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ABSTRACT 

 Extracellular neuroelectronic interfacing has important applications in the fields of 

neural prosthetics, biological computation and whole-cell biosensing for drug screening and 

toxin detection. While the field of neuroelectronic interfacing holds great promise, the 

recording of high-fidelity signals from extracellular devices has long suffered from the problem 

of low signal-to-noise ratios and changes in signal shapes due to the presence of highly 

dispersive dielectric medium in the neuron-microelectrode cleft. This has made it difficult to 

correlate the extracellularly recorded signals with the intracellular signals recorded using 

conventional patch-clamp electrophysiology. For bringing about an improvement in the signal-

to-noise ratio of the signals recorded on the extracellular microelectrodes and to explore 

strategies for engineering the neuron-electrode interface there exists a need to model, 

simulate and characterize the cell-sensor interface to better understand the mechanism of 

signal transduction across the interface.  

 Efforts to date for modeling the neuron-electrode interface have primarily focused on 

the use of point or area contact linear equivalent circuit models for a description of the 

interface with an assumption of passive linearity for the dynamics of the interfacial medium in 

the cell-electrode cleft. In this dissertation, results are presented from a nonlinear dynamic 

characterization of the neuroelectronic junction based on Volterra-Wiener modeling which 

showed that the process of signal transduction at the interface may have nonlinear 

contributions from the interfacial medium. An optimization based study of linear equivalent 

circuit models for representing signals recorded at the neuron-electrode interface subsequently 
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proved conclusively that the process of signal transduction across the interface is indeed 

nonlinear. Following this a theoretical framework for the extraction of the complex nonlinear 

material parameters of the interfacial medium like the dielectric permittivity, conductivity and 

diffusivity tensors based on dynamic nonlinear Volterra-Wiener modeling was developed. 

Within this framework, the use of Gaussian bandlimited white noise for nonlinear impedance 

spectroscopy was shown to offer considerable advantages over the use of sinusoidal inputs for 

nonlinear harmonic analysis currently employed in impedance characterization of nonlinear 

electrochemical systems.  

 Signal transduction at the neuron-microelectrode interface is mediated by the 

interfacial medium confined to a thin cleft with thickness on the scale of 20-110 nm giving rise 

to Knudsen numbers (ratio of mean free path to characteristic system length) in the range of 

0.015 and 0.003 for ionic electrodiffusion. At these Knudsen numbers, the continuum 

assumptions made in the use of Poisson-Nernst-Planck system of equations for modeling ionic 

electrodiffusion are not valid. Therefore, a lattice Boltzmann method (LBM) based multiphysics 

solver suitable for modeling ionic electrodiffusion at the mesoscale neuron-microelectrode 

interface was developed. Additionally, a molecular speed dependent relaxation time was 

proposed for use in the lattice Boltzmann equation. Such a relaxation time holds promise for 

enhancing the numerical stability of lattice Boltzmann algorithms as it helped recover a 

physically correct description of microscopic phenomena related to particle collisions governed 

by their local density on the lattice. Next, using this multiphysics solver simulations were carried 

out for the charge relaxation dynamics of an electrolytic nanocapacitor with the intention of 

ultimately employing it for a simulation of the capacitive coupling between the neuron and the 
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planar microelectrode on a microelectrode array (MEA). Simulations of the charge relaxation 

dynamics for a step potential applied at t = 0 to the capacitor electrodes were carried out for 

varying conditions of electric double layer (EDL) overlap, solvent viscosity, electrode spacing 

and ratio of cation to anion diffusivity. For a large EDL overlap, an anomalous plasma-like 

collective behavior of oscillating ions at a frequency much lower than the plasma frequency of 

the electrolyte was observed and as such it appears to be purely an effect of nanoscale 

confinement. Results from these simulations are then discussed in the context of the dynamics 

of the interfacial medium in the neuron-microelectrode cleft. In conclusion, a synergistic 

approach to engineering the neuron-microelectrode interface is outlined through a use of the 

nonlinear dynamic modeling, simulation and characterization tools developed as part of this 

dissertation research.  
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CHAPTER-1: INTRODUCTION 

1.1. Background and significance 

A neuron encodes and expresses its response to environmental cues through a change 

in the shape and/or firing rate of action potentials. Action potentials are changes in the 

membrane potential of a neuron generated in response to an activation of the nonlinear ionic 

currents flowing across voltage gated ion channels in the neural cell membrane. The wide 

variety of sensory neurons observed in nature, specialized for survival of various organisms in 

constantly changing and often times hostile physical and chemical environs, makes them 

suitable as highly sensitive probes of their extracellular environment. The detection and 

analysis of action potential shapes and firing rates can, therefore, be employed for applications 

in high throughput functional screening of drugs or toxins [1-4]. On the other hand, changes in 

neural signal coordinates can also be an important indicator in ascertaining the physiological 

health of neurons themselves. An understanding of the factors affecting the health of neurons 

can, therefore, help advance our knowledge of the progression of various diseases of the 

nervous system and the brain and the effects accruing from traumatic injuries to them [5-7]. 

This can then enable development of more effective drug treatments and therapies for them. 

Further, a study of the network behavior of neurons can be employed for gaining significant 

insights into biological computation taking place in the brain, the most complex of all organs in 

any organism [8]. Biological organisms with their cognitive powers can process and integrate 

visual and other sensory inputs far better than the most advanced of supercomputers. 

Therefore, the knowledge of the network behavior of neurons thus gained can be employed for 
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making better computers and functionally improved prosthetic devices. The study of neural 

action potential shapes, firing rates and network behavior thus assumes technological 

relevance for the advancement of human health and well being.  

1.2. Motivation – Techniques for studying neural signals 

 Neural signals can be studied at various levels of hierarchy. Whole brain studies typically 

employ electroencephalography (EEG), magnetic resonance imaging or computer aided 

tomography [9, 10]. Organotypic slices in in-vitro cultures are used to study the 

interrelationship between different parts of the brain and information processing in networks 

of neurons involved in higher cognitive functions like memory formation, information retrieval 

and pattern recognition [11-13]. Typically, such an electrical characterization of the nervous 

tissue is carried out using patch-clamp technique, microelectrode arrays (MEAs), field effect 

transistor (FET) arrays or voltage sensitive dyes. In-vivo studies of nervous tissue can also be 

performed using patch-clamp electrophysiology or implanted microelectrode or FET arrays [14-

17]. The work presented in this dissertation, however, concerns itself with the study of the 

neuroelectronic interface of dissociated single neurons with electrodes in in-vitro cultures. 

1.2.1. Patch-clamp electrophysiology 

 Conventional technique of patch-clamp electrophysiology for studying electrical activity 

of neurons in in-vitro culture systems can be employed in two distinct modes: voltage clamp 

and current clamp. In voltage clamp mode, a step-by-step increment of membrane potential 

from a typical holding potential of -70 mV (hyperpolarized state of neuron) enables a study of 
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the current-voltage relationship of the ionic currents flowing through the voltage-gated ion-

channels in the neural membrane. The current clamp mode, on the other hand, is employed to 

study the electrical response of a neuron in the form of a free variation of its membrane 

potential upon stimulation with square current pulses that either depolarize or hyperpolarize a 

neuron. If the holding potential for the cell membrane is below the resting membrane potential 

(typically around -50 to -30 mV) of the neuron then the state of a neuron is referred to as 

hyperpolarized and if it is greater than the resting membrane potential then it is referred to as 

depolarized.  The use of patch clamp electrophysiology to characterize the electrical properties 

of a neuron requires a breach of the neuronal membrane using a sharp glass micropipette for 

recording intracellular membrane currents or potentials (Figure 1). As a result, the signals 

recorded using patch-clamp electrophysiology are of the highest quality. However, the invasive 

nature of such a technique typically limits the life of a neuron to a few hours. Additionally, the 

experimental set-up for patch clamp electrophysiology demands a high level of operator skill, is 

extremely bulky and limits the number of cells being patched at a given time to at most two 

cells (Figure 2). These limitations make patch-clamp electrophysiology unsuitable and 

unattractive for applications in high-throughput screening of drugs and toxins, for study of 

neural network behavior or for chronic studies employing in-vitro models of neurodegenerative 

diseases or spinal cord injury.  

1.2.2. Voltage sensitive dyes 

 Neural membrane potentials can also be studied using voltage sensitive dyes that are 

organic molecular probes which attach themselves to the cell membrane.  
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Figure 1. An image showing a glass micropipette, microscope objective lens and the patching chamber on an 
electrophysiology rig. (Courtesy: Aditya Reddy Kolli, Hybrid Systems Laboratory, UCF.) 

 

Figure 2. An image showing the patch clamp electrophysiology rig with an optical microscope and patch clamp 
amplifiers mounted on it. 
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Changes in membrane potentials lead to a change in the absorbance, fluorescence or 

birefringence of these molecular probes giving rise to an optically detectable signal that enables 

visualization of the neuron generated potentials. Besides suffering from problems of low signal 

to noise ratio, the use of voltage sensitive dyes, although non-invasive, proves to be toxic when 

employed for chronic experimental studies [4, 18]. Another problem associated with using 

voltage sensitive dyes for high throughput drug and toxin detection is that the dyes may 

themselves interfere with the drug or toxin chemistry [4, 18]. For this reason, the development 

of technology for non-invasive extracellular recording of neuron-generated potentials using 

microelectrode (MEAs) and field effect transistor (FET) arrays assumes great significance [2, 19, 

20].  

1.2.3. Extracellular recording devices 

 The use of compact extracellular recording devices like MEAs and FET arrays is also, 

however, not without its own set of problems (Figure 3). Typically, extracellular signals 

recorded through these extracellular devices get attenuated by three orders of magnitude as 

compared to the signals recorded using intracellular patch clamp electrophysiology. There also 

occurs a modification of the signal waveform due to the dispersive dynamics of the dielectric 

medium comprising the porous protein-glycocalyx matrix in the neuron-electrode cleft (Figure 

4). The wealth of information present in the action potential shapes recorded using patch 

clamp electrophysiology is thus inaccessible for analysis in the extracellular recording methods 

employing MEAs and FET arrays.  
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Figure 3. An image showing a microelectrode array (MEA) mounted on an extracellular recording amplifier. A coin 
is placed by the side of the MEA to give an idea of its size. (Courtesy: Maria Stancescu, Hybrid Systems Laboratory, 
UCF) 

 

 

Figure 4. A schematic of the neuron-microelectrode interface 
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As a result, the problems associated with MEAs and FET arrays have limited their use to studies 

of changes in firing rate/pattern of action potentials in response to changes in environmental 

factors or in chronic experiments [19, 21, 22]. 

1.3. Previous studies on modeling and characterization of the cell-sensor interface 

 For the greater part so far, much of the effort on modeling the cell-sensor interface has 

focused on the use of point or area contact linear equivalent circuit [23-28] and finite element 

models [29-32] for a description of the interface with an assumption of passive linearity for the 

dynamics of the interfacial medium in the cell-electrode cleft. These models, therefore, fail to 

take in to account the complex processes of nonlinear electrodiffusion of ions through the 

porous protein-glycocalyx matrix and the dielectric dispersion involved in signal transduction 

across the neuron-electrode interface (Figure 4). Consequently, these models have proven to 

be inadequate for the correlation of the ion channel dynamics of an electrically active neuron 

with the potentials recorded on the extracellular microelectrode. For bringing about an 

improvement in the signal to noise ratio of the signals recorded on the extracellular 

microelectrodes and to explore strategies for engineering the cell-sensor interface using surface 

chemical modification of electrodes [33-35], microelectrode design or new electrode materials 

[36, 37], there exists a need to simulate and model the cell-sensor interface to better 

understand the mechanism of signal transduction across the interface. An understanding of the 

dynamics of the interfacial medium and the accompanying physicochemical changes during the 

process of signal transduction would then enable an identification of the tools and strategies 

necessary for systematically engineering the neuron-microelectrode interface for improving the 
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signal to noise ratio of the extracellular recording devices.  

1.4. Objectives 

 The goals of this dissertation project were, therefore, to develop tools that would allow 

for  

1. A ‘data-true’ characterization of the neuron-electrode interface aimed at understanding the 

mechanism of signal transduction at the neuron-electrode junction. 

2. Extraction of nonlinear material parameters like dielectric susceptibility, conductivity and 

ionic diffusivities for use in conjunction with a computational fluid dynamics model of the 

neuron-microelectrode interface to facilitate an engineering of the neuron-electrode 

interface. 

3. A simulation of the transient dynamics of the nonlinear electrodiffusion of ions in the 

mesoscale neuron-electrode cleft. 

 To achieve the aforementioned goals a synergistic three pronged approach making use 

of Volterra-Wiener characterization, linear equivalent circuit and computational fluid dynamics 

modeling was employed.  

1.5. Dissertation Outline 

 The rest of the dissertation is organized as follows: 

 Chapter 2 describes the ‘data-true’ characterization of the neuron-microelectrode 

junction through a Volterra-Wiener model estimated using Lee-Schetzen technique of cross-
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correlation from experimentally obtained stimulus-response data. The system identification 

results presented in the chapter show that there may or may not be any nonlinear contribution 

from the interfacial medium during signal transduction across the neuroelectronic interface 

[38]. 

Employing an optimization based study of the equivalent circuit models for representing 

signals recorded at the neuron-electrode interface Chapter 3 establishes that there is indeed a 

nonlinear contribution from the interfacial medium in the extracellular signal recorded at the 

metal microelectrode [39]. 

 Chapter 4 develops a theoretical framework for the extraction of the material 

parameters of the interfacial medium using nonlinear impedance spectroscopy based on an 

estimation of a Volterra-Wiener model of the interface through I-V characterization. 

 Chapter 5 details the step-by-step development of a lattice Boltzmann method (LBM) 

based multiphysics solver aimed at the simulation of ionic electrodiffusion in mesoscale 

systems. Further, it introduces a lattice Boltzmann algorithm based on a molecular speed 

dependent relaxation time that holds promise for enhancing the numerical stability of the 

lattice Boltzmann equation. 

 Chapter 6 employs the multiphysics solver developed in chapter 5 along with the 

molecular speed dependent relaxation time to simulate the charge relaxation dynamics of 

overlapping electric double layers in an electrolytic nanocapacitor under differing conditions of 

double layer overlap, solvent viscosity, electrode separation and ratio of cation to anion 

diffusion coefficients. 
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 Chapter 7 concludes the dissertation by outlining a synergistic approach to an 

engineering of the neuron-microelectrode interface through the use of Volterra-Wiener 

modeling in conjunction with lattice Boltzmann and equivalent circuit models of the interface 

developed as part of this dissertation.  
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CHAPTER-2: NONLINEAR DYNAMIC CHARACTERIZATION OF THE NEURON-
ELECTRODE JUNCTION 

2.1. Introduction 

 System identification is the technique of determining the transfer characteristics of a 

system based on its stimulus-response relationship. Models estimated using system 

identification can be classified in to two possible types: parametric and non-parametric [40, 41]. 

