28 research outputs found

    Charge relaxation dynamics of an electrolytic nanocapacitor

    Full text link
    Understanding ion relaxation dynamics in overlapping electric double layers (EDLs) is critical for the development of efficient nanotechnology based electrochemical energy storage, electrochemomechanical energy conversion and bioelectrochemical sensing devices as well as controlled synthesis of nanostructured materials. Here, a Lattice Boltzmann (LB) method is employed to simulate an electrolytic nanocapacitor subjected to a step potential at t = 0 for various degrees of EDL overlap, solvent viscosities, ratios of cation to anion diffusivity and electrode separations. The use of a novel, continuously varying and Galilean invariant, molecular speed dependent relaxation time (MSDRT) with the LB equation recovers a correct microscopic description of the molecular collision phenomena and enhances the stability of the LB algorithm. Results for large EDL overlaps indicated oscillatory behavior for the ionic current density in contrast to monotonic relaxation to equilibrium for low EDL overlaps. Further, at low solvent viscosities and large EDL overlaps, anomalous plasma-like spatial oscillations of the electric field were observed that appeared to be purely an effect of nanoscale confinement. Employing MSDRT in our simulations enabled a modeling of the fundamental physics of the transient charge relaxation dynamics in electrochemical systems operating away from equilibrium wherein Nernst-Einstein relation is known to be violated.Comment: Accepted for publication in the Journal of Physical Chemistry C on October 30 2014. Supplementary info available free of charge via the Internet at http://pubs.acs.org. Revised version includes more details on the computation of the molecular speed dependent relaxation time (MSDRT) and emphasizes the Galilean invariance of the computed MSDR

    Real-time dynamics of axial charge and chiral magnetic current in a non-Abelian (expanding) plasma

    Full text link
    Understanding axial charge dynamics driven by changes in Chern-Simons number densities is a key aspect in understanding the Chiral Magnetic Effect (CME) in heavy-ion collisions. Most phenomenological simulations assume that a large amount of axial charge is produced in the initial stages and that axial charge is conserved throughout the simulation. Within an (expanding) homogeneous holographic plasma, we investigate the real-time axial charge relaxation dynamics and their impact on the chiral magnetic current. Moreover, we discuss the real-time interplay of the non-abelian and the abelian chiral anomaly in the presence of a strong magnetic field. In the expanding plasma, the Chern-Simons diffusion rate and thus the axial charge relaxation rate are time dependent due to the decaying magnetic field. We quantify the changes in the late time falloffs and establish a horizon formula for the chiral magnetic current.Comment: 14+2 pages, 6+4 figure

    Coulomb Zero-Bias Anomaly: A Semiclassical Calculation

    Full text link
    Effective action is proposed for the problem of Coulomb blocking of tunneling. The approach is well suited to deal with the ``strong coupling'' situation near zero bias, where perturbation theory diverges. By a semiclassical treatment, we reduce the physics to that of electrodynamics in imaginary time, and express the anomaly through exact conductivity of the system σ(ω,q)\sigma(\omega, q) and exact interaction. For the diffusive anomaly, we compare the result with the perturbation theory of Altshuler, Aronov, and Lee. For the metal-insulator transition we derive exact relation of the anomaly and critical exponent of conductivity.Comment: 9 pages, RevTeX 3.

    An On-Demand Coherent Single Electron Source

    Get PDF
    We report on the electron analog of the single photon gun. On demand single electron injection in a quantum conductor was obtained using a quantum dot connected to the conductor via a tunnel barrier. Electron emission is triggered by application of a potential step which compensates the dot charging energy. Depending on the barrier transparency the quantum emission time ranges from 0.1 to 10 nanoseconds. The single electron source should prove useful for the implementation of quantum bits in ballistic conductors. Additionally periodic sequences of single electron emission and absorption generate a quantized AC-current

    Sub-electron Charge Relaxation via 2D Hopping Conductors

    Full text link
    We have extended Monte Carlo simulations of hopping transport in completely disordered 2D conductors to the process of external charge relaxation. In this situation, a conductor of area L×WL \times W shunts an external capacitor CC with initial charge QiQ_i. At low temperatures, the charge relaxation process stops at some "residual" charge value corresponding to the effective threshold of the Coulomb blockade of hopping. We have calculated the r.m.s.. value QRQ_R of the residual charge for a statistical ensemble of capacitor-shunting conductors with random distribution of localized sites in space and energy and random QiQ_i, as a function of macroscopic parameters of the system. Rather unexpectedly, QRQ_{R} has turned out to depend only on some parameter combination: X0LWν0e2/CX_0 \equiv L W \nu_0 e^2/C for negligible Coulomb interaction and XχLWκ2/C2X_{\chi} \equiv LW \kappa^2/C^{2} for substantial interaction. (Here ν0\nu_0 is the seed density of localized states, while κ\kappa is the dielectric constant.) For sufficiently large conductors, both functions QR/e=F(X)Q_{R}/e =F(X) follow the power law F(X)=DXβF(X)=DX^{-\beta}, but with different exponents: β=0.41±0.01\beta = 0.41 \pm 0.01 for negligible and β=0.28±0.01\beta = 0.28 \pm 0.01 for significant Coulomb interaction. We have been able to derive this law analytically for the former (most practical) case, and also explain the scaling (but not the exact value of the exponent) for the latter case. In conclusion, we discuss possible applications of the sub-electron charge transfer for "grounding" random background charge in single-electron devices.Comment: 12 pages, 5 figures. In addition to fixing minor typos and updating references, the discussion has been changed and expande

