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Abstract

This note studies the geometric ergodicity of nonlinear autoregressive models
with conditionally heteroskedastic errors. A nonlinear autoregression of order p

(AR(p)) with the conditional variance specified as the conventional linear autore-
gressive conditional heteroskedasticity model of order q (ARCH(q)) is considered.
Conditions under which the Markov chain representation of this nonlinear AR–
ARCH model is geometrically ergodic and has moments of known order are pro-
vided. The obtained results complement those of Liebscher [Journal of Time Series
Analysis, 26 (2005), 669–689] by showing how his approach based on the concept of
the joint spectral radius of a set of matrices can be extended to establish geometric
ergodicity in nonlinear autoregressions with conventional ARCH(q) errors.
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1 Introduction

This note is concerned with the geometric ergodicity of nonlinear autoregressive models

with conditionally heteroskedastic errors. We consider a nonlinear autoregression of order

p (AR(p)) with the conditional variance specified as the conventional linear autoregressive

conditional heteroskedasticity model of order q (ARCH(q)). We give conditions under

which the Markov chain associated with this nonlinear AR–ARCH model is geometrically

ergodic (or, more precisely, Q–geometrically ergodic in a sense to be defined in Section

3) and has moments of known order. Our study makes heavy use of the stability theory

developed for Markov chains, and we refer the reader to Meyn and Tweedie (1993) for a

comprehensive account of the needed Markov chain theory.

Stability of conditionally heteroskedastic nonlinear autoregressions has previously been

studied by several authors. Masry and Tjøstheim (1995), Lu (1998), Chen and Chen

(2001), and Lu and Jiang (2001), among others, have provided sufficient conditions for

geometric ergodicity in models similar to ours. In these papers, the proof of geometric

ergodicity essentially assumes that (i) the conditional mean is dominated by a linear

autoregression as the values of the observed process approach infinity and that (ii) this

linear autoregression is stable in the sense of having a companion matrix whose spectral

radius is less than one. However, such conditions may unnecessarily restrict the types of

nonlinearity allowed and lead to overly restrictive regions of the parameter space ensuring

ergodicity.

In a series of papers, Cline and Pu (1998, 1999, 2004) and Cline (2007) have used a dif-

ferent approach to establish geometric ergodicity in nonlinear conditionally heteroskedas-

tic autoregressions. Based on the concept of the Lyapunov exponent they obtain con-

ditions that often ensure geometric ergodicity in much larger regions of the parameter

space than obtained in the abovementioned references. These conditions are sharp but

the assumptions employed are quite general and appear difficult to verify.

In a recent paper, Liebscher (2005) takes yet another approach and employs the con-

cept of the joint spectral radius of a set of matrices (to be defined in Section 2) to

deduce geometric ergodicity in nonlinear conditionally heteroskedastic autoregressions.

As his results show, this approach also ensures geometric ergodicity in larger regions of

the parameter space than obtained by Masry and Tjøstheim (1995), Lu (1998), Chen

and Chen (2001), and Lu and Jiang (2001). However, in the case of a general nonlinear

autoregressive model, Liebscher’s results only allow for limited forms of conditional het-

eroskedasticity. In particular, nonlinear autoregressions with conventional ARCH errors
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are ruled out.

The purpose of this note is to complement Liebscher’s (2005) results and show how

his approach based on the joint spectral radius can be extended to obtain sharpened

conditions for geometric ergodicity in a nonlinear autoregression with errors following

a standard linear ARCH(q) process. In earlier work (Meitz and Saikkonen, 2008) we

obtained similar results when the errors of the autoregression follow a nonlinear first-

order generalized ARCH (GARCH(1,1)) process. It should be noted, however, that these

results do not directly extend to the higher-order ARCH(q) case, although the method of

proof is similar.

The rest of this paper is organized as follows. The model and the assumptions needed

are introduced in Section 2. In Section 3 the main result of the paper is presented, and

the proofs are given in Section 4.