Both parametric and non-parametric models can be estimated using the experimentally 

obtained stimulus-response data records of the system. Parametric models make an 

assumption regarding the underlying structure of the system and as a consequence impose 

certain constraints on its dynamics. For example, equivalent circuit models of the neuron-

electrode interface assume that the dynamics of the interface are linear and can be 

represented using a combination of resistors and capacitors. Such models have been estimated 

in the past using experimental input-output data records obtained through linear impedance 

spectroscopy that employs sinusoidal inputs to characterize the interface [28, 42-44]. Linear 

equivalent circuit representations of the neuron-electrode interface, since they assume an 

underlying structure in terms of the connectivity of the different circuit elements and thereby 

impose constraints on the dynamics of the system, are inherently ‘biased’ and hence not ‘data 

true’. On the contrary, non-parametric models such as the Volterra-Wiener models are 

estimated exclusively from the experimentally obtained stimulus-response data records 

without any assumption of an underlying structure for the system under study. Non-parametric 

Volterra-Wiener models are therefore both ‘unbiased’ and ‘data-true’. 
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 In this chapter, results are presented from a Volterra-Wiener model of the neuron-

electrode junction estimated through a nonlinear dynamic characterization using a bandlimited 

Gaussian white noise input stimulus.  

2.2. Theory 

 The output      of a nonlinear causal, stationary and continuous system with a finite 

memory can be represented as a Volterra series in terms of its input      as 

                      
 

 

                               

 

 

 

                                         

 

 

     

(1) 

where kernels    represent the impulse response of the system given by  

                                        (2) 

and integration over τ from 0 to ∞ embodies the effect of all past and present inputs to the 

system beginning at t = 0. In general, for practical finite memory systems of the kind considered 

here the integration is carried out from 0 to μ, the extent of the system memory. The     order 

Volterra kernel describes the pattern of nonlinear interaction between   past stimulus impulses 

or epochs of a continuous input signal with regard to the effect that it has on the total system 

response. Based on equation (2) it can be seen that the impulse response of a nonlinear system 

includes contributions from the diagonals of all the kernels. The     order interaction therefore 

includes contributions from not just the     order kernel but also from kernels of order higher 
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than     [41]. As a result, this complicates the process of kernel estimation or system 

identification using impulses. To overcome this problem Wiener showed that if one employs a 

bandlimited Gaussian white noise      as input stimulus and orthogonalizes the functionals in 

the Volterra series using a procedure similar to Gram-Schmidt orthogonalization then the 

output      can be expressed in terms of a series of orthogonal functionals    as 

                       
        

 

   

 

                     
 

 

 

                                

 

 

               

 

 

 

                                       

 

 

      

                             

 

 

      

(3) 

where    are the Wiener kernels and the terms in square brackets are the zeroth, first, second 

and third order Wiener functionals    respectively.  Orthogonality of the Wiener functionals     

implies zero covariance such that  

                    j and          (4) 

where      represents the expectation value operator. The zeroth order Wiener kernel is just 

the expectation value of the system output and is given by  
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           (5) 

Now, making use of the Lee-Schetzen cross-correlation technique [45] which employs the fact 

that the odd moments of the Gaussian input signal      vanish identically, one can obtain the 

next three higher order Wiener kernels as  
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where   is the total time length of the recorded data,    are the lags,              , 

                    and                          . 

2.3. Materials and methods 

2.3.1. Cell Culture 

NG108-15 cell line (passage number: 16) was obtained from Dr. M. W. Nirenberg (NIH). 

NG108-15 cells were cultured according to published protocols [46, 47]. Briefly, stock was 

grown in T-25 and T-75 flasks in 90% Dulbecco’s modified Eagle’s medium (DMEM, GIBCO) 

supplemented with 10% Fetal Bovine Serum and HAT (GIBCO, 100x) supplement at 37C and 5% 
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CO2. Differentiation was induced by plating the cells in a serum-free defined medium (DMEM + 

B27 supplement, GIBCO) on the top of substrate embedded microelectrode arrays  (MEAs, 

Multichannel Systems, Reutlingen, Germany, 10 µm electrode, 200 µm separation) at a density 

of 40,000 cells/dish. Before plating, MEAs were incubated with poly-D-lysine (Sigma, 10 µg/ml) 

for 1 hour at 37 C.  

 

Figure 5. A neuron covering a microelectrode and being stimulated with bandlimited Gaussian white noise through 
a glass micropipette. 

2.3.2. Electrophysiological recordings 

On day 7 after plating of the cells on MEAs, the MEAs with cultured cells were 

transferred to the stage of a Zeiss Axioskop 2FS Plus microscope. Extracellular recordings from 

the substrate-embedded electrodes were performed with the help of a custom-made contact 

pad and an extracellular differential amplifier (Model 3000, A-M Systems). The extracellular 

solution for the recordings was DMEM (pH adjusted to 7.3 with HEPES, Sigma). Whole-cell 

patch clamp recordings were performed on neurons covering the microelectrodes completely 

(Figure 5). Cells on the electrodes were visualized by combining transmitted phase-contrast and 
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reflected bright field illumination. Patch pipettes (4-6    resistance) were prepared from 

borosilicate glass (BF150-86-10; Sutter, Novato, CA) with a Sutter P97 pipette puller and were 

filled with intracellular solution containing (in mM) potassium gluconate 130, MgCl2 2, EGTA 1, 

HEPES 15, and ATP 5. Voltage clamp and current clamp experiments were performed with a 

Multiclamp 700A (Axon, Union City, CA) amplifier, Digidata 1322A interface, and pClamp 9 

software.  

The neuronal differentiation of the NG108-15 cells was confirmed by recording inward 

sodium (fast negative transients) and outward potassium currents (slow positive transients) in 

the voltage clamp mode and by measuring action potentials in the current clamp mode using a 

200 ms depolarization stimulus (Figure 6 A and B). The corresponding extracellular response 

recorded on the microelectrode is shown in Figure 6 C.  

Experiments employing white noise stimulation of the neuron-electrode junction were 

performed if the access resistance for the neuron was less than 15    and the action potential 

evoked a detectable signal on the extracellular electrode. For obtaining the input-output data 

records, neurons were stimulated through the intracellular patch pipette in voltage clamp 

mode with band limited (0-500 Hz) Gaussian white noise sampled at a rate of 9.8 kHz for 100 

seconds (see Figure 7). The white noise signal was generated in MATLAB and imported to 

pCLAMP as a stimulus file. Whole cell capacitance and resistance were compensated but no 

series-resistance compensation was used. The holding membrane potential was -10 mV and the 

white noise stimulus spanning an amplitude range of ± 50 mV was superposed on this signal.  
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Figure 6. Examples of (A) Inward sodium and outward potassium currents obtained under voltage clamp from the 
patched neuron covering the microelectrode, (B) Intracellular action potentials, and, (C) their corresponding 
extracellular responses as recorded on the microelectrode. 
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Figure 7. A schematic for the characterization of the neuron-electrode junction using bandlimited Gaussian white 
noise. 

The extracellular signal was high and low pass filtered at 1Hz (using a second order Bessel filter) 

and 1 kHz (using a fourth order Bessel filter) respectively. The data, thus obtained, was then 

exported to Matlab for further analysis. 

2.4. Results 

For an estimation of the Volterra-Wiener model of a neuron-microelectrode junction, a 

bandlimited Gaussian white noise signal spanning the frequency and amplitude range of natural 

input for the system was employed to characterize the system. The non-parametric modeling of 

the neuron-electrode interface can be looked upon as a typical system identification problem 

involving determination of the stimulus-response transform wherein the neuron-generated 

potentials constitute the stimulus, the recorded extracellular potential on the microelectrode 
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the response, and, the neuron-electrode cleft the stimulus transforming system. For the case of 

the neuron-electrode junction the model estimation was restricted to just the first and second 

order Wiener kernels. Figure 8 A and B show the first and second order Wiener kernels 

computed using the Lee-Schetzen technique of cross-correlation. As described in the 

experimental methods, the 1 Hz high pass Bessel filter was used to remove the slowly varying 

non-stationarities in the output signal that led to non-convergence of the first and second order 

kernels for even very large values of the time lags  . These slowly varying non-stationarities 

could possibly be a result of the changes in the physiology of the cell due to a change in 

intracellular cytosolic factors upon impaling with a glass micropipette and gradual cell death 

occurring typically over a period of 1-2 hours. The 1 kHz low pass (fourth order) Bessel filter was 

used to limit the contribution of the high frequency noise to the output signal and frequencies 

at which there is no significant contribution from the frequency components present in the 

action potential generated by the neuron. 

The response of the experimentally obtained Wiener kernels was then verified with the 

intracellular action potential serving as the test stimulus. Figure 9 A shows an intracellular 

action potential obtained from the neuron-electrode junction shown in Figure 5. Figure 9 B 

shows the corresponding predicted extracellular response with contributions from first and 

second order reconstructions obtained using the respective Wiener kernels. Also, the actual 

extracellular response recorded on the microelectrode is shown for comparison. It is evident 

that the predicted output closely follows the actual output recorded on the extracellular 

microelectrode.  
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Figure 8. (A) First, and, (B) second order Wiener kernels computed from the input-output records corresponding to 
Gaussian white noise stimulus obtained from the neuron electrode junction. 

B. 

A. 
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Figure 9. (A) Intracellular action potential as recorded from the neuron-electrode system shown in Figure 5, and, 
(B) Actual output as recorded on the extracellular microelectrode (solid line), linear predicted output from the first 
order kernel (dotted), quadratic predicted output from the second order kernel (dash-dot-dash) and the total 
predicted output obtained by summing the outputs obtained from the two Wiener kernels (dashed).  

A. 

B. 
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2.5. Discussion 

Traditionally, as pointed out in the previous chapter, the neuron-electrode interface has 

been modeled as a passive linear equivalent circuit with a combination of resistances and 

capacitances representing the neuron-electrode cleft and the recording microelectrode [23-28]. 

The intracellular potentials generated through the use of Hodgkin-Huxley model or other 

similar models have then been employed as stimuli with the linear equivalent circuit 

(representing the interface) forming the input transforming system. In this chapter, we have 

presented results from a non-parametric Volterra-Wiener characterization for the composite 

neuron-electrode junction with the intracellular potentials forming the input; the recorded 

extracellular potentials on the microelectrode the output; and, the neuronal membrane and 

the neuron-electrode cleft the input transforming system. Results presented here show the 

presence of nonlinear dynamic processes occurring during the process of signal transduction 

across the neuron-electrode junction that contribute to the second order Wiener kernel. As a 

consequence it becomes important to revisit the assumptions pertaining to the passive linearity 

of the interface.  

2.5.1. Possible hypotheses 

The following two competing hypotheses can be advanced to explain the origins of the 

nonlinear contributions to the extracellular signal recorded on the microelectrode. 

2.5.1.1. Linear interface 

 It can be seen that the second order nonlinear response shown in Figure 9 B is biphasic 

in nature with the initial negative going transient coinciding with the timing of the inward 
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sodium current and the latter positive transient with the slow outward potassium current 

during the time course of the action potential. Based on this coincidence one could ascribe the 

nonlinear part of the extracellular response entirely to the active ionic currents flowing across 

the neuronal membrane allowing one to conveniently model the linear part of the response 

using an equivalent circuit model of the interface [43]. 

2.5.1.2. Nonlinear interface 

On the other hand, based on an intuitive understanding of the physics of 

electrodiffusion governed by a system of coupled nonlinear Poisson-Nernst-Planck and the 

mass conservation or continuity equations together with the expected dielectric relaxation of 

biological macromolecules in the neuron-electrode cleft (thickness on the order of 20-110 nm 

[48]) in the presence of high electric fields generated during an action potential, it appears 

reasonable to expect and observe nonlinear effects in the process of signal transduction across 

the interface. It is notable in this regard that other researchers have also found it difficult to 

interpret extracellularly recorded signals based solely on the linear equivalent circuit modeling 

approach and have felt the need to take into account the electrodiffusion of ions in the neuron 

electrode cleft [49]. 

Whether the appearance of nonlinearity is due to the activity of ion channels in the 

neuronal membrane or due to the physics of electrodiffusion and dielectric relaxation or a 

combination thereof is difficult to say from the observations presented here and further careful 

experiments need to be designed to isolate the sources of nonlinearity. Understanding these 

phenomena taking place at the neuron-electrode interface during the process of signal 
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transduction is key to correctly interpreting the extracellularly recorded potentials on the 

microelectrode and to ascertain their relationship to the corresponding intracellular potentials.  

2.6. Conclusions 

The complexity of the process of signal transduction across the interface precludes the 

possibility of using a direct physics based first principles approach to modeling the neuron-

electrode interface. However, faced with such a predicament, the technique of Volterra-Wiener 

characterization circumvents, both, the difficulties inherent in the physics based modeling 

approach and the assumptions made in the formulation of equivalent circuit models. Non-

parametric Volterra-Wiener modeling therefore offers a novel way to successfully characterize 

the neuron-electrode junction in a realistic fashion. The use of Volterra-Wiener 

characterization, thus, marks an important, albeit a small, step towards gaining an 

understanding of the processes governing the transformation of the intracellular potentials 

generated by the neuron into the signals recorded on the extracellular microelectrode. 
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CHAPTER-3: EQUIVALENT CIRCUIT MODELS FOR REPRESENTING EXTRACELLULAR 
RECORDINGS AT THE NEURON-ELECTRODE INTERFACE 

3.1. Introduction 

In Chapter 2, an estimation of a non-parametric Volterra-Wiener model of the neuron-

electrode junction using experimentally obtained stimulus-response data records indicated the 

presence of second order nonlinear effects that occur during the process of signal transduction 

across the planar neuron-microelectrode interface. It was, however, not possible from the 

Volterra-Wiener model to conclusively prove whether these nonlinear contributions were 

exclusively from the neuron or from a combination of the dynamics of the neuron and the 

nonlinear ionic electrodiffusion and dielectric relaxation of the extracellular medium in the 

neuron-electrode cleft. If the former were to be true then linear equivalent circuit models of 

the interface would provide an appropriate representation of the signal transduction process at 

the neuroelectronic junction. However, in this regard, recently other researchers have also 

questioned the use of equivalent circuit models for simulating the cell-sensor interface based 

on arguments related to the physics of electrodiffusion of ions in the cleft between the 

electrically active cell and the sensor and a modulation of the surface potential on the sensor 

surface [50-52]. Although models based on a description of electrodiffusion of ions in the cell-

biosensor interface have been advanced, to date there has been no systematic attempt to 

explore the limitations of linear equivalent circuit models for representing the cell-biosensor 

interface.  

Non-parametric Volterra-Wiener models are useful to the extent that they offer an 



26 

 

‘unbiased’ and ‘data-true’ characterization of the system dynamics and can be employed to 

predict outputs for arbitrary inputs but they do not offer any additional insights into the inner 

workings of the system. However, they do offer plausible hypotheses regarding the underlying 

structure of the system dynamics which can then be tested further using parametric models. 

