600 research outputs found

    Clouds of Small Things: Provisioning Infrastructure-as-a-Service from within Community Networks

    Get PDF
    Community networks offer a shared communication infrastructure where communities of citizens build and own open networks. While the IP connectivity of the networking devices is successfully achieved, the number of services and applications available from within the community network is typically small and the usage of the community network is often limited to providing Internet access to remote areas through wireless links. In this paper we propose to apply the principle of resource sharing of community networks, currently limited to the network bandwidth, to other computing resources, which leads to cloud computing in community networks. Towards this vision, we review some characteristics of community networks and identify potential scenarios for community clouds. We simulate a cloud computing infrastructure service and discuss different aspects of its performance in comparison to a commercial centralized cloud system. We note that in community clouds the computing resources are heterogeneous and less powerful, which affects the time needed to assign resources. Response time of the infrastructure service is high in community clouds even for a small number of resources since resources are distributed, but tends to get closer to that of a centralized cloud when the number of resources requested increases. Our initial results suggest that the performance of the community clouds highly depends on the community network conditions, but has some potential for improvement with network-aware cloud services. The main strength compared to commercial cloud services, however, is that community cloud services hosted on community-owned resources will follow the principles of community network and will be neutral and open

    Towards distributed architecture for collaborative cloud services in community networks

    Get PDF
    Internet and communication technologies have lowered the costs for communities to collaborate, leading to new services like user-generated content and social computing, and through collaboration, collectively built infrastructures like community networks have also emerged. Community networks get formed when individuals and local organisations from a geographic area team up to create and run a community-owned IP network to satisfy the community’s demand for ICT, such as facilitating Internet access and providing services of local interest. The consolidation of today’s cloud technologies offers now the possibility of collectively built community clouds, building upon user-generated content and user-provided networks towards an ecosystem of cloud services. To address the limitation and enhance utility of community networks, we propose a collaborative distributed architecture for building a community cloud system that employs resources contributed by the members of the community network for provisioning infrastructure and software services. Such architecture needs to be tailored to the specific social, economic and technical characteristics of the community networks for community clouds to be successful and sustainable. By real deployments of clouds in community networks and evaluation of application performance, we show that community clouds are feasible. Our result may encourage collaborative innovative cloud-based services made possible with the resources of a community.Peer ReviewedPostprint (author’s final draft

    User centric community clouds

    Get PDF
    With the evolution in cloud technologies, users are becoming acquainted with seamless service provision. Nevertheless, clouds are not a user centric technology, and users become completely dependent on service providers. We propose a novel concept for clouds, where users self-organize to create their clouds. We present such an architecture for user-centric clouds, which relies on self-managed clouds based on doctrine and on identity management concepts

    A Secure and Fair Resource Sharing Model for Community Clouds

    Get PDF
    Cloud computing has gained a lot of importance and has been one of the most discussed segment of today\u27s IT industry. As enterprises explore the idea of using clouds, concerns have emerged related to cloud security and standardization. This thesis explores whether the Community Cloud Deployment Model can provide solutions to some of the concerns associated with cloud computing. A secure framework based on trust negotiations for resource sharing within the community is developed as a means to provide standardization and security while building trust during resource sharing within the community. Additionally, a model for fair sharing of resources is developed which makes the resource availability and usage transparent to the community so that members can make informed decisions about their own resource requirements based on the resource usage and availability within the community. Furthermore, the fair-share model discusses methods that can be employed to address situations when the demand for a resource is higher than the resource availability in the resource pool. Various methods that include reduction in the requested amount of resource, early release of the resources and taxing members have been studied, Based on comparisons of these methods along with the advantages and disadvantages of each model outlined, a hybrid method that only taxes members for unused resources is developed. All these methods have been studied through simulations

    An optimized computational model for multi-community-cloud social collaboration

    Get PDF
    PublishedCommunity Cloud Computing is an emerging and promising computing model for a specific community with common concerns, such as security, compliance and jurisdiction. It utilizes the spare resources of networked computers to provide the facilities so that the community gains services from the cloud. The effective collaboration among the community clouds offers a powerful computing capacity for complex tasks containing the subtasks that need data exchange. Selecting the best group of community clouds that are the most economy-efficient, communication-efficient, secured, and trusted to accomplish a complex task is very challenging. To address this problem, we first formulate a computational model for multi-community-cloud collaboration, namely MG3. The proposed model is then optimized from four aspects: minimizing the sum of access cost and monetary cost, maximizing the security-level agreement and trust among the community clouds. Furthermore, an efficient and comprehensive selection algorithm is devised to extract the best group of community clouds in MG3. Finally, the extensive simulation experiments and performance analysis of the proposed algorithm are conducted. The results demonstrate that the proposed algorithm outperforms the minimal set coverings based algorithm and the random algorithm. Moreover, the proposed comprehensive community clouds selection algorithm can guarantee good global performance in terms of access cost, monetary cost, security level and trust between user and community clouds

    A look at energy efficient system opportunities with community network clouds

    Get PDF
    Community networking is an emerging model of a shared communication infrastructure in which communities of citizens build and own open networks. Community networks offer successfully IP-based networking to the user. In addition, some hosts are connected to the network nodes in order to provide network management and end user services. Recently, clouds have been proposed for community networks. Some research projects such as Clommunity have started deploying computational infrastructure to enable cloud computing within community networks. In this paper we propose different options for such community clouds to contribute to energy efficient systems, in particular regarding cloud-based services and in relation to Smart Grid. Further discussion and interaction with the research initiatives on energy efficient systems should identify the most promising approach and outline possible ways for implementation.Peer ReviewedPostprint (published version

    Creative Gardens: Towards Digital Commons

    Get PDF
    date-added: 2015-03-04 03:12:21 +0000 date-modified: 2015-04-01 06:49:53 +0000date-added: 2015-03-04 03:12:21 +0000 date-modified: 2015-04-01 06:49:53 +0000This work was supported by the Arts and Humanities Research Council, CreativeWorks London Hub, grant AH/J005142/1, and the European Regional Development Fund, London Creative and Digital Fusion

    Prototyping Incentive-based Resource Assignment for Clouds in Community Networks

    Get PDF
    Wireless community networks are a successful example of a collective where communities operate ICT infrastructure and provide IP connectivity based on the principle of reciprocal resource sharing of network bandwidth. This sharing, however, has not extended to computing and storage resources, resulting in very few applications and services which are currently deployed within community networks. Cloud computing, as in today's Internet, has made it common to consume resources provided by public clouds providers, but such cloud infrastructures have not materialized within community networks. We analyse in this paper socio-technical characteristics of community networks in order to derive scenarios for community clouds. Based on an architecture for such a community cloud, we implement a prototype for the incentive-driven resource assignment component, deploy it in a testbed of community network nodes, and evaluate its behaviour experimentally. Our evaluation gives insight into how the deployed prototype components regulate the consumption of cloud resources taking into account the users' contributions, and how this regulation affects the system usage. Our results suggest a further integration of this regulation component into current cloud management platforms in order to open them up for the operation of an ecosystem of community cloud
    • …
    corecore