117,024 research outputs found

    Nematode control in 'green' ruminant production systems

    Get PDF
    Collectively, nematode parasites of domestic ruminants continue to pose the greatest disease problem in grazing livestock systems worldwide, despite the powerful and extensive chemotherapeutic arsenal available for their control. The widespread development of anthelmintic resistance, particularly in nematode parasites of small ruminants, and the trend towards nonchemical (ecological, organic, green) farming of livestock has provided an impetus for the research and development of alternative parasite control methods. This article provides a brief overview of the non-chemotherapeutic options for parasite control and how they might play a role either in organic farming or in other low-input farming systems

    Comment on "Research on values of GDF-15 level in the diagnosis of primary liver cancer and evaluation of chemotherapeutic effect"

    Get PDF
    Comment on research on values of GDF-15 level in the diagnosis of primary liver cancer and evaluation of chemotherapeutic effec

    Multiscale modelling of cancer progression and treatment control : the role of intracellular heterogeneities in chemotherapy treatment

    Get PDF
    Cancer is a complex, multiscale process involving interactions at intracellular, intercellular and tissue scales that are in turn susceptible to microenvironmental changes. Each individual cancer cell within a cancer cell mass is unique, with its own internal cellular pathways and biochemical interactions. These interactions contribute to the functional changes at the cellular and tissue scale, creating a heterogenous cancer cell population. Anticancer drugs are effective in controlling cancer growth by inflicting damage to various target molecules and thereby triggering multiple cellular and intracellular pathways, leading to cell death or cell-cycle arrest. One of the major impediments in the chemotherapy treatment of cancer is drug resistance driven by multiple mechanisms, including multi-drug and cell-cycle mediated resistance to chemotherapy drugs. In this article, we discuss two hybrid multiscale modelling approaches, incorporating multiple interactions involved in the sub-cellular, cellular and microenvironmental levels to study the effects of cell-cycle, phase-specific chemotherapy on the growth and progression of cancer cells.PostprintPeer reviewe
    • 

    corecore