Therefore, to test if a passively linear interface employed in point or area contact equivalent 

circuit models is a valid representation of the system and to ascertain if there is indeed any 

contribution to the extracellular signals from the dynamics of the interfacial medium in the 

neuron-microelectrode cleft that cannot be modeled based purely on the theory of linear 

equivalent circuit models, a systematic study based on an optimization of the parameters of an 

equivalent circuit model for the neuron-microelectrode interface was undertaken. Additionally, 

results were compared and contrasted from the optimization of parameters of equivalent 

circuit models for a neuron simultaneously interfaced to an ‘on-cell’ patch electrode and the 

planar microelectrode (Figure 10 A and B) by fitting the simulated results to the extracellularly 

recorded signals obtained by a stimulation of the neuron through an intracellular patch 

electrode. It was believed that as a control system, the ‘on-cell’ patch model of the neuron-

patch electrode interface having a gigaOhm seal with the neuronal membrane would allow for 

a direct measurement of the cell-generated membrane potentials and also serve as a limiting 

case for the neuron microelectrode interface (Figure 10 A and B). The ‘on-cell’ patch would 

have a smaller area of attachment on the neuronal membrane compared to the cell-electrode 

contact at the planar neuron-microelectrode interface, but would be better defined.  
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Figure 10 (A) An illustration of the experimental arrangement for the electrophysiological characterization of the 
‘on-cell’ neuron-patch electrode and neuron-microelectrode interfaces. (B) An image of a NG108-15 neuron 
covering a planar microelectrode on an MEA interfaced simultaneously to intracellular and ‘on-cell’ extracellular 
Ag/AgCl patch electrodes. 

Also, at the extracellular neuron-patch electrode interface the cell membrane would be in 

direct contact with a large volume of the extracellular bath solution inside the patch electrode 

in sharp contrast to the small volume of the extracellular solution in the narrow (20-110 nm) 

neuron-microelectrode cleft.  The two systems would also be different due to the presence of 

the porous protein-glycocalyx matrix and the extracellular matrix proteins deposited on the 

microelectrode due to a prolonged contact with the cell membrane. However, by studying the 

effect of these differences it was hoped to further understand this complicated system. 
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3.2. Materials and methods 

 Several different types of extracellular signal shapes recorded both with planar 

microelectrodes and field effect transistors have been reported in literature.  On the basis of 

the recorded shapes the neuron-sensor junctions have broadly been classified into three major 

types: (a) capacitive, (b) ohmic and (c) anti-capacitive junctions characterized by a leading 

positive transient, direct proportionality to the intracellular signal and a leading negative 

transient respectively [28, 53-55]. Of these, the ohmic junction represents a strong coupling 

between the neuron and the sensor and its occurrence is the least common while most of the 

recorded extracellular signals fall under either the capacitive or the anti-capacitive category. 

The capacitive coupling has been interpreted on the basis of the linear junction conductance 

alone but the interpretation of the anti-capacitive coupling has required assumptions of a 

difference in the ion-channel distributions or a variance in their conductivity in the attached 

membrane compared to the free membrane [56]. However, there exists no conclusive evidence 

of either selective accumulation-depletion of ion-channels in the attached membrane or a 

difference in their conductance with respect to the free membrane [52]. Therefore, to test the 

hypothesis of the passive linearity of the neuron-electrode interface, in this paper we 

exclusively focused our attention on the extracellularly recorded signals that conformed to the 

‘linear’ capacitive coupling of the neuron-electrode interface as previously reported in the 

literature [28, 53-55]. 

3.2.1. Cell culture and electrophysiological recording protocols 

Briefly, NG108-15 neurons were cultured on top of substrate embedded microelectrode 
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arrays and three-way electrophysiological recordings (Figure 10 A and B) were performed on 

them in voltage and current clamp modes. The culture of the NG108-15 neurons and 

extracellular and intracellular electrophysiological recordings from the neuron-electrode 

interfaces were carried out according to protocols and techniques described in chapter 2. 

Whole-cell patch clamp recordings were performed using an intracellular electrode on neurons 

covering the microelectrodes completely while a second patch electrode filled with the 

extracellular solution was employed to form a seal with the neuronal membrane without 

breaking in to the cell.  

 NG108-15 cells are a cross between mouse neuroblastoma and rat glioma cells that 

unlike neurons do not form synapses among themselves but at the same time retain fully 

functional neuron-like ion-channels. The non-synapsing feature of the NG108-15 cells makes 

them ideally suited for use as whole-cell biosensors in high-throughput drug screening and 

toxin detection wherein an undesirable component of independent network-like behavior of 

neurons can be avoided while retaining the sensitivity advantage of neurons. 

3.2.2. Mathematical models 

3.2.2.1. NG108-15 neurons 

A Hodgkin-Huxley type mathematical model of NG108-15 cells, based on the 

thermodynamic rate constant approach developed previously [57-59], was employed to extract 

the ion-channel parameters for the sodium, calcium and potassium ion channels. The dynamic 

membrane potential    in the mathematical model for the NG108-15 neuron was computed 

using 
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             (9) 

where      is the external current injected into the neuron through the intracellular patch 

electrode and    the membrane capacitance. The total ionic membrane current        and the 

leakage current    were described in terms of the membrane potential    as  

                     (10) 

        
           (11) 

      
         (12) 

        
          (13) 

             (14) 

while the dynamics of the state variables for the ion-channels were given by  

  

  
 
    

  
 (15) 

where    ,   ,    ,    ,    and     are maximum ion channel conductances followed by 

corresponding reversal potentials (sodium, potassium and calcium in that order);    and    are 

the leakage conductance and leakage reversal potentials respectively;  ,  ,  , and    are the 

state variables with   ,   ,   , and    as their steady state values and the  ’s their voltage 

dependent time constants. The maximum conductance    of the leakage current across the cell 

membrane was computed using 
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 (16) 

where    
      and    

      are the membrane ionic currents at the holding potentials     and     

respectively and    is the experimentally obtained membrane resistance. Membrane holding 

potentials     )mV 85(  and     mV) 80(  were chosen such that there was no significant 

contribution from the opening of the voltage-gated sodium, potassium and calcium ion 

channels at these potentials i.e. the membrane was in a hyperpolarized state. The leakage 

reversal potential    was then computed using 

   
   
    

     
 

  
    (17) 

This made use of the fact that the net membrane current at the resting membrane potential   
  

is zero. The superscript     on the ion channel mediated currents represents the currents 

computed at the resting membrane potential. The voltage dependent steady state parameters 

and the time constants were computed using the general formulae 

   
 

                  
 (18) 

and 

   
 

                                        
 (19) 

where the fitting parameters were:   , related to the number of moving charges during the 

opening and closing of the ion channels;     , to the half activation/inactivation potential of the 
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ion channel;  , related linearly to the activation or the inactivation time constant; and  , to the 

asymmetric position of the moving charge in the cell membrane.  , is the usual Faraday’s 

constant. The experimentally obtained parameters used in the model were:   , the membrane 

resistance;   
 , the resting membrane potential;   , the membrane capacitance; and     , the 

injected current. 

3.2.2.2. ‘On-cell’ neuron patch-electrode interface 

The neuron-patch electrode interface was modeled using a two compartment system as 

depicted in Figure 11 A. The physical significance of the equivalent circuit elements used in the 

model of the ‘on-cell’ neuron patch electrode interface was as follows:     , the resistance of 

the extracellular medium between the free membrane of the neuron and the ground electrode; 

   , the free membrane capacitance;     , the internal cytoplasmic resistance to ionic current 

flow as seen by the ‘on-cell’ extracellular patch electrode;    , the capacitance of the portion 

of neuronal membrane interfaced to the extracellular patch electrode;   , the seal resistance 

between the inside of the ‘on-cell’ patch electrode and the bulk extracellular medium;    , the 

spreading resistance between the cell and the extracellular patch electrode;    and   , the 

resistance and the capacitance of the extracellular patch electrode respectively with    

representing the capacitive coupling between the glass micropipette tip and the extracellular 

medium; and,   , the input impedance of the recording amplifier. The attached and free 

membrane capacitances,     and    , being in parallel, are directly proportional to the 

fractional surface areas of the attached and free membranes respectively and were computed 

based on the experimentally determined values for the membrane capacitance    using 
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equations (20) and (21) 

         (20) 

             (21) 

where    is the fractional surface area of the attached membrane. 

 

Figure 11. Schematics of the point contact equivalent circuit models for (A) the ‘on-cell’ neuron-patch electrode 
interface and (B) the neuron-microelectrode interface. Vo represents the extracellular output. 
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The extracellular potential recorded with the ‘on-cell’ patch electrode for the circuit model 

depicted in Figure 11 A was computed using Kirchoff’s current and voltage law based set of 

time dependent linear first order ordinary differential equations that were coupled to the 

equations (15) for the Hodgkin-Huxley type linear thermodynamic model of the NG108-15 

neuron. 

3.2.2.3. Planar neuron-microelectrode interface 

For modeling the neuron-microelectrode interface a more refined two compartment 

equivalent circuit model was employed (Figure 11 B) which included additional equivalent 

circuit elements to take into account the complexity arising from modeling the presence of EDL 

effects in the narrow 20-110 nm wide neuron-microelectrode cleft. The resistance and 

capacitance of the EDL associated with the protein-glycocalyx complex attached to the portion 

of the cell-membrane in contact with the microelectrode were modeled with circuit elements 

    and     respectively, while resistance     and capacitance     modeled the equivalent 

resistance and capacitance of the EDL associated with the extracellular matrix deposited on the 

microelectrode. Resistor     and capacitor    modeled the resistance and capacitance of the 

microelectrode and the parasitic shunt capacitance between the insulated connection leads 

(from the microelectrode to the amplifier) and the bulk electrolyte was modeled with the shunt 

capacitance    . The sealing resistance    simulated the resistance to ionic current flow 

between the center of the neuron-microelectrode cleft and the bulk extracellular medium. The 

dynamics of the neuron-microelectrode interface for the equivalent circuit model shown in 

Figure 11 B were simulated using coupled differential equations for the linear interface 
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combined with equations (15) that modeled the ion-channel kinetics of the NG108-15 neuron. 

3.2.3. Optimization of the model parameters 

3.2.3.1. NG108-15 neurons 

Previously estimated average values of the ion-channel parameters for NG108-15 

neurons were used as starting values for the ion-channel parameter fitting procedure [58]. The 

fitting procedure was customized using a graphical user interface. The parameters for the 

sodium, potassium and calcium channels were obtained by fitting the simulated ionic currents 

and membrane potentials to the experimentally recorded ion-channel mediated membrane 

currents and potentials obtained from the voltage and current clamp recordings of the neuron 

respectively. Initially, the sodium currents were fitted in the range -65 mV to -35 mV followed 

by a fitting of the potassium currents in the -15 mV to +15 mV range. After this a simultaneous 

fitting of the ion-channel parameters was carried out to obtain a first estimate of the 

parameters for the sodium, potassium and calcium channels. Further, to overcome the 

limitations of the parameter fitting procedure with regard to the uniqueness of the large 

number of fitted parameters and to obtain a quasi-unique set, a second optimization of the 

estimated ion channel parameters was performed by fitting the simulated action potentials to 

the experimental current clamp signals. 

3.2.3.2. Neuron-electrode interface 

Optimization of the equivalent circuit parameters for the neuron-electrode interface 

was carried out in two steps. In the first step, all circuit parameters, including the fractional 
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surface area of the attached membrane but excluding the experimentally determined total 

membrane capacitance   , were optimized by fitting the simulated extracellular signals to the 

experimental sub-threshold stimulation records obtained from the neuron-electrode interfaces. 

It is accepted that sub-threshold stimulation of a hyper-polarized neuron is not accompanied by 

an opening of the voltage gated membrane ion-channels responsible for the generation of 

action potentials and as a result there is no corresponding contribution from ionic 

electrodiffusion to the extracellular signals recorded on the electrodes. A sub-threshold 

stimulation pulse leads to a depolarization of the neuronal membrane through intracellular 

current injection and a consequent electromigration of the ions under the influence of an 

electric field. In this regime, the membrane conductance stays ohmic and is characterized by an 

ohmic leakage current across the membrane. As the sub-threshold stimulation pulse is not 

accompanied by an opening of the voltage gated ion-channels it does not induce significant 

ionic concentration gradients between the neuron-electrode interface and the bulk 

extracellular medium. In the case of the supra-threshold stimulation of the neuron, however, 

the opening of the voltage gated ion-channels leads to a significant difference in the ionic 

concentrations at the neuron-electrode interface relative to the ionic concentrations in the bulk 

extracellular medium. Therefore, the second step in the optimization of the equivalent circuit 

parameters for the neuron-electrode interface involved fixing the optimized invariant 

parameters obtained in step one and a re-evaluation of the remaining parameters of the model 

for the neuron-electrode interface by a fitting of the simulated signals to the experimental 

signals obtained from the supra-threshold stimulation of the neuron. This, as hypothesized, 

would enable quantification of the changes in the equivalent circuit parameters affected by the 
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physics of ionic electrodiffusion upon opening of the voltage-gated ion-channels as one 

transitioned from the sub- to the supra-threshold regime of neuronal stimulation. 

3.2.4. Numerical methods 

The coupled ordinary differential equations for the linear thermodynamic model of the 

neuron and the equivalent circuit representations of the neuron-electrode interfaces were 

numerically integrated in MATLAB (The MathWorks, Natick, MA) using its in-built differential 

equation solver ode15s for the solution of a set of stiff equations. The relative and absolute 

error tolerances of MATLAB’s ode15s solver were set to 10-4 and 10-7 respectively. 

An in-built MATLAB optimization routine fmincon (employed for computing a 

constrained minimum of a function dependent on several variables within specified bounds 

and/or linear or nonlinear constraints) was first used for the estimation of the ion-channel 

parameters for the NG108-15 neurons and subsequently for the estimation of the equivalent 

circuit parameters for the neuron-electrode interfaces by fitting the simulated signals to the 

experimentally recorded signals. All parameter optimizations were carried out by minimizing 

the sum of squared residuals as shown in equation (22) 

                  

 

   (22) 

where       is the simulated data at time     and       is the recorded value at that instant of 

time. However, for a comparison of the quality of fitting of the simulated signals to the 

experimental signals of differing magnitudes recorded from the three electrodes, the 
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normalized sum of squared residual        values are reported here.  

The ‘algorithm’ option in MATLAB for the optimization routine fmincon was set to the 

sequential quadratic programming (SQP), quasi-Newton line-search algorithm for all 

optimizations. An optimization termination tolerance of 10-8 for the minimizing function and 

the parameters being optimized was employed while the tolerance on constraint violation for 

the optimized parameters was fixed at 10-12. If a constraint violation on the upper or lower 

bounds for any parameter(s) was reported at the termination of the optimization routine then 

the limits were appropriately adjusted and the optimization procedure repeated for that case. 

The lower and upper bounds of the equivalent circuit model parameters were selected based 

on known typical values of the parameters from experiments and published literature [26, 60, 

61]. The amplifier input impedance    was fixed at       for all simulations. 

3.3. Results 

3.3.1. Ion-channel parameters for the NG-108-15 neurons 

The results from the ion-channel parameter fitting procedure for the voltage and 

current clamp recordings are shown for a set of representative NG108-15 neurons, indicated by 

Cell 1 (Figure 12, A1 and A2) and Cell 2 (Figure 12, B1 and B2), selected from a group of neuron-

electrode interfaces examined experimentally     .  For the voltage clamp recordings an 

excellent fit to the experimental results was obtained for the potassium channel mediated ionic 

currents (Figure 12, A1 and B1 outward currents to the right of the dashed vertical black lines) 

but the fitted traces overestimated the sodium channel currents (Figure 12, A1 and B1, inward 
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currents to the left of the dashed vertical black lines) due to space-clamping effects generated 

as a result of the large size of the NG108-15 neurons.  

