514,255 research outputs found
The Effect of Using Computer Technology Tools to Enhance the Teaching-Learning Process in CAD-CAM-CNC Module in Mechanical Engineering Subject Area
This study presents the evaluation of Computer Assisted Learning (CAL) package included in the teaching and learning methodology of computer aided design- computer aided design - computer numerical control (CAD-CAM-CNC) module.
Three groups of students with similar pre-abilities were exposed to three different teaching learning methodologies.The effectiveness of these three methods was determined by questionnaires completed by the students and collected by first author. Their answers were analysed quantitatively and qualitatively. The various categories used in the questionnaire was student’s attitudes towards learning CAD-CAM-CNC subjects, students’ opinions about their lecturers approaches to teaching process, students’ opinions and views about various aspects the CAD-CAM-CNC. The study concludes that the students taught with a combination of CAL package and traditional methods were more effective, efficient and satisfied with their learning experiences. So the proposed hybrid learning method (CAI plus traditional teaching method) is most suited for CAD-CAM-CNC teaching.
Computer Technology; Computer-Assisted Instruction (CAI); Computer Assisted Learning (CAL); Computer Aided Design (CAD); Computer Aided Manufacturing (CAM); Computer Numerical Control (CNC)
A common geometric data-base approach for computer-aided manufacturing of wind-tunnel models and theoretical aerodynamic analysis
A more automated process to produce wind tunnel models using existing facilities is discussed. A process was sought to more rapidly determine the aerodynamic characteristics of advanced aircraft configurations. Such aerodynamic characteristics are determined from theoretical analyses and wind tunnel tests of the configurations. Computers are used to perform the theoretical analyses, and a computer aided manufacturing system is used to fabricate the wind tunnel models. In the past a separate set of input data describing the aircraft geometry had to be generated for each process. This process establishes a common data base by enabling the computer aided manufacturing system to use, via a software interface, the geometric input data generated for the theoretical analysis. Thus, only one set of geometric data needs to be generated. Tests reveal that the process can reduce by several weeks the time needed to produce a wind tunnel model component. In addition, this process increases the similarity of the wind tunnel model to the mathematical model used by the theoretical aerodynamic analysis programs. Specifically, the wind tunnel model can be machined to within 0.008 in. of the original mathematical model. However, the software interface is highly complex and cumbersome to operate, making it unsuitable for routine use. The procurement of an independent computer aided design/computer aided manufacturing system with the capability to support both the theoretical analysis and the manufacturing tasks was recommended
Development of the computer-aided process planning (CAPP) system for polymer injection molds manufacturing
Beginning of production and selling of polymer products largely depends on mold manufacturing. The costs of mold manufacturing have significant share in the final price of a product. The best way to improve and rationalize polymer injection molds production process is by doing mold design automation and manufacturing process planning automation. This paper reviews development of a dedicated process planning system for manufacturing of the mold for injection molding, which integrates computer-aided design (CAD), computer-aided process planning (CAPP) and computer-aided manufacturing (CAM) technologies
Using Computer Technology Tools to Improve the Teaching-Learning Process in Technical and Vocational Education: Mechanical Engineering Subject Area
This paper discusses the integration of computer assisted instructions (CAI) with traditional class room teaching. It describes a teaching method to bring real-world of industrial work into the classroom that underscores the need to learn fundamental principles while adding excitement and relevance to the experience. This paper presents results of a case study undertaken to understand the effect of computer assisted teaching methodology on learning effectiveness in classroom environment. The effects of computer assisted instructions on different levels of cognition of individual learners have also been evaluated. The computer aided drawing (CAD), computer aided manufacturing (CAM) and computer numerical control (CNC) courses at the Bahrain institute are an integral part of this attempt. These courses emphasize the development of a 3-D geometric computer model and application of this digital database to all phases of the design process. The students make freehand sketches, build computer models, mate assemblies of parts, perform various analysis, create kinematics simulations, generate final design drawings, import engineering drawing as DXF file, generate NC file to build rapid prototypes as shown in the table 1 below.
