE [hr(Zt−m+k) | Zt−m = z] ≤ hr(z)δk + cr(1 +

k−2
∑

j=0

δj+1)

≤ hr(z)δk + d. (17)

17



In particular, for k = 1, . . . ,m− 1,

E [hr(Zt−m+k) | Zt−m = z] ≤ (k + 1)r−1
(

hr(z)δk + d
)

≤ mr−1hr(z)δk + d′, (18)

where d′ = mr−1d.
Now consider Yt which we wish to express in terms of past values of the process Zt until t−m.

Recall that ‖·‖∗ and ρ are as in Assumption 3. Repeated substitution and usual properties of
vector and matrix norms yield

‖Yt‖
∗ ≤

m−1
∏

j=0

‖A(S′Yt−1−j)‖
∗‖Yt−m‖∗ + ‖ιb

(

S′Yt−1

)

‖∗

+
m−2
∑

j=0

j
∏

i=0

‖A
(

S′Yt−1−i

)

‖∗‖ιb
(

S′Yt−2−j

)

‖∗ + ‖ιh (Zt−1)
1/2 εt‖

∗

+

m−2
∑

j=0

j
∏

i=0

‖A
(

S′Yt−1−i

)

‖∗‖ιh (Zt−2−j)
1/2 εt−1−j‖

∗.

In the summation above there are 2m+ 1 terms, and hence using (16)

(2m+ 1)1−2r‖Yt‖
∗2r ≤

m−1
∏

j=0

‖A(S′Yt−1−j)‖
∗2r‖Yt−m‖∗2r + ‖ιb

(

S′Yt−1

)

‖∗2r

+

m−2
∑

j=0

j
∏

i=0

‖A
(

S′Yt−1−i

)

‖∗2r‖ιb
(

S′Yt−2−j

)

‖∗2r + ‖ιh (Zt−1)
1/2 εt‖

∗2r

+
m−2
∑

j=0

j
∏

i=0

‖A
(

S′Yt−1−i

)

‖∗2r‖ιh (Zt−2−j)
1/2 εt−1−j‖

∗2r.

Denote ‖ι‖∗2r = ι∗ and note that ‖A (·) ‖∗2r ≤ ρ2r, ‖ιb (·) ‖∗2r ≤ ι∗B for some finite B (because

18



b (·) is bounded), ‖ιh (·)1/2 εt‖
∗2r ≤ ι∗hr (·) ε2r

t , and E[ε2r
t ]

def
= γ2r <∞. Thus,

(2m+ 1)1−2rE
[

‖Yt‖
∗2r |Zt−m = z

]

≤

m−1
∏

j=0

ρ2r‖y‖∗2r + ι∗B +

m−2
∑

j=0

(

j
∏

i=0

ρ2r

)

ι∗B

+ι∗E [hr(Zt−1) | Zt−m = z] γ2r +

m−2
∑

j=0

(

j
∏

i=0

ρ2r

)

ι∗E [hr(Zt−2−j) | Zt−m = z] γ2r

= ρ2rm‖y‖∗2r + ι∗B



1 +
m−2
∑

j=0

ρ2r(j+1)





+ι∗γ2rE [hr(Zt−1) | Zt−m = z] + ι∗γ2r

m−2
∑

j=0

ρ2r(j+1)E [hr(Zt−2−j) | Zt−m = z]

≤ ρ2rm‖y‖∗2r + ι∗B



1 +

m−2
∑

j=0

ρ2r(j+1)





+ι∗γ2r

(

mr−1δm−1hr(z) + d′
)

+ ι∗γ2r





m−3
∑

j=0

ρ2r(j+1)
(

mr−1δm−2−jhr(z) + d′
)

+ ρ2r(m−1)hr(z)



 ,

where the last inequality makes use of (18) and the fact that E [hr(Zt−m) | Zt−m = z] = hr(z).
Defining φ = max{ρ2r, δ} < 1 and φ′ = 1

1−φ we get

(2m+ 1)1−2rE
[

‖Yt‖
∗2r |Zt−m = z

]

≤ φm‖y‖∗2r + ι∗B



1 +
m−2
∑

j=0

φj+1



+ ι∗γ2r

(

mr−1φm−1hr(z) + d′
)

+ι∗γ2r





m−3
∑

j=0

φj+1
(

mr−1φm−2−jhr(z) + d′
)

+ φm−1hr(z)





≤ φm‖y‖∗2r + ι∗Bφ′ + ι∗γ2r

(

mr−1φm−1hr(z) + d′
)

+ι∗γ2r





m−3
∑

j=0

φm−1mr−1hr(z) +

m−3
∑

j=0

φj+1d′ + φm−1hr(z)





≤ φm‖y‖∗2r + ι∗Bφ′ +m · ι∗γ2rm
r−1φm−1hr(z) + ι∗γ2rd

′φ′

= φm‖y‖∗2r + ι∗γ2rm
rφm−1hr(z) + ι∗φ′(B + γ2rd

′). (19)