 

Figure 12. A comparison of the simulated results with the experimentally recorded intracellular signals after an 
optimization of the ion-channel parameters. (A1 and B1) Experimental voltage clamp signals recorded using 10mV 
potential steps starting from a holding potential of -85mV (solid line) and their corresponding simulated voltage 
clamp signals (dotted line) using optimized ion-channel parameters for Cell 1 and Cell 2 respectively (See Table I, A 
and B). Currents to the left of the dashed black vertical lines represent inward sodium currents while to the right of 
the lines outward potassium currents are shown. (A2 and B2) Experimental sub- (solid line) and supra-threshold 
(solid line) intracellularly recorded current clamp signals from Cell 1 (Sub-threshold current injection,      

       and supra-threshold current injection,                    ; membrane capacitance        ; 

and, resting membrane potential   
          ) and Cell 2 (Sub- and supra-threshold current injection, 

            ,        ; membrane capacitance        ; and, resting membrane potential   
  

        ) respectively. Simulated sub- (dotted line) and supra- threshold (dotted line) intracellular current clamp 
signals for Cell 1 and Cell 2 using optimized ion-channel parameters shown in Table I, A and B. 
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Table 1. Optimized ion channel parameters for (A) Cell 1 and (B) Cell 2 obtained by a fitting of the simulated current and voltage clamp intracellular signals to 
the experimentally recorded signals

a
. 

A.  

   Activation 

 

Inactivation 

Channel g  
rev

V  z  1/2
V    A  z  1/2

V    A  

Sodium 157.67 120.0 7.10 -47.38 -0.43 0.42 -19.09 -63.72 0.46 2.79 

Potassium 16.05 -80.0 3.16 -14.43 0.13 8.65 - - - - 

Calcium 3.82 32.0 2.59 -5.07 -0.59 0.91 - - - - 

Leakage 1.61 -54.6 - - - - - - - - 

 

B.  

   Activation 

 

Inactivation 

Channel g  
rev

V  z  1/2
V    A  z  1/2

V    A  

Sodium 51.56 120.0 7.48 -56.00 -0.38 0.42 -20.25 -58.65 0.46 2.97 

Potassium 16.02 -80.0 1.62 -42.64 0.03 14.28 - - - - 

Calcium 3.82 32.0 2.59 -5.11 -0.59 0.91 - - - - 

Leakage 9.09 -34.0 - - - - - - - - 

a 
The ion-channel conductances and the electric potentials are reported in nano-Siemens and mV respectively. 



41 

 

Table 2. Optimized parameters of the point contact equivalent circuit model for the ‘on-cell’ neuron-patch electrode interfaces for (A) Cell 1 and (B) Cell 2
b
. 

A.  

 j
a  

e
C  

ext
R  int

R  
s

R  sp
R  sp

R  

Sub 0.62 6.00 4.25e-5 5.20e-3 1.56e-1 5.00e-3 6.25e-3 

Sup O O 2.40e-6 1.65 5.39e-1 6.18e-2 O 

 

B.  

 j
a  

e
C  

ext
R  

int
R  

s
R  sp

R  
sp

R  

Sub 0.89 4.71e-1 1.28e-4 1.20e-1 6.75e-2 1.85e-1 3.31e-2 

Sup O O 3.86e-4 1.17 1.28e-1 5.18e-3 O 

b 
The symbol ‘O’ stands for the point contact equivalent circuit model parameters fixed at values obtained from sub-threshold optimization of the model 

parameters for the neuron-electrode interfaces. The fractional surface area of the attached membrane is reported as a percentage of the total membrane 
surface area; all resistances are in gigaohms    and the capacitances are in picoFarads (pF) . ‘Sub’ and ‘Sup’ refer to sub- and supra-threshold stimulations 

respectively. 



42 

 

An excellent fit to the experimentally recorded signals was obtained for the current 

clamp recordings for both the sub- and supra-threshold stimulation cases (Figure 12, A2 and 

B2). Table I, A and B, shows the optimized ion-channel parameter values for the recording data 

from the NG108-15 neurons reported here. The estimated ion-channel parameters were then 

fixed and employed further in the determination of the parameters of the equivalent circuit 

models for the neuron-electrode interface. Also, in all subsequent simulations of the two 

compartment equivalent circuit models of the neuron-electrode interface, a uniform spatial 

distribution of the different types of ion-channels in the attached and the free neuronal 

membranes was assumed. 

3.3.2.  ‘On-cell’ neuron patch electrode interface 

 For the ‘on-cell’ neuron patch-electrode interface (Figure 11 A) the equivalent circuit 

parameters optimized using the extracellular signals recorded from sub-threshold stimulation 

of NG108-15 neurons included the internal cytoplasmic resistance     , the external resistance 

    , the spreading resistance    , the sealing resistance   , the patch electrode resistance    

and capacitance    and   , the fractional area of the cell membrane in contact with the 

extracellular patch electrode. The ‘on-cell’ extracellular signals employed in the parameter 

optimization corresponded to the sub-threshold intracellular potentials shown in Figure 12 A2 

(Cell 1) and B2 (Cell 2). An excellent fit was obtained for the extracellular signals recorded on 

the patch electrodes corresponding to the sub-threshold stimulation of the neuron in the case 

of both the NG108-15 neurons employed in the study (Figure 13, A1 and B1). Table II, A and B 

indicate the sub-threshold values of the optimized parameters for Cell 1 and Cell 2. 
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Figure 13. A comparison of the simulated and the experimental results for the extracellular signals recorded from 
the ‘on-cell’ neuron-patch electrode interfaces for Cell 1 and Cell 2 after optimization of the point contact 
equivalent circuit model (Figure 11 A) parameters. (A1 and B1) Sub-threshold stimulation for Cell 1 and Cell 2 
respectively. (A2 and B2) Supra-threshold stimulation for Cell 1 and Cell 2 respectively. (See Table II, A and B, for 
values of optimized equivalent circuit parameters.) 

 Next, the optimized values of the invariant parameters - the ‘on-cell’ patch-electrode 
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and the ‘on-cell’ patch electrode    obtained from the optimization of the sub-threshold signals 

were fixed while the rest of the parameters of the equivalent circuit model were then re-

evaluated by fitting the simulated supra-threshold extracellular signals (corresponding to supra-

threshold intracellular action potentials shown in Figure 12, A2 and B2) to experimental data 

from the neuron-electrode interface. For the two cells being reported here, the quality of the 
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experimentally recorded signal, although reasonably good, was not comparable to that 

obtained for the sub-threshold case and the optimized simulation results were observed to 

underestimate the amplitude of the extracellular signal when compared to the experimentally 

recorded signals as shown in Figure 13, A2 and B2.  In the two NG108-15 neuron patch 

electrode interfaces considered it was observed that the internal cytoplasmic resistance,     , 

and the seal resistance,    (Table II, A and B) both increased in transitioning from the sub- to 

the supra-threshold stimulation of NG108-15 neurons indicating a change in these circuit 

parameters while no clear trend was discernible for the spreading resistance,    , and the 

external resistance,     . This increase in the values of the internal cytoplasmic resistance,     , 

(as seen by the ‘on-cell’ patch electrode) and the seal resistance,   , in the supra-threshold 

case pointed to the presence of diffusion dominated ionic transport across the seal resistance 

formed by the ‘on-cell’ patch electrode with the neuronal membrane. Also, the high values of 

the seal resistance,   ,       obtained through the optimization procedure in the supra-

threshold stimulation were consistent with the formation of a gigaseal for the extracellular 

patch electrodes as normally observed during conventional patch clamp electrophysiology.  

 Further, the impact of ionic electrodiffusion on the individual values of the equivalent 

circuit parameters employed for the supra-threshold optimization was systematically 

investigated by selectively fixing the equivalent circuit parameters at their sub-threshold values 

and optimizing the rest of the parameters to compare the normalized sum of squared residuals 

obtained for Cell 1 and Cell 2 (Table III, figures not shown here). It was determined that a 

selective elimination of the sealing resistance,   , and the internal cytoplasmic resistance,     , 
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from the optimization procedure resulted in the highest normalized sum of squared residuals 

     (in that order) indicating that these two resistances were the most affected as a result of 

the ionic electrodiffusion induced by an opening of the voltage gated ion-channels in the supra-

threshold regime of neuronal stimulation.  

Table 3. nssr values for fitting of the simulated supra-threshold signal to experimental recordings after selective 
fixation of  equivalent circuit parameter values at the sub-threshold level for the ‘on-cell’ patch electrode 

Circuit element s
R  

int
R  

ext
R  

sp
R  

Cell 1 4.92e-1 1.64e-1 5.39e-2 5.82e-2 

Cell 2 6.89e-2 4.25e-2 2.35e-2 2.43e-2 

It must be mentioned here that diffusion, within the framework of the point-contact 

equivalent circuit models, can only be simulated using a frequency dependent Warburg 

impedance [62] and thus, although the cytoplasmic internal resistance,     , and the seal 

resistance,   , did not simulate the Warburg impedance in this case, an increase in their values 

indicated the presence of ion transport mediated primarily by diffusion. Unlike linear 

impedance spectroscopy analyses, in this study, we employ a time domain composite model of 

the neuron-electrode interface that precludes the use of frequency dependent equivalent 

circuit elements for simulating interface dynamics. 

3.3.3. Planar neuron-microelectrode interface 

In the sub-threshold stimulation regime, capacitive type responses observed in the 

planar neuron-microelectrode interface for Cell 1 were analyzed. The equivalent circuit 

parameters of the neuron-microelectrode interface (Figure 11 B) included in the optimization 
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for the sub-threshold stimulation were:  resistor     and capacitor    , modeling the EDL 

associated with the protein-glycocalyx complex attached to the cell membrane, EDL resistance 

    and capacitance    , associated with the microelectrode, resistance    and capacitance    

of the microelectrode, the parasitic shunt capacitance    , seal resistance    and the fractional 

area of the attached membrane in contact with the microelectrode   . After an optimization of 

the equivalent circuit model parameters a reasonably good fit to the noisy extracellular signal 

corresponding to the sub-threshold stimulation of the neuron was obtained (Figure 14 A and 

Table IV). The related intracellular sub-threshold potential for the optimized extracellular signal 

is shown in Figure 12 A2. 

 Again, as in the case of the ‘on-cell’ patch electrode interface, invariant parameters – 

the shunt capacitance    , the microelectrode resistance    and capacitance   , and the area 

of the attached membrane in contact with the microelectrode   , obtained from the sub-

threshold optimization of the model parameters for the neuron-microelectrode interface, were 

fixed. The fitting of the simulated extracellular signals for the supra-threshold stimulation of the 

cell was performed by optimizing the values of the rest of the circuit elements in the equivalent 

circuit model of the neuron-microelectrode interface. Figure 14 B shows a good fit of the 

simulated signal to the experimental signal recorded through the microelectrode (See Figure 12 

A2 for the corresponding supra-threshold intracellular potential). In the case of the neuron-

microelectrode interface, as also for the ‘on-cell’ neuron-patch electrode interface, the 

optimized signals underestimated the amplitude of the extracellular signals compared to the 

experimentally recorded signals from the planar microelectrode. But, unlike the neuron-patch 
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electrode interface,    decreased in transitioning from the sub- to the supra-threshold regime 

of neural stimulation. A decrease in    in transitioning from the sub- to the supra-threshold 

stimulation was consistent with the enhanced conductivity of the overlapping EDLs in the 

neuron-microelectrode cleft region as a consequence of the increased ionic concentrations 

caused by an opening of the ion-channels during the supra-threshold stimulation of the neuron. 

A similar enhancement in the conductivity of the cell-sensor junction for HEK 293 cells 

interfaced to field effect transistors was also reported by Brittinger et al [50].  

 A further investigation of the impact of the change in circuit parameters due to ionic 

electrodiffusion on the fitting of the supra-threshold simulated signals to the experimental 

extracellular recordings was done by selectively fixing the circuit parameters at their sub-

threshold values and optimizing the rest of the parameters to study its effect on the normalized 

sum of squared residuals. It was observed that selective fixation at sub-threshold values of all 

the parameters under consideration gave comparable      values (                    

    )
 

except in the case of the seal resistance,                   , and external 

resistance,                  
   , where it was noticeably higher than the rest. In the case 

of   , the increase in      value upon selective elimination was along expected lines for the 

reasons discussed in the preceding paragraph while for      it appeared that the optimization 

of the sub-threshold extracellular signal overestimated the value for the external resistance 

resulting in a high normalized sum of squared residuals. However, as      must not change 

between the ‘on-cell’ patch-electrode and the neuron-microelectrode interfaces (being a 

property of the bulk extracellular solution), the value of the external resistance (          

       , Table IV) obtained from the supra-threshold optimization for the planar neuron-
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microelectrode interface compared well with the average value (    
   

             ) 

obtained from an optimization of the equivalent circuit parameters for the corresponding ‘on-

cell’ neuron-patch electrode interface (Table II A). 

 

Figure 14. A comparison of the simulated and the experimental extracellular signals recorded from the neuron-
microelectrode interface corresponding to the stimulation of Cell 1 (Figure 12 A2) after optimization of the point 
contact equivalent circuit model (Figure 11 B) parameters. (A) Sub-threshold stimulation and (B) Supra-threshold 
stimulation. (See Table IV for the corresponding values of the equivalent circuit parameters.) 
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Table 4. Optimized parameters of the point contact equivalent circuit model of the neuron-microelectrode interface for Cell 1
b
. 

 
j

a  md
C  ed

C  
e

C  
sh

C  
ext

R  
int

R  
md

R  
s

R  
ed

R  
e

R  

Sub 12.6 3.39 2.32e-1 5.00e+3 5.80e-3 4.91e-3 3.14e-2 2.82e-2 1.60e-4 4.44e-3 2.71e-4 

Sup O 3.37 2.22e-1 O O 2.53e-5 2.95e-2 3.08e-2 1.38e-4 3.57e-3 O 

b 
The symbol ‘O’ stands for the point contact equivalent circuit model parameters fixed at values obtained from sub-threshold optimization of the model 

parameters for the neuron-electrode interfaces. The fractional surface area of the attached membrane is reported as a percentage of the total membrane 
surface area; all resistances are in gigaohms )(G   and the capacitances are in picoFarads (pF) . ‘Sub’ and ‘Sup’ refer to sub- and supra-threshold stimulations 

respectively. 
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3.4. Discussion 

 Based on the optimization analysis presented here, it was observed that for the ‘on-cell’ 

neuron patch electrode and the neuron-microelectrode interfaces the simulated post-

optimization extracellular signals for the supra-threshold stimulations consistently 

underestimated the amplitude of the extracellular signal compared to the experimentally 

recorded signals. Since the current that flows through a microelectrode is negligible because of 

the high input impedance of the extracellular recording amplifier, a comparison can also be 

made with studies employing electrogenic cells interfaced to field effect devices that have 

comparable current flowing through the gate oxide. Earlier studies, by Wrobel et al and 

Brittinger et al [50, 52], that used field effect transistors had also reported similar observations 

related to point contact equivalent circuit models of the cell-biosensor interface. Both studies 

attributed the underestimation of the amplitude of the simulated extracellular signal to the 

mechanism of ion-binding to the gate-oxide of the field effect transistor and concluded that 

diffusion or electrodiffusion alone could not explain the amplitude of the experimentally 

recorded extracellular signals.  