    Enhancing qubit readout through dissipative sub-Poissonian dynamics

    Full text link
    Single-shot qubit readout typically combines high readout contrast with long-lived readout signals, leading to large signal-to-noise ratios and high readout fidelities. In recent years, it has been demonstrated that both readout contrast and readout signal lifetime, and thus the signal-to-noise ratio, can be enhanced by forcing the qubit state to transition through intermediate states. In this work, we demonstrate that the sub-Poissonian relaxation statistics introduced by intermediate states can reduce the single-shot readout error rate by orders of magnitude even when there is no increase in signal-to-noise ratio. These results hold for moderate values of the signal-to-noise ratio (S100\mathcal{S} \lesssim 100) and a small number of intermediate states (N10N \lesssim 10). The ideas presented here could have important implications for readout schemes relying on the detection of transient charge states, such as spin-to-charge conversion schemes for semiconductor spin qubits and parity-to-charge conversion schemes for topologically protected Majorana qubits.Comment: 10 pages, 6 figures. Two appendices have been added. This version is close to the final published versio

    Nonlinear Dynamic Modeling, Simulation And Characterization Of The Mesoscale Neuron-electrode Interface

    Get PDF
    Extracellular neuroelectronic interfacing has important applications in the fields of neural prosthetics, biological computation and whole-cell biosensing for drug screening and toxin detection. While the field of neuroelectronic interfacing holds great promise, the recording of high-fidelity signals from extracellular devices has long suffered from the problem of low signal-to-noise ratios and changes in signal shapes due to the presence of highly dispersive dielectric medium in the neuron-microelectrode cleft. This has made it difficult to correlate the extracellularly recorded signals with the intracellular signals recorded using conventional patch-clamp electrophysiology. For bringing about an improvement in the signalto-noise ratio of the signals recorded on the extracellular microelectrodes and to explore strategies for engineering the neuron-electrode interface there exists a need to model, simulate and characterize the cell-sensor interface to better understand the mechanism of signal transduction across the interface. Efforts to date for modeling the neuron-electrode interface have primarily focused on the use of point or area contact linear equivalent circuit models for a description of the interface with an assumption of passive linearity for the dynamics of the interfacial medium in the cell-electrode cleft. In this dissertation, results are presented from a nonlinear dynamic characterization of the neuroelectronic junction based on Volterra-Wiener modeling which showed that the process of signal transduction at the interface may have nonlinear contributions from the interfacial medium. An optimization based study of linear equivalent circuit models for representing signals recorded at the neuron-electrode interface subsequently iv proved conclusively that the process of signal transduction across the interface is indeed nonlinear. Following this a theoretical framework for the extraction of the complex nonlinear material parameters of the interfacial medium like the dielectric permittivity, conductivity and diffusivity tensors based on dynamic nonlinear Volterra-Wiener modeling was developed. Within this framework, the use of Gaussian bandlimited white noise for nonlinear impedance spectroscopy was shown to offer considerable advantages over the use of sinusoidal inputs for nonlinear harmonic analysis currently employed in impedance characterization of nonlinear electrochemical systems. Signal transduction at the neuron-microelectrode interface is mediated by the interfacial medium confined to a thin cleft with thickness on the scale of 20-110 nm giving rise to Knudsen numbers (ratio of mean free path to characteristic system length) in the range of 0.015 and 0.003 for ionic electrodiffusion. At these Knudsen numbers, the continuum assumptions made in the use of Poisson-Nernst-Planck system of equations for modeling ionic electrodiffusion are not valid. Therefore, a lattice Boltzmann method (LBM) based multiphysics solver suitable for modeling ionic electrodiffusion at the mesoscale neuron-microelectrode interface was developed. Additionally, a molecular speed dependent relaxation time was proposed for use in the lattice Boltzmann equation. Such a relaxation time holds promise for enhancing the numerical stability of lattice Boltzmann algorithms as it helped recover a physically correct description of microscopic phenomena related to particle collisions governed by their local density on the lattice. Next, using this multiphysics solver simulations were carried out for the charge relaxation dynamics of an electrolytic nanocapacitor with the intention of ultimately employing it for a simulation of the capacitive coupling between the neuron and the v planar microelectrode on a microelectrode array (MEA). Simulations of the charge relaxation dynamics for a step potential applied at t = 0 to the capacitor electrodes were carried out for varying conditions of electric double layer (EDL) overlap, solvent viscosity, electrode spacing and ratio of cation to anion diffusivity. For a large EDL overlap, an anomalous plasma-like collective behavior of oscillating ions at a frequency much lower than the plasma frequency of the electrolyte was observed and as such it appears to be purely an effect of nanoscale confinement. Results from these simulations are then discussed in the context of the dynamics of the interfacial medium in the neuron-microelectrode cleft. In conclusion, a synergistic approach to engineering the neuron-microelectrode interface is outlined through a use of the nonlinear dynamic modeling, simulation and characterization tools developed as part of this dissertation research

    Photoinduced femtosecond relaxation of antiferromagnetic orders in the iron pnictides revealed by ultrafast laser ellipsometry

    Get PDF
    We report ultrafast softening of the antiferromagnetic order, ~150fs after the electron thermalization, which follows a two-step recovery pathway to reveal a distinct interplay of magnetism and the nematic order in iron pnictides
    corecore