2 Model

Let yt, t = 1, 2, . . ., be a real valued stochastic process generated by

yt = f (yt−1, . . . , yt−p) + h
1/2
t εt, (1)

where ht is a positive function of ys, s < t, and εt is a sequence of independent and

identically distributed random variables such that εt is independent of {ys, s < t}. The

function f is supposed to be nonlinear so that equation (1) defines a nonlinear autore-

gression with conditionally heteroskedastic errors. When E[εt] = 0 and E[ε2
t ] = 1 one

can interpret f (yt−1, . . . , yt−p) and ht as the conditional mean and conditional variance of

yt, respectively. For convenience, we will use this standard terminology although neither

E[εt] = 0 nor E[ε2
t ] = 1 (or even existence of these moments) is necessary for our results

to hold.

The function f describing the conditional mean is supposed to be of the form

f (x) = a (x)′ x + b (x) , x ∈ R
p, (2)

where the functions a : R
p → R

p and b : R
p → R are bounded and Borel measurable. This

assumption restricts the nonlinearity permitted in the conditional expectation but still

covers several popular cases. In particular, the general functional-coefficient autoregressive

model of Chen and Tsay (1993) and its special cases such as threshold autoregressive

models (see, e.g., Tong (1990)) and smooth transition autoregressive models (see, e.g.,

Teräsvirta (1994)) are included. The boundedness requirement imposed on the function b

3



is somewhat stronger than required in Theorem 3 of Liebscher (2005) where b (x) = o (‖x‖)

as ‖x‖ → ∞ is only assumed. It seems difficult to allow for this extension in our context.

The reason for this is that in our proof of geometric ergodicity, we are forced to rely on

an m-step-ahead drift criterion instead of a more conventional one-step-ahead criterion (a

more detailed explanation of the arising difficulties can be found at the end of the paper

following the proof of Theorem 1).

We assume that the conditional variance ht is generated by a standard ARCH process

driven by regression errors. Specifically,

ht = ω + α1u
2
t−1 + · · · + αqu

2
t−q, (3)

where ω > 0, αj ≥ 0 (j = 1, . . . , q), and

ut = yt − f (yt−1, . . . , yt−p) . (4)

Clearly, ht+1 is a function of the random vector Zt = [yt · · · yt−p−q+1]
′, and we express

this as ht = h (Zt−1). This conventional ARCH model for the conditional variance was

ruled out in Theorem 3 of Liebscher (2005) where only weaker forms of conditional het-

eroskedasticity satisfying h1/2 (z) = o (‖z‖) as ‖z‖ → ∞ were allowed for. On the other

hand, his condition permits limited forms of nonlinearity ruled out in our model. (In his

Theorem 4, Liebscher (2005) makes a milder assumption about the conditional variance

which also covers our ARCH model (3), but this is made at the cost of considerably

restricting the nonlinearity permitted in the conditional expectation.)

From the definition of ut it is readily seen that Zt = [yt · · · yt−p−q+1]
′ is a Markov

chain on Z = R
p+q. To make the Markov chain representation of Zt explicit observe that













yt

yt−1

...

yt−p−q+1













=













f (yt−1, . . . , yt−p)

yt−1

...

yt−p−q+1













+













h (Zt−1)
1/2 εt

0
...

0













(5)

or, more briefly,

Zt = F (Zt−1, εt) , t = 1, 2, . . . , (6)

where the function F : R
p+q+1 → R

p+q is defined in an obvious way.

We now discuss assumptions on the error term εt, the conditional mean function f ,

and the conditional variance ht that are used to prove our results. In what follows, we

shall always assume that the process yt is defined by (1) with the function f given by (2)

and ht given by (3) and (4). Our first assumption concerns the error term εt.
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Assumption 1. The independent and identically distributed random variables εt have a

(Lebesgue) density which is bounded away from zero on compact subsets of R. Further-

more, for some real r > 0, E[|εt|
2r] < ∞.