Wrobel et al employed the Nernst-Planck equation reduced to a pure diffusion equation 

under assumptions of electroneutrality and thin EDLs to simulate the ion-accumulation in the 

cleft region which was then combined with the ion-sensitivity of the field effect transistor to 

reproduce the experimental signals by a fitting of the radius,  , of the attached membrane and 

the cleft height,  . Brittinger et al modeled electrodiffusion in the interfacial cleft by 

considering the Nernst potential arising from the ionic concentration difference between the 
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bulk extracellular medium and the interfacial medium. But they could account for the total 

signal recorded on the transistor only after a superposition of the experimentally determined 

surface potential changes associated with the Gouy-Chapman-Grahame diffuse EDL on the 

silanized gate-oxide (arising due to a competitive binding of sodium and potassium ions) and 

the potential difference generated in the cleft region due to electrodiffusion of ions. 

It is worth noting here that, despite the Debye length being much smaller than the 

width or height of the cleft (~ 20-110 nm), at the given ionic concentrations in the extracellular 

medium the electric double layer actually extends across the entire interface to the sensor 

surface due to the presence of fixed charges associated with the porous-protein glycocalyx 

matrix responsible for cellular adhesion on the sensor surface. The presence of overlapping 

EDLs in the cell-sensor interfacial cleft therefore renders the assumption of electroneutrality in 

the interfacial cleft incorrect. Also, the region within the overlapping EDLs is characterized by a 

nonlinear dependence of the electric potential on the ionic concentration profile accompanied 

by a presence of high electric fields. These studies thus indirectly pointed to the presence of 

nonlinear EDL effects in the process of signal transduction across the volume of the thin cell-

sensor interfacial cleft.  

Both these studies, however, considered a simplified system of recombinant K+ channels 

expressed in HEK 293 cells interfaced to the FETs and did not explicitly simulate the gating 

kinetics of the ion-channels coupled to their model for the cell-biosensor interface. In contrast, 

the coupled dynamics of the neuron and the linear equivalent circuit model for the interface 

were explicitly simulated in the study presented here. Additionally, in our model for the NG108-
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15 neuron we estimated gating parameters of the ion-channel kinetics for sodium, potassium 

and calcium channels from the experimental current and voltage clamp recordings that 

realistically and uniquely accounted for the dynamics of the cells included in our study.  

In the previous chapter, an experimental characterization of the neuron-microelectrode 

junction by an intracellular stimulation of the neuroelectronic interface with band-limited 

Gaussian white noise spanning the entire natural frequency and amplitude range of action 

potentials was presented. This approach of non-parametric ‘data-true’ nonlinear dynamic 

characterization of the neuroelectronic junction using Volterra-Wiener modeling helped take 

into account all possible linear and second order nonlinear physicochemical processes, 

including ionic electrodiffusion, occurring at the neuron-microelectrode interface during the 

process of signal transduction. Further, these results indicated that the linear part of the 

predicted output from the Volterra-Wiener model underestimated the extracellular signal but a 

summation of the linear and the nonlinear outputs accurately predicted the amplitude and 

shape of the experimentally recorded signal from the planar microelectrode.   

It is notable that Buitenweg et al had also observed nonlinear components in the 

extracellular potentials recorded in their stimulation experiments with the neuron-electrode 

interface which could not be attributed entirely to the active neuronal contributions [43]. Their 

approach had focused on isolating the nonlinear component of the experimentally recorded 

response by a subtraction of the linear component from the total extracellular signal. For this 

purpose, the linear component of the extracellular response was simulated by employing an 

impedance model of the interface estimated earlier using linear impedance spectroscopy. 
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However, they had not isolated the neuronal contribution from the interfacial contribution in 

the total nonlinear response detected in the extracellular signal. The results presented here, go 

a step further and systematically isolate the neuronal contribution to the nonlinearity in the 

extracellular response recorded through the microelectrodes using a prior independent 

estimation of the neuronal ion-channel parameters unique to the neuron-electrode interface 

under study. 

3.5. Conclusions 

In this chapter, concurrent electrophysiological recordings from a single neuron 

simultaneously interfaced to three distinct electrode configurations (intracellular, ‘on-cell’ 

patch and planar microelectrode) allowed novel insights into the mechanism of signal 

transduction at the neuron-electrode interface. Through an advanced optimization based 

analysis of the extracellular signals, results presented here clearly established the role of ionic 

electrodiffusion in the process of signal transduction across the neuron-electrode interface and 

identified the parameters of the point contact equivalent circuit models most affected. These 

results, for the first time conclusively demonstrated that the mechanism of signal transduction 

across the neuron-electrode interface was nonlinear. Further, within the framework of a 

passively linear point or area contact equivalent circuit model of the neuron-electrode 

interface, it is therefore not possible to simulate and recover the correct amplitude and shape 

of the experimentally recorded extracellular outputs from supra-threshold stimulation of the 

neuron-electrode interfaces. This is especially significant because these models are now being 

actively extended to neural interfaces with nanoelectronic devices characterized, presumably, 
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by still higher electric fields and the consequent nonlinear dynamics of the interfacial medium 

[63-65].  

Engineering of neuroelectronic interfaces using surface-chemical modification of sensor 

surface, improved design or novel materials for device fabrication requires an understanding of 

the mechanism of signal transduction with its accompanying physicochemical changes at the 

cell-sensor interface and thus necessitates a further development of models based on the 

nonlinear physics of electrodiffusion of ions or unconventional techniques like the ‘data-true’ 

Volterra-Wiener characterization. However, equivalent circuit models with their simplicity of 

concept and ease of implementation will continue to be useful tools for the study and 

characterization of cell-sensor interfaces for applications in high-throughput drug screening and 

toxin detection, biological computation and neuroprosthetic devices. 
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CHAPTER-4: THEORETICAL FRAMEWORK FOR EXTRACTION OF INTERFACE 
PARAMETERS USING NONLINEAR IMPEDANCE SPECTROSCOPY 

4.1. Introduction 

Impedance spectroscopy or I-V characterization is a technique employed for the 

characterization of electrical properties of bulk materials or their interfaces with conducting 

electrodes with the aim of investigating the dynamics of bound or mobile charges present in 

them. Conventional linear impedance spectroscopy involves stimulating a system with small 

amplitude ac voltages superposed on a dc bias that scan a frequency range to generate an 

impedance spectrum [66, 67]. The total current (a sum of conduction and polarization currents) 

flowing through the material in between the two conducting electrodes forms the system 

response. The ratio of the stimulus potential to the response current gives the frequency 

dependent impedance spectrum or the ‘data-true’ transfer function of the system. This transfer 

function is analyzed further by comparing results from a plausible physical model of the system 

or, more commonly, by fitting the impedance spectrum to an equivalent circuit representation 

of the system dynamics using complex nonlinear least squares fitting. The complex dielectric 

permittivity for the material between the electrodes is computed using the relation      

                           where   is the frequency of the applied ac signal, 

         is the capacitance of the measurement cell with electrode area   and separation    

and    and     are the real and imaginary parts of the complex permittivity [66]. 

4.1.1. Impedance spectroscopy – Linear Vs Nonlinear 

An accepted definition of impedance (     ) as a concept is valid only for linear 
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systems wherein the output response of the system is exactly at the frequency of the input 

stimulus. For nonlinear systems, there is no such accepted definition of impedance and I-V 

characterization is loosely referred to here in this chapter as nonlinear impedance 

spectroscopy. Linear systems follow the principle of superposition, i.e. if        are the input 

stimuli applied at differing times   ,    their amplitude and        their respective system 

responses then for a superposed input stimuli comprising all of       , the system output can be 

written as a summation of the individual outputs in the form given below [41] 

           

 

           

 

 (23) 

The same, however, is not true of a nonlinear system in general. As such, faced with a nonlinear 

system the only recourse, therefore, is to characterize the system by studying its harmonic 

response to each individual input sinusoid. This approach to I-V characterization of a nonlinear 

system does not offer any information about system response with regard to the interaction of 

individual sinusoids with each other when presented to the system as superposed input stimuli. 

Also, therefore there currently exists no straight forward way to efficiently estimate the 

nonlinear material parameters of the system like its complex dielectric permittivity and 

conductivity that would influence its electrical behavior.  

4.1.2. Neuron-microelectrode interface 

Chapters 2 and 3 showed that the process of signal transduction at the neuron-

microelectrode interface is nonlinear. Computation of material properties of the interfacial 

medium using impedance spectroscopy requires peering into the underlying system dynamics 
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in contrast with the black-box approach to computation of the Wiener kernels using 

bandlimited Gaussian white noise in Chapter 2.  Is it possible therefore to leverage non-

parametric Volterra-Wiener modeling to estimate the material properties of the interfacial 

medium in the neuron-electrode cleft? The fact that the computation of the material 

parameters like dielectric permittivity and conductivity for a linear system can be accomplished 

directly using the ‘data-true’ impedance spectrum as pointed out in the introduction above 

offers hope. Computation of the material parameters itself does not require any assumption of 

an underlying structure for the system or a parametric representation of its dynamics in the 

form of a linear equivalent circuit model. Therefore, one can employ the mathematical 

machinery of Volterra-Wiener modeling for an estimation of the nonlinear dielectric 

permittivity and conductivity tensors.  

Lee-Schetzen technique of cross-correlation [45], described in chapter 2, exploits the 

exclusive existence of even order moments of a specialized input stimulus, which is bandlimited 

Gaussian white noise, for the computation of Wiener kernels. Additionally, the use of 

bandlimited Gaussian white noise as a stimulus for computing material properties of a 

nonlinear system through impedance spectroscopy offers certain distinct advantages over the 

use of sinusoidal stimulus. Bandlimited Gaussian white noise by virtue of its flat power spectral 

density and a random Gaussian distribution of amplitudes spanning the entire frequency and 

amplitude range of system operation completely characterizes the nonlinear interactions of 

different frequencies as opposed to the prevalent practice of characterizing the system 

nonlinearity with a single sinusoid input and analyzing its harmonic response in the output 

signal. Therefore, employing the same experimental configuration as is used in linear 
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impedance spectroscopy but replacing the sinusoid input with a bandlimited Gaussian white 

noise stimulus (as shown in Figure 15), this chapter outlines a theoretical framework based on 

Volterra-Wiener modeling for the estimation of the nonlinear dielectric permittivity and 

conductivity of the interfacial medium present in the cleft of the neuroelectronic junction. 

  

Figure 15. A schematic of the experimental arrangement for the extraction of nonlinear dielectric permittivity and 
conductivity of the interfacial medium using impedance spectroscopy based on Volterra-Wiener modeling. An 
intracellular current monitor is employed through use of patch-clamp electrophysiology to ensure that all of 
output response current flows through the interfacial medium to the ground electrode and there is little or no 
current flowing through the neural membrane during impedance characterization. 

4.2. Theoretical framework 

4.2.1. Nonlinear dielectric medium 

The electric displacement   in terms of polarization   in the presence of an electric field 

   is given by 

        (24) 

where    is the permittivity of the free space. For a nonlinear dielectric the polarization can be 

extended into a power series in the electric field as [68] 
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                               (25) 

                       
 

  

                                 

 

  

 

                                           

 

  

     

 

(26) 

where    is the static polarization that is independent of the applied electric field,    are the     

order polarization response functions dependent on the time lag variables   . The polarization 

response functions are zero for any one of   s less than zero to ensure causality of the system 

response. As such, equation (26) bears a striking resemblance to the terms of the Volterra 

series in equation (1) (chapter 2). Now expressing      in terms of its Fourier transform      

using the Fourier integral identity 

                 
 

  

 (27) 

where 

     
 

  
           
 

  

 (28) 

And substituting in the second term corresponding to the linear polarization in equation (26) 

one gets 

           
 

  

            
 

  

          
 

(29) 
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where  

                  
 

  

     (30) 

is the linear susceptibility tensor and     . Substituting the Fourier transform for      now 

in the third term of equation (26) one gets 

     

       

 

  

    

 

  

    

 

  

                        
                       

 

  

 

                              
 

  

       

 

(31) 

where  

                  

 

  

             
 

  

              (32) 

is the second order dielectric susceptibility tensor and         . Similarly the     order 

polarization is given by 

            

 

  

     

 

  

         

 

  

           
 

  

 

            
                        

 

 

(33) 
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where 

                    

 

  

               
 

  

                (34) 

is the     order dielectric susceptibility tensor and           . Substituting equations 

(27), (29), (31) and (33) in equation (24), the electric displacement can be written as 

                   
 

  

        

 

  

                               
 

  

      

 

 

 

(35) 

The total current density is thus given by 

      
  

  
 (36) 

Substituting equation (35) in equation (36), the time dependent nonlinear current density can 

be obtained as 

                      
 

  

           

 

  

                               
 

  

      

 

 

(37) 
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4.2.2. Connection to the impedance spectrum 

In terms of the stimulus-response data-records corresponding to the bandlimited 

Gaussian white noise stimulus      and its corresponding output response      from the 

impedance spectroscopy experiment (Figure 15) equation (1) for the Volterra series can be 

rewritten as 

                      
 

  

                               

 

  

 

                                         

 

  

     

(38) 

where the Volterra kernels    are zero for any    less than zero. Now, substituting the Fourier 

transform for      

                 
 

  

 (39) 

where 

     
 

  
           
 

  

 (40) 

in equation (38) and employing a transformation similar to equations (29), (31) and (33) one 

gets 
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(41) 

where    are the Fourier transforms of the Volterra kernels    given by 

                    

 

  

               
 

  

                (42) 

Now, the output response current and the input stimulus bandlimited Gaussian white noise can 

be expressed in terms of current density      and electric field      as  

             (43) 

              (44) 

where    and    are the effective area of the microelectrode and the distance between the 

center of the microelectrode and the ground electrode respectively.     effectively reduces to 

the radius of the microelectrode because of the presence of the ground electrode in a highly 

conducting extracellular medium outside of the neuron-electrode cleft. Thus, substituting 

equations (43) and (44) in equation (41) we get 
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(45) 

Now, comparing the expressions for the current density      in equations (37) and (45) we get 

                      
   

 

  
                

(46) 

                
    

 

      
                (47) 

which gives the     order dielectric susceptibility tensor    in terms of the     order Volterra 

kernels   . The only remaining task now is to connect the Volterra kernels to the 

experimentally estimated Wiener kernels. For a time-domain complete set of Wiener kernels 

this can be accomplished using the following relation [41] 

           

  
              

      
    

 

 

                               
 

 

 

   
 

(48) 

where   is the input power level of the white noise stimulus. Substituting the     order Fourier 

transforms of the Volterra kernels thus obtained from the impedance spectroscopy data-

records into equation (47) would then give an estimate of the experimentally determined     

order dielectric susceptibility tensor. It is important to note here, that while Wiener kernels 

depend on the power   of the input bandlimited Gaussian white noise with   figuring in the 
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denominator in equations (6), (7) and (8), the Volterra kernels are independent of the power of 

the input stimulus as   figures in the numerator of equation (48). As a result, the material 

parameters estimated using Volterra kernels are also independent of the power of the input 

stimulus as they ought to be. 