Keywords: Computer Technology, C.N.C and AutoCad Softwar
Architectural Limitations in Multi-User Computer-Aided Engineering Applications
The engineering design process evolves products by a collaborative synthesis of specifications, personnel and organizations. Unfortunately, collaborative effectiveness is thwarted by existing single-user computer-aided applications like computer-aided design, computer-aided analysis, and others. These applications and associated file management systems assign editing rights to one technical person, e.g., a designer, analyst, or a process planner. In the absence of collaborative computer-aided engineering applications, we conducted a survey to establish that product collaboration is limited to interactive, either formal or ad-hoc design sessions, social communication tools, serial model sharing, terminal/screen sharing, and to conference call interactions. Current computer-aided (CAx) tools do not permit simultaneous model changes by a collaborative team editing the same model. Although over a decade of prior research has demonstrated multi-user feasibility for computer-aided applications, the architectural breadth of this research has apparently not yet compelled developers and end-users to develop and adopt new multi-user computer-aided applications devoted to product development.
Why have collaborative engineering CAx tools not been commercialized for mainstream use? This paper uses several multi-user prototypes, including the first Computer-Aided Engineering multi-user prototype called CUBIT Connect, to expose additional architectural hurdles to implementing new multi-user collaborative paradigms. These challenges relate to variable algorithmic performance times, multi-threading and event driven client notification processes, distributed access level security, and model change management in design sessions
The generation of bending sequences in a CAPP system for sheet-metal components
An important process-planning task in sheet-metal manufacturing is the determination of bending sequences for individual components. Computer-aided generation of these sequences, as part of a computer-aided process-planning (CAPP) system, can relieve the workload of process-planning departments, this being especially important in small batch manufacturing environments. This paper discusses the functions that have to be performed during the determination of bending sequences, focusing on accuracy aspects. The generation of bending sequences is also put into the broader perspective of an integrated CAPP system such as PART-S, which is under development presently in the author's laboratory
Interactive Management and Updating of Spatial Data Bases
The decision making process, whether for power plant siting, load forecasting or energy resource planning, invariably involves a blend of analytical methods and judgement. Management decisions can be improved by the implementation of techniques which permit an increased comprehension of results from analytical models. Even where analytical procedures are not required, decisions can be aided by improving the methods used to examine spatially and temporally variant data. How the use of computer aided planning (CAP) programs and the selection of a predominant data structure, can improve the decision making process is discussed
Computer‐simulated experiments and computer games: A method of design analysis
This paper describes a new research programme to design computer‐simulated experiments in the field of fuels and combustion, and describes a method of categorization based on a taxonomy proposed by Gredler. The key features which enhance science content and process skills are identified The simulations are designed to be as realistic as possible, and are built using three‐dimensional computer‐aided design, rendering and animation tools, with the intention of creating an interactive virtual laboratory on the computer screen. A number of computer games are also categorized against the computer simulations and the same taxonomy for comparison. The paper then describes how designers of computer simulations can add to their own learning by retrospectively analysing their own simulations
Computer-aided analysis and design of the shape rolling process for producing turbine engine airfoils
Mild steel (AISI 1018) was selected as model cold rolling material and Ti-6A1-4V and Inconel 718 were selected as typical hot rolling and cold rolling alloys, respectively. The flow stress and workability of these alloys were characterized and friction factor at the roll/workpiece interface was determined at their respective working conditions by conducting ring tests. Computer-aided mathematical models for predicting metal flow and stresses, and for simulating the shape rolling process were developed. These models utilized the upper bound and the slab methods of analysis, and were capable of predicting the lateral spread, roll separating force, roll torque, and local stresses, strains and strain rates. This computer-aided design system was also capable of simulating the actual rolling process, and thereby designing the roll pass schedule in rolling of an airfoil or a similar shape
- …