The first part of Assumption 1 ensures that Zt in (6) is an irreducible and aperiodic

T–chain (see Meyn and Tweedie (1993) for the definitions of these concepts). As (2) and

(3) are assumed, this can be seen as in Example 2.1 of Cline and Pu (1998). The latter

part of Assumption 1 requires the error term to have a finite moment of some (small)

order. This is needed to apply a drift criterion in the proof of Theorem 1 below, and

it also ensures that yt and ht have finite moments of some (small) order. Note that this

assumption is weaker than in some of the related previous work (see Masry and Tjøstheim

(1995), Lu (1998), Chen and Chen (2001), Lu and Jiang (2001), and Liebscher (2005))

where at least existence of a finite expectation is assumed. On the other hand, it coincides

with the assumption used in, for example, Cline and Pu (2004).

To present our assumption restricting the conditional mean, set a(x) = [a1(x) · · · ap(x)]′

(x ∈ R
p) and define the companion matrix

A (x) =































a1(x) · · · ap(x) 0 · · · 0 0

1 · · · 0 0 · · · 0 0
...

. . .
...

...
. . .

...
...

0 · · · 1 0 · · · 0 0

0 · · · 0 1 · · · 0 0
...

. . .
...

...
. . .

...
...

0 · · · 0 0 · · · 1 0































((p + q) × (p + q)) .

By A1 (x) we denote the matrix obtained by deleting the last q rows and columns from

A (x). Then, equation (5) can be expressed as

Zt = A (S ′Zt−1) Zt−1 + ιp+qb (S ′Zt−1) + ιp+qh (Zt−1)
1/2 εt, (7)

where S ′ = [Ip : 0] (p× (p + q)) and ιp+q = [1 0 · · · 0]′ ((p + q)× 1). Following Liebscher

(2005) we restrict the matrix A (x) by using the concept of the joint spectral radius of a

(bounded) set of (square) matrices. To introduce this concept, let A be a set of bounded

square matrices and Ak = {A1A2 · · ·Ak : Ai ∈ A, i = 1, . . . , k}. Then the joint spectral

radius of the set A is defined by

ρ (A) = lim sup
k→∞

(

sup
A∈Ak

‖A‖

)1/k

,
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where ‖·‖ can be any matrix norm (the value of ρ (A) does not depend on the choice of

this norm). If the set A only contains a single matrix A then the joint spectral radius

of A coincides with ρ (A), the spectral radius of A. Several useful results about the joint

spectral radius are given in the recent paper by Liebscher (2005) where further references

can also be found.

Now we can state our next assumption that restricts the conditional mean.

Assumption 2. ρ (A1) < 1, where A1 = {A1 (x) : x ∈ R
p}.

It is straightforward to see that this assumption is equivalent to ρ (A∗) < 1 where A∗ =

{A (x) : x ∈ R
p} (see Lemma 1(i) of Meitz and Saikkonen (2008)). In the proofs of the

paper we use the joint spectral radius ρ (A∗) but ρ (A1) is more convenient in practice

because, due to a smaller dimension, its value is easier to compute than that of ρ (A∗).

Because A∗ is a bounded set of matrices Assumption 2 implies that there exists a matrix

norm ‖·‖∗ induced by a vector norm, also denoted by ‖·‖∗, such that ‖A‖∗ ≤ ρ for all

A ∈ A∗ and some 0 < ρ < 1 (see Theorem 1 of Liebscher (2005)).

To present our assumption restricting the conditional variance, define the vector Xt =
[

ht u2
t−1 · · · u2

t−q+1

]′
. For t = 1, Xt is determined by the initial values of the Markov

chain Zt, that is, X1 =
[

h (Z0) u2
0 · · · u2

−q+1

]′
where u2

0, . . . , u
2
−q+1 depend on Z0 =

[y0 · · · y−p−q+1]
′ (see (4)). For larger values of t, we have













ht

u2
t−1
...

u2
t−q+1













=



















α1ε
2
t−1 α2 · · · αq−1 αq

ε2
t−1 0 · · · 0 0

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0































ht−1

u2
t−2
...

u2
t−q













+













ω

0
...