The     order complex dielectric permittivity tensor    for a nonlinear system is given 

by  

                                         (49) 

where      is the Kronecker delta, and, 

Separating into real and imaginary parts equation (49) can be written as 

                                   

                                              

 

(50) 

Using equation (47), one can now write 

                                   

 
   

 

    
                                           

 

(51) 

Since the imaginary part of the     order dielectric permittivity tensor is related to the     

order conductivity tensor through the relation   
        , the     order conductivity tensor 

in terms of the experimentally estimated     order Volterra kernel can be written as 
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(52) 

Using the generalized Einstein’s relation the diffusivity tensor for ionic transport can be written 

as 

                
  

   
      

   
 

  
                 

 

(53) 

where    and    are the valence and number density of the     species of ions,   is the 

Boltzmann’s constant and   is the temperature in Kelvin. 

Thus, equations (51), (52) and (53) give us the material parameters that we were 

interested in estimating through Volterra-Wiener characterization. 

4.3. Discussion 

That electrode-electrolyte interfaces behave nonlinearly has been well known for a very 

long time now. But it had been possible to ignore this fact until recently because in most 

macroscopic systems studied it was possible to completely neglect the nonlinear electric double 

layer effects as the dominant characteristic had been the system linearity. However, as system 

and device sizes have shrunk over the past decade and a half with the advent of 

nanotechnology, experimentally observed nonlinear behavior of electrolytic interfaces in 

mesoporous electrode materials and in the study of biomolecular and bioelectrical interfaces 

has become the more accepted norm [69-72]. As much as the detection and understanding of 

these nonlinear effects at electrical interfaces have gained in importance for the design and 
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development of nanoscale devices, the development of impedance characterization techniques 

to study these effects has failed to keep pace with it. The practice of employing sinusoidal 

inputs with linear impedance spectroscopy has now been extended to include the detection 

and analysis of higher order harmonics generated by the nonlinear system under study [69-76]. 

But as mentioned earlier, inputs to nonlinear systems do not follow the principle of 

superposition and hence such an approach to study of nonlinear electrochemical systems is 

inefficient because it does not allow one to understand the nonlinear interactions in the system 

for a real life stimulus signal with a finite spectral spread and varying amplitude in time. Also, 

within the theoretical framework of linear impedance spectroscopy, as a result, it is not 

possible to estimate the nonlinear material properties that influence the electrical behavior of 

the system under study. Specialized inputs, other than sinusoids, such as steps, impulses, 

multiple sinusoids and random white noise have also been employed for characterizing 

electrochemical systems but special care is always taken to operate in the linear regime to 

allow for a Fast Fourier Transform (FFT) analysis of the system output [66, 67]. Again, either the 

nonlinear regime of system behavior is completely avoided or is limited to a harmonic analysis. 

In this context, the theoretical framework presented in this chapter shows that the 

mathematical machinery of non-parametric Volterra-Wiener modeling can be successfully 

employed using bandlimited Gaussian white noise stimulus to efficiently extract material 

parameters for a nonlinear conducting dielectric and completely characterize its behavior 

through nonlinear impedance spectroscopy.  
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4.4. Conclusions 

To be able to engineer the neuron-microelectrode interface, it requires an 

understanding of the nonlinear material properties of the interfacial medium and its response 

to electrical stimuli in the frequency range of the spectral composition of the action potentials 

generated by neurons that constitute its natural input. Such an understanding can then 

facilitate a tailoring of the properties of the interfacial medium and the recording electrode by 

affecting a change in the surface chemical properties and microstructure of the recording 

electrode or rheological properties of the interfacial medium that affect electrokinetic transport 

of ions at the neuron-microelectrode junction. The method of nonlinear impedance 

spectroscopy presented in this chapter can thus help apply these strategies towards a 

successful engineering of the neuroelectronic interface.  
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CHAPTER-5: DEVELOPMENT OF A LATTICE BOLTZMANN METHOD BASED 
MULTIPHYSICS SOLVER  

5.1. Introduction 

At the neuroelectronic interface, an ionic concentration gradient produced from an 

efflux (K+) or influx (Na+) of ions due to opening and closing of the voltage gated ion-channels in 

the neural membrane leads to the flow of an ionic diffusion current through the interfacial 

medium. This concentration gradient in turn results in a potential gradient between the 

interfacial cleft and the bulk extracellular medium leading to electromigration or 

electrophoresis of the ions. The electromigration of ions under this concentration gradient 

generated electric field exerts a drag force on the solvent molecules in the interfacial medium 

giving rise to an electroosmotic flow which by itself can again give rise to an ionic concentration 

gradient through convection. Thus, the electrodiffusion of ions in the interfacial medium at the 

neuron-microelectrode junction is a multiphysics problem (Figure 16). A rational approach 

towards an engineering of the neuron-microelectrode interface, therefore, must make use of 

multiphysics simulations that allow one to systematically tune the material and geometric 

parameters of the neuroelectronic interface that affect signal transduction for maximal signal 

to noise ratio.   

Traditionally, electrokinetic phenomena are simulated using multiphysics solvers based 

on the Poisson-Nernst-Planck system of equations (54) and (55) coupled to the Navier-Stokes 

equation (56) through the body force term as given below [77] 
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(54) 

   
  

                    
      
  

    (55) 

  
  

  
                  (56) 

where   is the electric potential;   ,    and   
  the ionic valence, diffusivity and bulk number 

density of the     ionic specie;   the magnitude of the charge on an electron;   the Boltzmann 

constant;   the temperature;   the dielectric permittivity of the solvent medium;  ,   and   the 

density, viscosity and the macroscopic velocity of the solvent; and,   is the external body force 

term given in general by            with   as the net charge density. 

  

Figure 16. A schematic of the inter-relationship between different electrokinetic processes and their coupling with 
the neuronal dynamics using Hodgkin-Huxley equations 
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The Nernst-Planck equation (Eq. (55)) and the Navier-Stokes equation (Eq. (56)) assume 

continuum dynamics. However, for the neuron-microelectrode interface cleft with a width of 

about 20-110 nm corresponding to Knudsen numbers (  , ratio of mean free path to the 

characteristic system length scale) between 0.015-0.003 for aqueous solutions, the assumption 

of continuum dynamics does not hold [77]. Besides assuming continuum dynamics, most 

commercially available multiphysics solvers linearize the Poisson-Boltzmann equation using the 

Debye-Huckel approximation (     
  

  
    

  

  
 for small  ) and artificially extend out 

electric double layers by up to four orders of magnitude [78]. Therefore, for simulating ionic 

electrodiffusion at the neuron-microelectrode interface a multiphysics solver based on 

equations (55) and (56) would not be appropriate.  

On the other hand, a molecular dynamics based simulation approach that requires 

tracking large number of entities accompanied by extremely small time steps would also be 

infeasible given the need to simulate action potentials on a time scale of few hundred 

microseconds to tens of milliseconds and the dimensions of the neuron-microelectrode 

interface (length on the scale of 30-40 μm and width between 20-110 nm). Under such a 

scenario, the Lattice Boltzmann Method (LBM) based on a statistical approach to time evolution 

of probability distribution functions for particles on a lattice offers a suitable alternative.  

5.2. Lattice Boltzmann method - Background and a brief history of development 

Lattice Boltzmann method is based on the Boltzmann transport equation and 

interestingly evolved as an improvisation of the Lattice Gas Cellular Automaton (LGCA) 
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technique that was being employed to simulate fluid dynamics as an alternative to the 

continuum simulations using Navier-Stokes equation [79]. A cellular automaton is a collection 

of cells on a lattice that evolves in time through discrete time steps according to a set of rules 

dictated by the states of the neighboring cells on the lattice. Cellular automatons with their 

simple rules for time evolution on a lattice were an attractive proposition for simulation of fluid 

dynamics on a massively parallel scale using supercomputers. In 1986, Frisch, Hasschler and 

Pomeau showed that a simple cellular automaton that conformed to the microscopic laws of 

conservation could be employed to simulate fluid dynamics [79]. However, the LGCA approach 

to simulating fluid flows suffered from problems of lack of Galilean invariance and statistical 

noise [80, 81]. These problems were overcome over the years by the use of ensemble averaged 

populations of particles and choice of an appropriate lattice [82, 83]. Higuera and Jimenez [84] 

latter linearized the LGCA collision operator and employed the lattice Boltzmann equation (LBE) 

as a numerical tool which was subsequently replaced with the single relaxation time Bhatnagar-

Gross-Krook (BGK) approximation [85]. Also, quite remarkably, a proper theoretical connection 

of the lattice Boltzmann equation to the Boltzmann transport equation was not made until 

1997 when He and Luo showed the LBE to be a specially discretized form of the continuous 

Boltzmann transport equation [86, 87]. Ever since then, as more and more researchers have 

embraced the field in the past decade and a half, LBM has emerged as a promising new 

technique for the simulation of a host of multiphysics problems involving hydrodynamics and 

electrohydrodynamics in mesoscale systems due to the applicability of the Boltzmann transport 

equation at relatively large Knudsen numbers.  

Since LBM based modeling as a field has not matured sufficiently yet and is still in a 
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state of flux there are no commercially available multiphysics solvers that would allow for a 

simulation of the electrodiffusion of ions at the neuron-microelectrode interface. This, thus, 

necessitated the development of a multiphysics solver that could be employed for simulating 

electrokinetics in a mesoscale system. For the development of the multiphysics solver, the 

problem of simulating electrokinetics was divided into the following tractable parts: 

– Simulation of hydrodynamic fluid flows 

– Development of a solver for the Poisson-Boltzmann equation to solve for electric 

potential and field in response to spatial changes in ionic concentrations, and, 

– Simulation of advection-diffusion of particles. 

Each of these parts were validated using appropriate simple test problems and then coupled 

together in hierarchical steps of complexity to simulate the more complex problems of 

electroosmotic flow in a channel and charge relaxation dynamics in a mesoscale system.  

5.3. Lattice Boltzmann algorithm 

The non-dimensionalized Boltzmann equation in the BGK approximation can be written 

as [86] 

  

  
             

     

 
 (57) 

where   is the external body force,            is the phase space single particle distribution 

function,    is the relaxation time due to collision,   the time,   the microscopic velocity,   the 

space coordinate and    is the equilibrium distribution function for the Maxwell distribution. 
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The Maxwell’s equilibrium distribution function is given by 

    
 

         
      

      

   
  (58) 

where   is the gas constant and m is the number of dimensions of the configuration space. 

Realizing that     is the leading term in a Taylor series expansion of   and that gradient of     

contributes most significantly to the gradient of   one can write 

       
    

     

  
    (59) 

 Substituting equation (59) in equation (57) one obtains 

  

  
       

     

 
 
       

  
    (60) 

Further it can be shown that equation (60) after discretization in time and integration over the 

time step    can be used to obtain the discrete lattice Boltzmann equation (LBE) as  

                        
          

       

  
   

        

  
  
        (61) 

where    is the non-dimensional relaxation time,    is the discrete particle velocity. The 

macroscopic density and the momentum density are then given by 

     
 

    
  

 

 (62) 

        
 

 (63) 
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An expansion of equation (58) in the small velocity approximation yields the equilibrium 

distribution function, the discretized form of which is given by 

  
         

    

  
 
      

 

      
 
  

   
  (64) 

where    are weights computed using the Gauss-Hermite quadrature employed to accurately 

compute the hydrodynamic moments of the distribution function   [86] 

         (65) 

through a discretization of the momentum space in terms of the discrete particle velocities   . 

Here       for isothermal models. For a two dimensional D2Q9 LBM model (Figure 17), 

employed in the present work for the development of an LBM based multiphysics solver, with 

three speeds and nine discrete particle velocities the weights    are given by   

    
 

 
      

 

 
          

 

  
 (66) 

The discrete particle velocities    are given by 

                                                  (67) 

where   
  

  
      is the lattice speed of sound and    the speed of sound in the fluid 

medium given by       .  
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Figure 17. A schematic showing the nine directional density distributions and the discrete particle velocities for the 
two dimensional D2Q9 lattice 

 

 

Figure 18. A schematic showing the streaming of the density distribution functions on the lattice defining the 
simulation domain from time   to     . 

t + Δt 

t 
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Thus, beginning with the Boltzmann transport equation (Eq. 57) in the continuous phase 

space one obtains the discrete lattice Boltzmann equation (Eq. (61)) in a reduced phase space 

that greatly diminishes the computational requirements associated with the computation of the 

moments of the continuous distribution functions and at the same time allows one to retain the 

simplicity of the LGCA models with their characteristic ease of parallelization.  

In a typical implementation, the LBM algorithm follows the simple sequence of 

boundary, collide and stream for the time evolution of directional distribution functions    on 

the lattice. The streaming operation is represented by the term                 on the 

LHS of the lattice Boltzmann equation (Eq. (61)) and is pictorially depicted in Figure 18 for 

population densities on two lattice nodes represented in two different colors. All codes for the 

multiphysics solver were implemented in FORTRAN and parallelized using message passing 

interface (MPI) subroutines in MPICH2.0 developed by the Los Alamos National Lab. 

5.4. Hydrodynamics – Simulating fluid flows 

Hydrodynamic fluid flows were simulated using the lattice Boltzmann equation (Eq. (61)) 

minus the external body force term. It can be shown using a Chapman-Enskog or multiscale 

expansion that in the regime of small Knudsen numbers the Navier-Stokes equation (Eq. (56)) 

can be recovered from the LBE (Eq. (61)). In the case of fluid flows, the non-dimensional BGK 

relaxation time    is given in terms of the viscosity    by 

     
  

   
     (68) 

The LBM code for simulating hydrodynamic fluid flows was validated using the entrance flow 
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problem. 

5.4.1. Entrance flow problem 

The entrance flow problem is a classic fluid flow problem in which the development of 

an incompressible fluid flow is simulated in a channel that connects two reservoirs placed at 

different elevations causing a pressure difference to exist between the inlet and the outlet of 

the channel [88]. It is assumed that as the fluid flows between the two reservoirs over time, 

there is no change in the pressures at the inlet or the outlet of the channel. In the steady state, 

the entrance profile for the pressure is flat in the free slip region followed by a rapid drop-off 

close to the mouth of the channel walls with no-slip boundaries (Figure 19). Once a parabolic 

velocity flow profile corresponding to Poiseuille flow develops in the channel, the pressure 

drops off linearly to the pressure at the outlet.  

 

Figure 19. Pressure driven flow in a channel connecting two reservoirs 
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5.4.2. Boundary conditions 

The effect of the reservoir at the inlet was simulated using the free slip boundary 

condition on the boundaries of the simulation domain parallel to the flow direction (Figure 19). 

The free-slip boundary condition makes use of specular reflection of the density distribution 

functions    such that there is negligible friction exerted on the fluid flow and the tangential 

component of the momentum remains unchanged. For example on the upper free-slip wall of 

the channel these boundary conditions can be implemented as [81] 

                       (69) 

After streaming, the density distributions pointing out of the simulation domain are known (in 

the above case,       )  while the distributions pointing into the simulation domain (      ) are 

unknown (Figure 17). The no-slip boundary condition designed to implement no tangential flux 

along the channel walls was implemented using bounce-back of the distribution functions. The 

bounce-back boundary conditions for the upper no-slip channel wall are given by 

                       (70) 

Similar to equations (69) and (70) the free-slip and no-slip boundary conditions can also be 

implemented on the lower boundary walls of the simulation domain. 