Combining the inequalities (17) (with k = m) and (19) yields

E [V∗(Zt) | Zt−m = z]

= E
[

1 + C‖Yt‖
∗2r + hr(Zt) | Zt−m = z

]

≤ 1 + C(2m+ 1)2r−1
(

φm‖y‖∗2r + ι∗γ2rm
rφm−1hr(z) + ι∗φ′(B + γ2rd

′)
)

+(m+ 1)r−1 (hr(z)δm + d)

= 1 + C
[

(2m+ 1)2r−1φm
]

‖y‖∗2r +
[

C(2m+ 1)2r−1ι∗γ2rm
rφm−1 + (m+ 1)r−1δm

]

hr(z)

+
{

C(2m+ 1)2r−1ι∗φ′(B + γ2rd
′) + (m+ 1)r−1d

}

. (20)
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Since 0 < δ ≤ φ < 1, we can clearly choose an m large enough so that both of the expressions
in square brackets in (20) are smaller than some λ < 1. The expression in curly brackets in (20)
is clearly finite, and thus for some L <∞ we have

E [V∗(Zt) | Zt−m = z] ≤ λ
(

1 + C‖y‖∗2r + hr(z)
)

+ L. (21)

What remains to be examined is the behaviour of (21) on and off a small set. To this end,
write the right-hand-side of (21) as

λ1/2
(

1 + C‖y‖∗2r + hr(z)
)

· λ1/2

(

1 +
L

λ (1 + C‖y‖∗2r + hr(z))

)

. (22)

By Lemma 4 the set AN = {z ∈ Z : ‖y‖∗2r ≤ N,hr (z) ≤ N} is small. Off this set either
‖y‖∗2r > N or hr (z) > N , and the ratio in (22) can clearly be made arbitrarily small by
choosing N large enough. Therefore for a large enough N

λ1/2

(

1 +
L

λ (1 + C‖y‖∗2r + hr(z))

)

< 1

and hence
E [V∗(Zt) | Zt−m = z] ≤ λ1/2

(

1 + C‖y‖∗2r + hr(z)
)

off the set AN . On the other hand, the right hand side of (21) is clearly bounded on the set AN .
Therefore, condition (15) is satisfied.

Lemma 6 Let Xt be an irreducible and aperiodic Markov chain on a state space X , and let m
be a positive integer. Suppose that for a small set K, a function V : X → [1,∞) bounded on K,
and positive constants λ < 1 and b <∞

E[V (Xt) | Xt−m = x] ≤ λm (V (x) + b1K(x)) (23)

for all x ∈ X . Then Xt is V –geometrically ergodic in the sense of Liebscher (2005).

Proof. If m = 1 then Xt is V –geometrically ergodic in the sense of Meyn and Tweedie (1993)
by their Theorem 15.0.1, and hence the stated weaker form of geometric ergodicity also follows.
Suppose now that m > 1. It immediately follows from Theorem 19.1.3 of Meyn and Tweedie
(1993) that Xt is geometrically ergodic and for some ̺ < 1 and R <∞

‖Pn
X(x, ·) − πX (·)‖ ≤ ̺nRV (x),

where ‖·‖ signifies the total variation norm, and Pn
X(x, ·) and πX (·) are the n–step transition

probability measure and stationary measure of Xt, respectively. What remains to be proven
is that the expectation

∫

X πX(dy)V (y) is finite. To this end, we will first establish that Xtm,
the m–skeleton of Xt, is V –geometrically ergodic in the sense of Meyn and Tweedie (1993).
By Proposition 5.4.5(iii) of Meyn and Tweedie (1993) and the assumptions of the lemma, the
m–skeleton is irreducible and aperiodic, and satisfies the drift criterion (23) where the set K
is small for the original chain Xt (but not necessarily for the m–skeleton). To establish a drift
criterion with a set that is small for the m–skeleton, first choose a λ̄ such that λm < λ̄ < 1.
By Lemma 14.2.8 of Meyn and Tweedie (1993) we can find a set Km which is small for the
m–skeleton and such that

1K(x) ≤
m−1
∑

i=0

∫

X
P i

X (x, dy)1K(y) ≤ m1Km(x) + (λ̄− λm)/λmb.
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Therefore

E[V (Xt) | Xt−m = x] ≤ λmV (x) + λmb
[

m1Km(x) + (λ̄− λm)/λmb
]

≤ λmV (x) + (λ̄− λm) + λmbm1Km(x)

≤ λ̄V (x) + λmbm1Km(x)

because 1 ≤ V (x). Thus the m–skeleton satisfies a drift criterion with a set Km which is small
for the m–skeleton. Therefore by Theorem 15.0.1 of Meyn and Tweedie (1993) the m–skeleton
is V –geometrically ergodic in the sense of Meyn and Tweedie (1993).

To complete the proof, note that by Theorem 10.4.5 of Meyn and Tweedie (1993) the sta-
tionary distributions of the m–skeleton of Xt and Xt itself are the same and, by the V –geometric
ergodicity of the m–skeleton, the expectation

∫

X πX(dy)V (y) is finite.
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