0













, t = 2, 3, . . . ,

or

Xt = Λt−1Xt−1 + c, t = 2, 3, . . . (8)

with the initial value X1 as described above and Λt being a sequence of independent

and identically distributed matrices. Because Xt is a function of Zt−1 we can write

Xt = G (Zt−1).

Our last assumption restricts the conditional variance process via the matrices Λt.

Assumption 3. There exists an induced matrix norm ‖·‖• such that E[‖Λt‖
•r] < 1, where

r > 0 is as in Assumption 1.

This assumption is formulated in a way which is convenient in the proofs but, in

general, is not easy to check in practice. However, the usual conditions for covariance
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stationarity of an ARCH(q) model,
∑q

j=1 αj < 1 and E[ε2
t ] = 1, imply Assumption 3 with

r = 1. This can be seen by using arguments similar to those in the proof of Lemma 1(ii)

of Meitz and Saikkonen (2008); for details, see Section 4. Moreover, it can be shown that

Assumption 3 holds with some (unknown) r > 0 if E[ln ‖Λt‖
•] < 0 and E[‖Λt‖

•s] < ∞ for

some s > 0 (see Remark 2.9 of Basrak, Davis, and Mikosch (2002)). On the other hand,

if Assumption 3 holds, then E[ln ‖Λt‖
•] < 0 as can be seen using Jensen’s inequality.

It is of interest to compare our assumptions on conditional heteroskedasticity with

those in Liebscher’s (2005) Theorem 3 where ARCH models are not allowed. One dif-

ference is that we explicitly assume the process for conditional heteroskedasticity to be

driven by regression errors whereas Liebscher (2005) is more general in this respect. This

difference is reflected in our method of proof which differs from that used by Liebscher

(2005). In our proof, the structure of the conventional ARCH(q) process and equation

(8) combined with Assumption 3 make it possible to establish geometric ergodicity.

3 Result

We will show that the Markov chain Zt defined in (6) is Q–geometrically ergodic. This

type of geometric ergodicity was defined and employed by Liebscher (2005) and further

applied by Meitz and Saikkonen (2008). For convenience, we repeat the definition here

in the form given in the latter paper. We use P n(z, A) = Pr (Zn ∈ A | Z0 = z), z ∈ Z,

A ∈ B(Z), to signify the n–step transition probability measure of the Markov chain Zt

defined on B(Z), the Borel sets of Z.

Definition 1. The Markov chain Zt on Z is Q–geometrically ergodic if there exists a

function Q : Z → [0,∞], a probability measure π on B(Z), and constants a > 0, b > 0,

and 0 < ̺ < 1 such that
∫

Z
π(dz)Q(z) < ∞ and

sup
v:|v|≤1

∣

∣

∣

∣

∫

Z

P n (z, dw) v(w) −

∫

Z

π(dw)v(w)

∣

∣

∣

∣

≤ (a + bQ (z)) ̺n for all z ∈ Z and all n ≥ 1.

(9)

Q–geometric ergodicity implies the existence of an initial value Z0 which makes Zt a

stationary process such that Q (Zt) has finite expectation (for this and other implications

of Q–geometric ergodicity, see Liebscher (2005) and Meitz and Saikkonen (2008)). Fur-

thermore, for any initial value with a distribution such that Q (Z0) has finite expectation,

Zt is β–mixing (absolutely regular), implying that usual limit theorems hold.

Now we can state our main result.
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Theorem 1. Suppose that Assumptions 1, 2, and 3 hold, and let ‖·‖(p+q) and ‖·‖(q) be

any vector norms on R
p+q and R

q, respectively. Then the Markov chain Zt on Z is Q∗–

geometrically ergodic in the sense of Definition 1 with a function Q∗(z) ≥ 1 + ‖z‖2r
(p+q) +

‖G(z)‖r
(q).

Thus, Theorem 1 shows that the Markov chain Zt is Q∗–geometrically ergodic with

a function Q∗ (·) such that the stationary distribution of Zt has moments of order 2r.