At the free-slip inlet, a velocity boundary condition of           was imposed while at 

the outlet a pressure boundary condition was imposed by fixing the fluid density at        

and assuming that the y-component of the fluid velocity at the outlet is zero. These boundary 

conditions were implemented using Zou-He velocity and pressure boundary conditions [89] that 
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make use of non-equilibrium bounce-back of density distribution functions normal to the inlet 

and outlet boundaries such that 

     
        

   (71) 

Employing equations (62) and (63) in conjunction with equation (71), the unknown distribution 

functions at the inlet can be computed as 

      
 

 
     (72) 

      
     
 

 
 

 
     (73) 

      
     
 

 
 

 
     (74) 

while for the outlet the unknown distribution functions are as given below 

      
 

 
       (75) 

      
     
 

 
 

 
       (76) 

      
     
 

 
 

 
       (77) 

5.4.3. Validation results 

The entrance flow problem was simulated for a Reynolds number of       and a non-

dimensional inlet velocity of             . A constant relaxation time of        was 



81 

 

employed for the simulations. Figure 20 and Figure 21 show excellent agreement between the 

theoretical predictions and the simulation results obtained from the LBM flow solver. The fluid, 

as it enters the channel, experiences a higher pressure close to the channel walls translating to 

lower flow velocities closer to the no-slip walls (Figure 20 A and B). Conversely, lower pressure 

in the center of the channel at the entrance translates to higher velocities as expected from the 

Bernoulli’s equation. The pressure in the entrance length region of the flow drops off 

nonlinearly and then as the flow becomes laminar, with streamlines parallel to the channel 

wall, it drops off linearly (Figure 20 A and Figure 21 B).  

 

 

Figure 20. Fully developed Poiseuille flow in a microfluidic channel (A) velocity profile and (B) Pressure gradient 
along the length of the channel. 

A. 

B. 
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Figure 21. (A) Steady state parabolic flow profile across the width of the channel. (B) Pressure gradient along the 
length of the channel for a fully developed Poiseuille flow 

A. 

B. 
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As expected, the parabolic flow profile at the outlet of the channel matches very closely the 

theoretically computed parabolic flow profile characteristic of a Poiseuille flow (shown in Figure 

21 A). These results, thus, validate the LBM based hydrodynamic fluid flow solver. 

5.5. Lattice Poisson-Boltzmann Method - Computing electric potential and field 

The next step in the development of the multiphysics solver was to develop an LBE 

based solver for the Poisson-Boltzmann equation (Eq. (54)) which could then be employed later 

to simulate electroosmotic flows or ionic drift-diffusion at the neuroelectronic interface. For 

accomplishing this, a lattice Poisson-Boltzmann method (LPBM) based solver developed by 

Wang et al was implemented [90]. 

5.5.1. Theory 

The Poisson-Boltzmann equation (Eq. (54)) can be recast into a diffusion equation with 

pseudo time steps as 

  

  
                 (78) 

where  

            
 

 
      

      
     

  
 

 

 (79) 

is the RHS term of the Poisson-Boltzmann equation (Eq. (54)). The solution of the Poisson-

Boltzmann equation is then the steady state solution of equation (78). Corresponding to 

equation (78), for a D2Q9 lattice, the pseudo-time evolution of the electric potential can be 
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written in terms of a lattice Boltzmann like equation as 

                  

          
           

        

  
    

   

  
                  

(80) 

where     is the discrete pseudo-time step,     the equivalent of the BGK relaxation time in LBE 

and the equilibrium distribution is given by 

  
  
                 (81) 

with 

           
 

 
          

 

  
 (82) 

    
  

  
 (83) 

where    is the lattice spacing and    is the pseudo-speed of sound for the electric potential on 

the lattice which can be employed to tune convergence rates of the LPBM solver to a steady 

state solution for the electric potential  . The electric potential itself in terms of the density 

distributions    is given by 

                  
 

 (84) 

The relaxation time    is given by 
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     (85) 

where   is referred to as the potential diffusivity on the lattice and is taken as unity for 

simulation purposes. The electric field can also be computed from the distribution functions    

using the following relation 

  
  

 
     
 

     (86) 

5.5.2. Electrode-electrolyte interface 

The LPBM solver for the Poisson-Boltzmann equation (Eq. (54)) was then employed to 

solve for the electric potential and field in the electric double layer associated with an 

electrode-electrolyte interface when the electrode is held at a constant potential   . 

5.5.2.1. Boundary conditions 

A Dirichlet boundary condition with      was applied on the electrode surface using 

equation (84) by using the assumption that the unknown distribution functions on the 

simulation domain boundary relax to an equilibrium potential    on the electrode surface. For 

example, if the electrode is placed at the upper boundary of the simulation domain then the 

unknown distribution functions        can be computed using  

   
 

 
          

 

  
    (87) 

where, using equation (84),    is given by 
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                                        (88) 

A Neumann boundary condition of      was implemented on the wall opposite to the 

electrode surface using the y-component of equation (86). 

5.5.2.2. Validation results 

The electric potential profile in the electric double layer at the electrode-electrolyte 

interface was simulated on a 101151 rectangular simulation domain with a lattice spacing of 

         for electrode surface potentials of 10, 30, 50, 100 and 150 mV and a bulk 

electrolyte concentration of          . A value of         was employed for the pseudo-

speed of sound for the electric potential on the lattice. The simulated results were then 

compared with the theoretical results from the solution of the linearized Poisson-Boltzmann 

equation under Debye-Huckel approximation given by 

     
    (89) 

       
    (90) 

where     is the Debye length    for a     symmetric electrolyte given by 

        
   

   
   

   
 

(91) 
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Figure 22. Results for electric (A) potential and (B) electric field profiles computed using Lattice Poisson Boltzmann 
Method compared with results obtained from Poisson’s equation linearized using Debye-Huckel approximation for 
various electrode surface potentials (150, 100, 50, 30 and 10 mV) in a 0.1 mM  1:1 electrolyte solution. 

A. 

B. 
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The results showed excellent agreement with the theoretical results for electrode surface 

potentials of          the regime for linear behavior but for          the Debye 

shielding was stronger for the results obtained using the nonlinear LPBM solver (Figure 22).  

5.6. Electroosmotic flow in a nanochannel 

Electroosmotic flow in a nanochannel filled with an electrolytic solution results from an 

external electric field applied along the length of the channel. The walls of an electrolyte filled 

channel, because of their surface physicochemical properties, acquire a zeta-potential resulting 

in the formation of a static electric double layer associated with the channel walls. As a result, 

there exists a build-up of higher net charge density closer to the channel wall surfaces than at 

the center of the channel. Now, when an external electric field is applied parallel to the channel 

walls along its length the ions in the channel experience a force and start moving along the 

direction of the applied electric field. The movement of ions in response to the external electric 

field, in turn, exerts a drag force on the solvent molecules in the channel. As a result, the 

solvent or fluid molecules also start to move in the direction of the applied electric field. This 

movement of fluid that results because of an external electric field applied along the length of 

the channel is referred to as an electroosmotic flow. Since the direction of the applied electric 

field is parallel to the channel walls and the ions do not experience any force in a direction 

perpendicular to the channel walls, the equilibrium charge density profile across the width of 

the channel remains unchanged during the development of the electroosmotic flow in the 

channel. 
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5.6.1. Theory 

Electroosmotic flow in nanochannels was simulated using the LBE (Eq. (61)) with the 

external force term given by  

      (92) 

The net charge density distribution         in the nanochannels for a given zeta-potential on 

the channel walls and the net electric field   resulting from the applied electric field    along 

the length of the channel were computed using the LPBM solver through equation (80). The net 

electric force, thus computed, was substituted in the LBE (Eq. (61)) to simulate electroosmotic 

flow in the nanochannels. 

5.6.2. Boundary conditions 

Dirichlet boundary conditions were implemented using equation (84) on channel walls 

to specify the surface zeta-potentials while equation (86) was employed to specify the 

Neumann boundary conditions at the inlet and the outlet of the nanochannels to specify the 

externally applied electric field along the length of the channel.  

For the simulation of the electroosmotic fluid flow using LBE (Eq. (61)), periodic 

boundary conditions were implemented at the channel inlet and outlet. No-slip boundary 

conditions on the channel walls for the fluid flow were implemented using bounce-back of 

density distribution functions    as described in equation (70). 
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Figure 23. (A) Streamwise velocity profiles for electroosmotic flows in channels with widths of 100, 200 and 400 

nm with a zeta potential of       mV,        mM, solvent viscosity of              m
2
/s and a lateral 

electric field of       V/m. (B) Results from Tang et al, J. App. Phys.  100 ,094908 (2006) for comparison. 
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5.6.3. Validation results 

The results for electroosmotic flow simulations were validated against the published 

results of Tang et al [91]. A zeta potential of          was applied on the channel walls 

while an external electric field of            was applied across the length of the channels. 

The bulk electrolyte concentration was specified as           and the fluid viscosity was 

taken to be                  . Simulations were carried out for channel widths of 100, 

200 and 400 nm and a good match was found between simulated and published results (Figure 

23 A and B). 

5.7. Advection-diffusion of solute particles 

A prerequisite for simulating ionic electrodiffusion at the neuron-microelectrode 

interface is the ability to solve for advection diffusion of particles in a fluid. This section 

presents results from the simulation of the advection-diffusion of an instantaneous point 

source of particles created at the center of the simulation domain under the influence of a 

concentration gradient and convection due to fluid flow. 

5.7.1. Theory 

5.7.1.1. One dimensional advection-diffusion 

One dimensional advection-diffusion of particles was simulated using a one-dimensional 

three velocity D1Q3 LBM model. In the D1Q3 LBM model, the discrete particle velocities    and 

the weights    for the corresponding distribution functions    (           ) are specified as 



92 

 

   
 

 
    

 

 
        

 

 
 (93) 

                    (94) 

For the time evolution of the particle concentrations, the LBE excluding the body force term 

from equation (61) was used with the D1Q3 model parameters specified in equations (93) and 

(94).  

5.7.1.2. Two dimensional advection-diffusion 

Two dimensional advection-diffusion was simulated using the lattice Boltzmann 

algorithm outlined in section 5.3 for the D2Q9 model. LBE in equation (61) was employed to 

solve for the time evolution of the density distribution functions. 

The non-dimensional velocity relaxation time for the solute particles was specified in 

terms of their diffusion coefficient as  

     
  

   
     (95) 

5.7.2. Boundary conditions 

Simulations for, both one and two dimensional cases of advection-diffusion were 

performed for instantaneous point sources initialized at     in large reservoirs. Although no 

flux bounce-back boundary conditions were employed on the simulation boundaries, the 

simulations were restricted to a total time wherein the effects of the simulation domain 

boundary could be neglected. 
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5.7.3. Validation Results 

The results for one and two dimensional advection and diffusion were validated against 

closed form theoretical solution of the advection-diffusion equation for instantaneous point 

source released at the center of the simulation domain given by 

             
  

       
     

          
 

       
   (96) 

where   is the diffusion coefficient of the solute,   the dimension of the simulation or solution 

domain,   is the position vector and    is the position vector of the point of release of the 

instantaneous point source at    .  

 

Figure 24. Advection-diffusion of an instantaneous point source created in the center of the simulation domain at 
   . The peaks from left to right denote particle concentration profiles at 0.77, 1.54, 2.31 and 3.08 ns. 
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Figure 25. Concentration profiles of particles after      ns for a two-dimensional advection-diffusion of particles 
for corresponding to an instantaneous point source created at the center of the simulation domain at     .( A) 
Theoretical plot and (B) LBM simulation. 
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Throughout the simulation domain, the fluid flow was initialized to           for the one 

dimensional case and to                 for the two dimensional case and kept constant 

for the entire duration of the simulation. The fluid flow was not simulated explicitly in either of 

the cases. Initial concentration       of the solute was set to zero at     throughout the 

simulation domain for both the cases. The solute diffusion coefficient for the simulations was 

set to               and the initial instantaneous non-dimensional point source 

concentrations for one and two dimensional simulations were set to     . The simulation 

results showed excellent agreement with the theoretical results obtained from equation (96) as 

shown in Figure 24 and Figure 25 A and B. 

5.8. Surface chemical reaction in a microfluidic channel 

Results from the previous section validated the LBM solver for the one and two 

dimensional advection-diffusion without any application of boundary conditions as such. 

However, for simulating the ionic electrodiffusion at the neuron-microelectrode interface one 

must be able to simulate particle fluxes across simulation domain boundaries or specify their 

concentration on them. Thus, to validate the Dirichlet and Neumann boundary conditions for 

particle concentrations on simulation domain boundaries, advection-diffusion of solute 

particles in a channel with a reacting wall boundary was carried out using the LBE (Eq. (61)). 

5.8.1. Boundary Conditions 

Similar to the advection-diffusion problems simulated in the previous section, the fluid 

flow in the channel was not explicitly simulated. Corresponding to no-slip boundary conditions 
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for fluid flow on rough channel walls, a fully developed Hagen-Poiseuille flow with a parabolic 

flow velocity profile was initialized in the entire simulation domain at     and kept constant 

for the duration of the simulation (Figure 26).  

 

Figure 26. A schematic depicting the boundary conditions on solute concentration and fluid flow for instantaneous 
surface chemical reaction on the upper wall of a microfluidic channel. 

Observing that the non-equilibrium portion of the distribution function is proportional to the 

dot product of its microscopic velocity and the concentration gradient, the non-equilibrium 

portion in opposite directions must take an opposite sign [92]. Using this, the solute 

concentration at the inlet of the channel was specified as unity by computing the incoming 

distribution functions        as 

         
     

   (97) 

         
     

   (98) 

         
     

   (99) 

where   
   are given by equation (64). To account for the instantaneous reaction on the upper 

wall of the channel a Dirichlet boundary condition was implemented simply by setting all 
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incoming distributions        to zero which specified the solute concentration to be zero on the 

reaction wall boundary for all times. The non-dimensional diffusive flux is given by 

       
 

 (100) 

Using equations (100) and (64) and the assumption that the unknown distribution functions 

relax to equilibrium at the outlet boundary, as was done in section 5.5.2.1 for the electric 

potential, the Neumann boundary conditions on the lower channel wall and the channel outlet 

were set to no-diffusive flux.   

5.8.2. Validation results 

The LBM simulation results for the problem of surface chemical reaction in a 

microfluidic channel with a fully developed Hagen-Poiseuille flow were validated against 

simulations carried out in CFD-ACE+, a commercially available CFD solver. For simulations in 

CFD-ACE+, the Hagen-Poiseuille flow for the solvent was initialized in the simulation domain 

using results from a steady state simulation of the plain Poiseuille flow in a channel and the 

inlet boundary condition for the solvent flow was implemented using a user defined subroutine 

       written in FORTRAN. The surface chemical reaction in a microfluidic channel of 

dimensions        was simulated using the flow and chemistry modules of CFD-ACE+. The 

initial solute concentration in the simulation domain was set to zero for both of LBM and CFD-

ACE+ simulations and a solute diffusion coefficient of               was employed for all 

simulations. The simulations were carried out for Peclet numbers              of 0.125, 25 

and 250. The LBM results were compared with CFD-ACE+ simulations for the steady state and 
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an excellent match was obtained (Figure 27 and Figure 28). 

