20 research outputs found
Recommended from our members
Digital phenotyping through multimodal, unobtrusive sensing
The growing adoption of multimodal wearable and mobile devices, such as smartphones and wrist-worn watches has generated an increase in the collection of physiological and behavioural data at scale. This digital phenotyping data enables researchers to make inferences regarding users’ physical and mental health at scale, for the first time. However, translating this data into actionable insights requires computational approaches that turn unlabelled, multimodal time-series sensor data into validated measures that can be interpreted at scale.
This thesis describes the derivation of novel computational methods that leverage digital phenotyping data from wearable devices in large-scale populations to infer physical behaviours. These methods combine insights from signal processing, data mining and machine learning alongside domain knowledge in physical activity and sleep epidemiology. First, the inference of sleeping windows in free-living conditions through a heart rate sensing approach is explored. This algorithm is particularly valuable in the absence of ground truth or sleep diaries given its simplicity, adaptability and capacity for personalization. I then explore multistage sleep classification through combined movement and cardiac wearable sensing and machine learning. Further, I demonstrate that postural changes detected through wrist accelerometers can inform habitual behaviours and are valuable complements to traditional, intensity-based physical activity metrics. I then leverage the concomitant responses of heart rate to physical activity that can be captured through multimodal wearable sensors through a self-supervised training task. The resulting embeddings from this task are shown to be useful for the downstream classification of demographic factors, BMI, energy expenditure and cardiorespiratory fitness. Finally, I describe a deep learning model for the adaptive inference of cardiorespiratory fitness (VO2max) using wearable data in free living conditions. I demonstrate the robustness of the model in a large UK population and show the models’ adaptability by evaluating its performance in a subset of the population with repeated measures ~6 years after the original recordings.
Together, this work increases the potential of multimodal wearable and mobile sensors for physical activity and behavioural inferences in population studies. In particular, this thesis showcases the potential of using wearable devices to make valuable physical activity, sleep and fitness inferences in large cohort studies. Given the nature of the data collected and the fact that most of this data is currently generated by commercial providers and not research institutes, laying the foundations for responsible data governance and ethical use of these technologies will be critical to building trust and enabling the development of the field of digital phenotyping.I was funded by GlaxoSmithKline and the Engineering and Physical Sciences Research Council. I was also supported by the Alan Turing Institute through their Enrichment Scheme
Wiki-health: from quantified self to self-understanding
Today, healthcare providers are experiencing explosive growth in data, and medical imaging represents a significant portion of that data. Meanwhile, the pervasive use of mobile phones and the rising adoption of sensing devices, enabling people to collect data independently at any time or place is leading to a torrent of sensor data. The scale and richness of the sensor data currently being collected and analysed is rapidly growing. The key challenges that we will be facing are how to effectively manage and make use of this abundance of easily-generated and diverse health data.
This thesis investigates the challenges posed by the explosive growth of available healthcare data and proposes a number of potential solutions to the problem. As a result, a big data service platform, named Wiki-Health, is presented to provide a unified solution for collecting, storing, tagging, retrieving, searching and analysing personal health sensor data. Additionally, it allows users to reuse and remix data, along with analysis results and analysis models, to make health-related knowledge discovery more available to individual users on a massive scale.
To tackle the challenge of efficiently managing the high volume and diversity of big data, Wiki-Health introduces a hybrid data storage approach capable of storing structured, semi-structured and unstructured sensor data and sensor metadata separately. A multi-tier cloud storage system—CACSS has been developed and serves as a component for the Wiki-Health platform, allowing it to manage the storage of unstructured data and semi-structured data, such as medical imaging files. CACSS has enabled comprehensive features such as global data de-duplication, performance-awareness and data caching services. The design of such a hybrid approach allows Wiki-Health to potentially handle heterogeneous formats of sensor data.
To evaluate the proposed approach, we have developed an ECG-based health monitoring service and a virtual sensing service on top of the Wiki-Health platform. The two services demonstrate the feasibility and potential of using the Wiki-Health framework to enable better utilisation and comprehension of the vast amounts of sensor data available from different sources, and both show significant potential for real-world applications.Open Acces
NASA Tech Briefs, July/August 1987
Topics include: NASA TU Services; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Fabrication Technology; Machinery; Mathematics and Information Sciences; Life Sciences
Cumulative index to NASA Tech Briefs, 1986-1990, volumes 10-14
Tech Briefs are short announcements of new technology derived from the R&D activities of the National Aeronautics and Space Administration. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This cumulative index of Tech Briefs contains abstracts and four indexes (subject, personal author, originating center, and Tech Brief number) and covers the period 1986 to 1990. The abstract section is organized by the following subject categories: electronic components and circuits, electronic systems, physical sciences, materials, computer programs, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences
Summary of Research 1994
The views expressed in this report are those of the authors and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.This report contains 359 summaries of research projects which were carried out
under funding of the Naval Postgraduate School Research Program. A list of recent
publications is also included which consists of conference presentations and
publications, books, contributions to books, published journal papers, and
technical reports. The research was conducted in the areas of Aeronautics and
Astronautics, Computer Science, Electrical and Computer Engineering, Mathematics,
Mechanical Engineering, Meteorology, National Security Affairs, Oceanography,
Operations Research, Physics, and Systems Management. This also includes research
by the Command, Control and Communications (C3) Academic Group, Electronic Warfare
Academic Group, Space Systems Academic Group, and the Undersea Warfare Academic
Group
Life Sciences Program Tasks and Bibliography
This document includes information on all peer reviewed projects funded by the Office of Life and Microgravity Sciences and Applications, Life Sciences Division during fiscal year 1995. Additionally, this inaugural edition of the Task Book includes information for FY 1994 programs. This document will be published annually and made available to scientists in the space life sciences field both as a hard copy and as an interactive Internet web pag
Proceedings of the 2018 Canadian Society for Mechanical Engineering (CSME) International Congress
Published proceedings of the 2018 Canadian Society for Mechanical Engineering (CSME) International Congress, hosted by York University, 27-30 May 2018