Moreover, as seen in the proof of the theorem, hr(z) ≤ C ‖G(z)‖•r, C < ∞, so that

we can also conclude that in the stationary case the conditional variance process ht has

moments of order r.

Theorem 1 also demonstrates how Liebscher’s (2005) approach based on the joint

spectral radius can be used to prove Q–geometric ergodicity in a nonlinear autoregressive

model with conventional ARCH errors. Thus, we are able to extend the scope of Lieb-

scher’s (2005) Theorem 3. This is achieved at the cost of only a moderate strengthening of

the nonlinearity in the conditional expectation and by ruling out only very weak forms of

nonlinearity in the conditional variance. On the other hand, our Theorem 1 also applies

in the case when only moments of some small order exist. Compared with Liebscher’s

(2005) Theorem 4, our assumptions on the conditional variance are only moderately more

stringent, although the nonlinearity we can permit in the conditional expectation is con-

siderably stronger. It may also be noted that to prove his Theorem 4 Liebscher (2005)

does not need the concept of joint spectral radius because the ordinary spectral radius

works as well.

4 Proofs

Proof that
∑q

j=1 αj < 1 and E[ε2
t ] = 1 imply the validity of Assumption 3 with

r = 1. First note that the assumption
∑q

j=1 αj < 1 is equivalent to ρ (Λ) < 1, where

Λ
def
= E [Λt] =



















α1 α2 · · · αq−1 αq

1 0 · · · 0 0

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0



















.

Now, as in the proof of Lemma 1(ii) of Meitz and Saikkonen (2008), we can find a

q × 1 vector κ with positive components such that the components of the row vector
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ν ′ = κ′ (Iq − Λ) are positive and, furthermore, 0 < ν/κ < 1 where ν and κ are the

smallest and largest components of ν and κ, respectively. Define the vector norm ‖·‖• in

R
q by

‖x‖• =

q
∑

j=1

κj |xj| = κ′ |x| , where |x| = [|x1| · · · |xq|]
′ ,

and consider the random matrix Λt and any x ∈ R
q, x 6= 0. With probability one,

‖Λtx‖
• ≤ κ1α1ε

2
t |x1| + κ1

q
∑

j=2

αj |xj| + κ2ε
2
t |x1| +

q
∑

j=3

κj |xj−1| ,

and hence

E [‖Λtx‖
•] ≤ κ1

q
∑

j=1

αj |xj| +

q
∑

j=2

κj |xj−1| = κ′ |x|

(

1 −
ν ′ |x|

κ′ |x|

)

≤ ‖x‖• (1 − ν/κ) .

Because 0 < 1 − ν/κ < 1, this shows that Assumption 3 holds with the matrix norm

induced by ‖·‖• and r = 1.

Proof of Theorem 1. First note that, as discussed after Assumption 1, Zt is an

irreducible and aperiodic T–chain. Let ‖·‖(p+q) and ‖·‖(q) be any vector norms on R
p+q

and R
q, respectively, and let ‖·‖∗ be an induced matrix norm that satisfies ‖A‖∗ ≤ ρ

for all A ∈ A∗ and with ρ ∈ (0, 1) (see the discussion following Assumption 2). Let

‖·‖• be an induced matrix norm satisfying Assumption 3. By the equivalence of all

vector norms in finite-dimensional vector spaces, there exist finite C1, C2 > 0 such that

‖z‖(p+q) ≤ C
1/2r
1 ‖z‖∗ for all z ∈ R

p+q and ‖x‖(q) ≤ C
1/r
2 ‖x‖• for all x ∈ R

q (see e.g.

Horn and Johnson (1985, Sec. 5.4)). Denote V∗(z) = 1 + C1‖z‖
∗2r + C2 ‖G(z)‖•r. As in

Lemma 5 of Meitz and Saikkonen (2008) the idea is to examine the conditional expectation

E[V∗(Zt) | Zt−m = z] and demonstrate that condition (19.15) of Meyn and Tweedie (1993)

holds for the function V∗(z) (with the choice n(z) ≡ m) after which an application of

Lemma 6 of Meitz and Saikkonen (2008) shows that Zt is V∗–geometrically ergodic in the

sense of Definition 1.

First note that, for any nonnegative xi, 1 ≤ i ≤ n, n ∈ Z+, and r > 0,
(

n
∑

i=1

xi

)r

≤ ∆r,n

n
∑

i=1

xr
i (10)

where ∆r,n = max {1, nr−1} (see Davidson (1994, p. 140)).

Using (8) and repeated substitution one obtains, for m, k ≥ 1,

G(Zt−m+k) =
k
∏

j=1

Λt−m+jG(Zt−m) +

(

Iq +
k−2
∑

j=0

j
∏

i=0

Λt−m+k−i

)

c,
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which in conjunction with usual properties of vector and matrix norms and (10) gives

∆−1
r,k+1 ‖G (Zt−m+k)‖

•r ≤

k
∏

j=1

‖Λt−m+j‖
•r ‖G(Zt−m)‖•r+

(

‖Iq‖
•r +

k−2
∑

j=0

j
∏

i=0

‖Λt−m+k−i‖
•r

)

‖c‖•r .

By Assumption 3, E[‖Λt‖
•r] < 1 and we denote this expectation by δ. Furthermore,

denote d = (‖Iq‖
•r + δ/(1 − δ)) ‖c‖•r. By the independence of the Λt’s,

∆−1
r,k+1E [‖G (Zt−m+k)‖

•r | Zt−m = z] ≤ ‖G(z)‖•r δk +

(

‖Iq‖
•r +

k−2
∑

j=0

δj+1

)

‖c‖•r

≤ ‖G(z)‖•r δk + d. (11)

In particular, setting d′ = ∆r,md we have, for k = 1, . . . ,m − 1,

E [‖G (Zt−m+k)‖
•r | Zt−m = z] ≤ ∆r,k+1

(

‖G(z)‖•r δk + d
)

≤ ∆r,m ‖G(z)‖•r δk + d′.

Denote ιq = [1 0 · · · 0]′ (q × 1) and ‖ιq‖
•r = ι•q. Then, as hr(Zt−m+k) =

∣

∣ι′qG (Zt−m+k)
∣

∣

r
,

we also have

E [hr(Zt−m+k) | Zt−m = z] ≤ ‖ιq‖
•r E [‖G (Zt−m+k)‖

•r | Zt−m = z]

≤ ι•q∆r,m ‖G(z)‖•r δk + ι•qd
′. (12)

Now consider Zt which we wish to express in terms of past values of the process Zt

until t−m. Repeated substitution in equation (7), usual properties of vector and matrix

norms, and an application of (10) yield (cf. the proof of Lemma 5 of Meitz and Saikkonen

(2008), the paragraph following inequality (15) with Yt therein replaced by Zt)

∆−1
2r,2m+1‖Zt‖

∗2r ≤
m−1
∏

j=0

‖A(S ′Zt−1−j)‖
∗2r‖Zt−m‖

∗2r + ‖ιp+qb (S ′Zt−1) ‖
∗2r

+
m−2
∑

j=0

j
∏

i=0

‖A (S ′Zt−1−i) ‖
∗2r‖ιp+qb (S ′Zt−2−j) ‖

∗2r + ‖ιp+qh (Zt−1)
1/2 εt‖

∗2r

+
m−2
∑

j=0

j
∏

i=0

‖A (S ′Zt−1−i) ‖
∗2r‖ιp+qh (Zt−2−j)

1/2 εt−1−j‖
∗2r. (13)

Denote ‖ιp+q‖
∗2r = ι∗p+q and note that ‖A (·) ‖∗2r ≤ ρ2r, ‖ιp+qb (·) ‖∗2r ≤ ι∗p+qB for some

finite B (because b (·) is bounded), ‖ιp+qh (·)1/2 εt‖
∗2r ≤ ι∗p+qh

r (·) |εt|
2r, and E[|εt|

2r]
def
=

10



γ2r < ∞. Thus,

∆−1
2r,2m+1E

[

‖Zt‖
∗2r |Zt−m = z

]

≤

(

m−1
∏

j=0

ρ2r

)

‖z‖∗2r + ι∗p+qB +
m−2
∑

j=0

(

j
∏

i=0

ρ2r

)

ι∗p+qB + ι∗p+qE [hr(Zt−1) | Zt−m = z] γ2r

+
m−2
∑

j=0

(

j
∏

i=0

ρ2r

)

ι∗p+qE [hr(Zt−2−j) | Zt−m = z] γ2r

≤ ρ2rm‖z‖∗2r + ι∗p+qB

(

1 +
m−2
∑

j=0

ρ2r(j+1)

)

+ ι∗p+qι
•
qγ2r

(

∆r,mδm−1 ‖G(z)‖•r + d′
)

+ι∗p+qι
•
qγ2r

(

m−3
∑

j=0

ρ2r(j+1)
(

∆r,mδm−2−j ‖G(z)‖•r + d′
)

+ ρ2r(m−1) ‖G(z)‖•r
)

,

where the last inequality makes use of (12) and the fact that E [hr(Zt−m) | Zt−m = z] =

hr(z) =
∣

∣ι′qG (z)
∣

∣

r
≤ ι•q ‖G(z)‖•r. Defining φ = max{ρ2r, δ} < 1 and φ′ = 1

1−φ
we get

∆−1
2r,2m+1E

[

‖Zt‖
∗2r |Zt−m = z

]

≤ φm‖z‖∗2r + ι∗p+qB

(

1 +
m−2
∑

j=0

φj+1

)

+ ι∗p+qι
•
qγ2r

(

∆r,mφm−1 ‖G(z)‖•r + d′
)

+ι∗p+qι
•
qγ2r

(

m−3
∑

j=0

φj+1
(

∆r,mφm−2−j ‖G(z)‖•r + d′
)

+ φm−1 ‖G(z)‖•r
)

≤ φm‖z‖∗2r + ι∗p+qBφ′ + ι∗p+qι
•
qγ2r

(

∆r,mφm−1 ‖G(z)‖•r + d′
)

+ι∗p+qι
•
qγ2r

(

m−3
∑

j=0

φm−1∆r,m ‖G(z)‖•r +
m−3
∑

j=0

φj+1d′ + ∆r,mφm−1 ‖G(z)‖•r
)

≤ φm‖z‖∗2r + m · ι∗p+qι
•
qγ2r∆r,mφm−1 ‖G(z)‖•r + ι∗p+qφ

′(B + ι•qγ2rd
′). (14)

Combining the inequalities (11) (with k = m) and (14) yields

E [V∗(Zt) | Zt−m = z]

= E
[

1 + C1‖Zt‖
∗2r + C2 ‖G(Zt)‖

•r | Zt−m = z
]

≤ 1 + C1∆2r,2m+1

(

φm‖z‖∗2r + ι∗p+qι
•
qγ2rm∆r,mφm−1 ‖G(z)‖•r + ι∗p+qφ

′(B + ι•qγ2rd
′)
)

+C2∆r,m+1 (‖G(z)‖•r δm + d)

= 1 + C1 [∆2r,2m+1φ
m] ‖z‖∗2r + C2

[

C1C
−1
2 ι∗p+qι

•
qγ2r∆2r,2m+1m∆r,mφm−1 + ∆r,m+1δ

m
]

‖G(z)‖•r

+
{

C1∆2r,2m+1ι
∗
p+qφ

′(B + ι•qγ2rd
′) + C2∆r,m+1d

}

. (15)

Because 0 < δ ≤ φ < 1, it follows from the definitions that we can choose an m large

enough so that both of the expressions in square brackets in (15) are smaller than some

11



λ < 1. The expression in curly brackets in (15) is clearly finite, and thus for some L < ∞

E [V∗(Zt) | Zt−m = z] ≤ λ
(

1 + C1‖z‖
∗2r + C2 ‖G(z)‖•r

)

+ L. (16)

What remains to be examined is the behavior of (16) on and off a small set. To this

end, write the right-hand-side of (16) as

λ1/2
(

1 + C1‖z‖
∗2r + C2 ‖G(z)‖•r

)

· λ1/2

(

1 +
L

λ (1 + C1‖z‖∗2r + C2 ‖G(z)‖•r)

)

. (17)

We shall show below that the set AN = {z ∈ Z : ‖z‖∗2r ≤ N, ‖G(z)‖•r ≤ N} is small

for any N so large that AN is nonempty (see (3)). Off this set either ‖z‖∗2r > N or

‖G(z)‖•r > N , and the ratio in (17) can clearly be made arbitrarily small by choosing N

large enough. Therefore for a large enough N

λ1/2

(

1 +
L

λ (1 + C1‖z‖∗2r + C2 ‖G(z)‖•r)

)

< 1

and hence

E [V∗(Zt) | Zt−m = z] ≤ λ1/2
(

1 + C1‖z‖
∗2r + C2 ‖G(z)‖•r

)

off the set AN . On the other hand, the right hand side of (16) is clearly bounded on the

set AN . Therefore, condition (19.15) of Meyn and Tweedie (1993) is satisfied and it only

remains to be shown that the set AN is small.

To show that the set AN is small we can use arguments similar to those in Lemma 4

of Meitz and Saikkonen (2008). We present the details for completeness. Using (7) and

(10),

∆−1
2r,3E

[

‖Zt‖
∗2r | Zt−1 = z

]

≤ ‖A (S ′z)‖
∗2r

‖z‖∗2r + ι∗p+q |b (S ′z)|
2r

+ ι∗p+qh (z)r E
[

|εt|
2r] ,

where the majorant side is bounded on the set AN (recall that A(·) and b(·) are bounded

and h(z) ≤ ‖ιq‖
• ‖G(z)‖•). Therefore we can find an MN < ∞ such that

sup
z∈AN

E
[

‖Zt‖
∗2r | Zt−1 = z

]

< M2r
N . (18)

Now define the compact set BN = {z ∈ Z : ‖z‖∗ ≤ MN}. Because Zt is an irreducible

and aperiodic T–chain this set is small and

inf
z∈AN

Pr (Zt ∈ BN | Zt−1 = z) = 1 − sup
z∈AN

Pr (‖Zt‖
∗ ≥ MN | Zt−1 = z)

≥ 1 − sup
z∈AN

E
[

‖Zt‖
∗2r | Zt−1 = z

]

/M2r
N

> 0.

12



Here the first inequality is Markov’s and the second one is due to (18). That the set AN

is small can now be concluded from Proposition 5.2.4 of Meyn and Tweedie (1993).

We now briefly discuss why we assume the function b(·) in equation (2) to be bounded

instead of the often used weaker condition b (x) = o (‖x‖) as ‖x‖ → ∞. The difficulty in

using this weaker condition in our proof arises from the fact that we are forced to rely on

an m-step-ahead drift criterion (instead of a more conventional one-step-ahead criterion)

to prove geometric ergodicity. This leads us to examine the conditional expectation

E[V∗(Zt) | Zt−m = z] on and off the small set AN that restricts the values of z (= Zt−m).

In inequality (13) we obtain an upper bound for the term ‖Zt‖
∗2r, which forms part of the

function V∗(Zt). The upper bound contains the terms ‖ιp+qb (S ′Zt−j) ‖
∗2r, j = 1, ...,m−1,

and the difficulty is how to control the conditional expectations of these terms when the

conditioning only restricts the values of z (= Zt−m) but not those of Zt−1, . . . , Zt−m+1.

Our solution is to restrict the function b(·) uniformly over its domain by requiring it to

be bounded. Note that if the use of a standard one-step-ahead drift criterion had sufficed

in our proof, this problem would not have arised at all.
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