 

 

Figure 27. LBM simulation results for solute concentration profiles as a function of different Peclet numbers in a 
microfluidic channel with instantaneous chemical reaction on the upper wall that fixes the solute concentration to 
zero for all times on the reaction wall 
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Figure 28. Results obtained using the commercially available multiphysics solver CFD-ACE+ for solute concentration 
profiles as a function of different Peclet numbers in a microfluidic channel with instantaneous chemical reaction on 
the upper wall that fixes the solute concentration to zero for all times on the reaction wall 
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5.9. Molecular speed dependent relaxation time – Entrance flow problem revisited 

The lattice Boltzmann equation (61) makes use of a single relaxation time approximation 

referred to in the LBM literature as the Bhatnagar-Gross-Krook or BGK approximation [85]. 

Although the use of a single relaxation time in the LBE (61) simplifies computation, the 

simplification comes at the cost of stability of the LB algorithm. This is can be seen clearly from 

the case of the entrance flow problem as the assumption of a single relaxation time leads to an 

unphysical situation. The hydrodynamic pressure close to the point of transition from a free-slip 

boundary condition to a no-slip boundary condition for the fluid flow on the channel walls is 

higher than it is at the center of the channel at the same position along the x-axis (Figure 20 B) 

but, despite the pressure being higher closer to the point of transition in the boundary 

conditions, the fluid close to the walls is forced to relax, by virtue of the BGK approximation, at 

the same rate as the fluid at the center of the channel. A physically correct description, 

therefore, must have a higher rate of relaxation for the fluid in a region of higher pressure than 

in a region of lower pressure. Also, it is worth noting that the flow speed closer to the point of 

transition in boundary conditions from free-slip to no-slip in a region of higher pressure is lower 

than it is at the center of the channel where the hydrodynamic pressure is lower (Figure 20 B). 

Thus, with the aim of obtaining a physically correct description of microscopic phenomena, this 

section presents results from a lattice Boltzmann algorithm that makes use of a molecular 

speed dependent relaxation time in the LBE (61). 
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5.9.1. Molecular speed dependent relaxation time 

In equation (68), the relaxation time    involves the kinematic viscosity   of the fluid. 

Based on kinetic theory, the kinematic viscosity     of a fluid is given by [93] 

    
 

 
    (101) 

where             is the mean thermal speed of the particles,   their mean free path and 

   their molecular mass. The macroscopic velocity   of the fluid also represents a statistical 

average of the net microscopic velocity of the fluid particles. As such, at any given point in the 

simulation domain the average speed   of the particles can be written as the sum of the 

molecular speed    due to random Brownian motion and the magnitude of the macroscopic 

velocity       , i.e.  

                 (102) 

Based on equation (102), the local kinematic viscosity         can then be written as  

        
 

 
            (103) 

where       is the local mean free path that depends on the local mean speed of the particles. 

Since the local macroscopic velocity        can be computed easily using equation (63) in the 

LB algorithm and the mean thermal speed    can be computed if molecular mass    and the 

temperature   of the system are known, the problem of computing a molecular speed 

dependent relaxation time now reduces to getting an estimate of the local mean free path 

     . This can be accomplished through a use of the Tait’s theory of mean free path by turning 
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again to the kinetic theory of gases with the underlying assumption that there are sufficient 

numbers of collisions in the system to allow for the existence of a local Maxwellian distribution 

of particle velocities [94]. 

The number of collisions occurring in the time interval    between pairs of molecules 

   and    can be written as 

  
 

 
         

                (104) 

such that   ,   ,   and   lie in the ranges and    ,    ,    and    respectively. Here,   ,    are 

the particle velocities;    is the magnitude of the relative velocity             of the 

particles;   is the angle of scattering between the relative velocity     before collision and      

after collision;    is the average diameter of the molecules of two types; and,   is the angle 

between the plane LMN and AP’ (Figure 29).    and   are the single particle velocity distribution 

functions given by 

      
  

    
 
   

    
     

 

   
         (105) 

where    is the number density of the     type of molecules. The total number of these 

collisions such that    lies between    and        can be obtained by integrating over all 

values of   ,   and  . Denoting the total number of such collisions by  

               (106) 

 where         signifies the average number of collisions per unit time (or collision frequency)  
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per molecule of speed   with the molecules of mass   . 

 

 

Figure 29. Representation of a binary collision between two molecules in the center of mass frame. 

Division by         and comparison with equation (104) gives 

        
 

 
        

             (107) 

Integrating equation (107) with respect to  ,   and   , we get 
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(108) 

where             and     denotes the un-normalized error function. The collision 

frequency         of collisions of a molecule of type 1 with molecules of its own kind can also 

be written with a similar expression. In general, frequency of collisions of molecules of type 1 

with molecules of type   is given by 

                       
  

    

  
     

 
     

 

  
         

(109) 

where              and     is the average molecular diameter of the molecules of type 1 

and type  . Thus, the total collision frequency for molecules of type 1 moving with speed    is 

given by 

           
 

 
 

      
 (110) 

where    is the characteristic collision interval. The length of the mean free paths of molecules 

of type 1 moving with speeds    is thus given by 

                
  

     
 (111) 
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Figure 30. Poiseuille flow in a microfluidic channel computed using a molecular speed dependent relaxation time 
based LBM algorithm. (A) Fluid velocity, (B) Pressure gradient and (C) Non-dimensional collision frequency. 

 

A. 

B. 

C. 
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Figure 31. Poiseuille flow in a microfluidic channel computed using a molecular speed dependent relaxation time 
based LBM algorithm. (A) Steady state parabolic flow profile across the width of the channel. (B) Pressure gradient 
along the length of the channel for a fully developed Poiseuille flow. 

A. 

B. 
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Substituting the value for the mean free path in equation (103), one obtains the local kinematic 

viscosity of the fluid as 

        
 

 

  
      

     
 (112) 

This can now be used with equation (68) to compute a local non-dimensional relaxation time 

for the LB algorithm. 

5.9.2. Validation results 

The formalism for the molecular speed dependent relaxation time was validated by 

simulating the entrance flow problem described in section 5.4.1 again. The mass of the fluid 

particles was specified as              ; temperature as        ; density as 

              
 ; and, diameter as          . The non dimensional flow velocity at the 

inlet was specified as              as in the previous simulation (section 5.4.3) for the 

validation of the hydrodynamic LB solver. Figure 30 A, B and C show the flow velocity, pressure 

and the molecular speed dependent non-dimensional collision frequency respectively. A 

comparison of Figure 30 B and C shows clearly that, as expected, the non-dimensional collision 

frequency         is higher in regions of higher pressure and lower velocity and vice versa. The 

molecular speed dependent relaxation time thus helps recover the correct physical description 

of the microscopic phenomena which was not possible with the BGK approximation. The flow 

velocity profile across the width of the channel at the outlet matched the theoretical parabolic 

profile for the Poiseuille flow well (Figure 31 A) and the pressure gradient along the length of 

the channel also matched the simulation results from the single relaxation time BGK 
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approximation (Figure 31 B and Figure 21 B). 

5.9.3. Discussion 

Besides the molecular speed dependent relaxation time model proposed in this chapter 

for the LBE and the single relaxation time lattice Bhatnagar-Gross-Krook (SRT or LBGK) model 

employed for the development of the LBM based multiphysics solver, there are several other 

variants for the relaxation time models that include the multiple relaxation time (MRT), two 

relaxation time (TRT) and the entropic lattice Boltzmann equation (ELBE) models [95, 96]. All 

these models have been developed as an alternative to the LBGK model to improve the 

numerical stability of the LBE. MRT models are constructed in the moment space rather than 

the velocity space and approximate the collision process as linear relaxations in the moment 

space. Corresponding to the nine discrete velocities in the D2Q9 model, nine moments are 

defined of which the ones corresponding to the density and the x and y components of the flux 

are conserved and the rest are unconserved. In the diagonal matrix for the relaxation times, the 

three relaxation times related to the conserved moments are set to zero while the ones related 

to the unconserved moments are computed from the constant bulk and shear viscosities. Now, 

if the relaxation rates for the even order moments are fixed to    , the relaxation rates for the 

odd order moments are equal and can be computed in terms of the shear viscosity. This then 

reduces the MRT model to a TRT model. Further, if the odd order moments are also fixed to 

   , then the TRT model reduces to the SRT or the LBGK model. Recently, it has been shown by 

Luo et al that among all the variants of the relaxation time models, including the ELBE model, 

the MRT model performs the best in terms of numerical stability because it employs a greater 
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number of relaxation times than the TRT and the LBGK models for the LBE. They also show that 

since ELBE models employ just a single relaxation time, they perform as poorly as the LBGK 

models in terms of stability [96].  

The molecular speed dependent relaxation time model proposed here in this chapter 

admits a continuously varying relaxation time based on the local speeds of the fluid or solute 

particles. Thus, presumably, a LBE based on the molecular speed dependent relaxation time 

ought to be more stable than all the other relaxation time models proposed so far, although no 

stability studies are being reported here to support this assertion. Additionally, the use of a 

molecular speed dependent relaxation time preserves the simplicity and elegance of the single 

relaxation time LBGK models. 

5.10. Conclusions 

In conclusion, this chapter describes the development of a LBM based multiphysics 

solver aimed at the simulation of ionic electrodiffusion in mesoscale systems in a systematic 

step-by-step fashion by resolving the development process into tractable parts. Each of these 

sub-components of the multiphysics solver is validated with the solution of a model test 

problem through a comparison with either a known theoretical solution or against published 

literature. This chapter also describes a molecular speed dependent relaxation time model for 

the LBE which is validated with the simulation of results for the entrance flow problem. Unlike 

the single relaxation time LBGK model, this model recovers the correct description of 

microscopic phenomena of collision frequency variation with pressure gradients in the entrance 

flow problem.     
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CHAPTER-6: SIMULATION OF IONIC ELECTRODIFFUSION AT MESOSCALE 
INTERFACES  

6.1. Introduction 

Chapter 5 presented results from the development of an LBM based multiphysics solver 

and put in place a framework that can now be exploited for the simulation of the transient 

dynamics of mesoscale electrochemical systems.  

The electrical coupling between the neuron and the microelectrode at the 

neuroelectronic junction is a capacitive coupling as the extracellular recording amplifier for the 

microelectrode arrays is a high-input-impedance-high-gain amplifier that draws a negligible 

ionic current from the neuron-microelectrode junction. Therefore, for the simulation of 

transient ionic electrodiffusion at the mesoscale neuron-electrode junction under the influence 

of neuron driven ionic currents and potentials, a primary requirement for a multiphysics solver 

is the capability to simulate the transient dynamics of a capacitive coupling between two plane 

parallel electrodes with overlapping electric double layers between them. This chapter, thus, 

presents results from the simulations for the charge relaxation dynamics of an electrolytic 

nanocapacitor using fully coupled LPBM solver for the Poisson’s equation with the LBE for the 

ionic electrodiffusion that employs a molecular speed dependent relaxation time.   

6.2. Theory 

 For simulating the dynamics of the electrolytic nanocapacitor, a primitive model of a 

symmetric     electrolyte was considered. The primitive model of an electrolyte describes the 
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ions in the solvent as point particles and includes the effect of the solvent by describing it as a 

background medium with a characteristic dielectric constant and a constant density. As such, 

the dynamics of the solvent were excluded from the simulations. However, for the purposes of 

computing the molecular speed dependent relaxation times for the time evolution of the ionic 

distribution functions on the lattice, hydrated ions with an effective mass and finite diameter 

were considered. Based on kinetic theory, just as in the case of the fluid viscosity   (101), the 

equilibrium ionic diffusion coefficients   
   for the     ionic specie can be calculated using [93] 

  
   

 

 
            (113) 

where              is the mean thermal speed of the ions at equilibrium,    is the effective 

ionic mass,     is the equilibrium mean free path for the     ionic specie that can be computed 

using equations (109) and (110) described in chapter 5 (section 5.9.1) and rewritten here as  

                        
  

    

  
     

 
     

 

  
         

(114) 

where               and             corresponds to cation, anion and the solvent 

molecules. Thus, the total collision frequency for ions of type 1 moving with speed    is given by 

            
 

 
 

       
 (115) 

where    is the characteristic collision interval. The length of the mean free path of ions of type 

1 moving with speed    is thus given by 
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 (116) 

Substituting equations (114) and (116) in equation (113) shows that the equilibrium ionic 

diffusion coefficients   
   depend on the densities of the ions and the solvent as also on their 

diameters. Thus, if the equilibrium diffusion coefficients   
   along with the densities of the 

components of the electrolyte mixture and the diameter of the solvent molecules are 

prescribed for a simulation, the diameters for the ions    would need to be computed through 

a set of coupled quadratic equations. This was accomplished numerically through the use of 

iterative Newton-Raphson method.   

The LPBM solver described in Chapter 5 (section 5.5) was employed to solve for the 

electric potential and field at every time step of the simulation to account for a change in the 

distribution of ions on the lattice in response to the applied electric field. The time evolution of 

the ionic distribution functions      on a two dimensional nine velocity D2Q9 lattice was 

computed using the following lattice Boltzmann equation (LBE) given below 

                            
              

       

  
      (117) 

where    is the non-dimensional molecular speed dependent relaxation time,    are the 

discrete particle velocities given by equation (67). The discrete external force term     is given 

by [97] 

      
 

   
  
     
  

 
     
     

                                  
   (118) 
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where   is the electric field;    the ionic velocity;       and       are the flow velocity and the 

dynamic viscosity of the solvent respectively; and    is the number fraction of the ions of the 

    type in the electrolyte mixture. Since, with the use of a primitive model for the electrolyte 

the solvent dynamics were excluded from the simulations, the solvent velocity       was 

approximated to zero. The first and the second terms in the second square brackets in equation 

(121) represented the electric and the viscous drag forces on the ions respectively. The 

molecular speed dependent relaxation time    was computed using  

           
  

   
     (119) 

with         given by 

        
 

 
              (120) 

where                    and        can be computed using equations (109), (110) and 

(111).  

The equilibrium distribution functions for each ion type were computed using equation 

(64). The macroscopic ionic concentrations    and the momentum densities were then given by 

        
 

      
  

 

 (121) 

            
 

 
  

 
   (122) 

where    is the force on the     ion type given by 
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                                          (123) 

The equation (122) for the momentum densities for the ions was modified from equation (63) 

to include the additional force term to account for the spatially varying nature of the force field 

in the simulations for the electrolytic nanocapacitor [97]. Also, global electroneutrality of the 

electrolyte was enforced at each time step to account for round-off errors over long simulation 

runs. 

6.3. Boundary Conditions 

Dirichlet boundary conditions were applied for the electric potential    on the electrode 

surfaces using the method described in section 5.5.2 such that  

      for all      (124) 

while no-flux boundary conditions were applied for the ions on the electrode surfaces using 

equation (122) to simulate perfectly blocking electrodes. Periodic boundary conditions were 

applied on the simulation domain boundaries perpendicular to the electrode surfaces for all 

distribution functions used in LPBM and LBE for the simulation of ionic electrodiffusion.  

6.4. Results 

At    , an initial condition of linearly varying electric potential from        at the 

cathode to –       at the anode was specified throughout the simulation domain. A lattice 

spacing of          corresponding to a simulation time step of            was employed 

for all simulations. For electrode spacings of         and          at    , ions in the 
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electrolyte experienced an initial electric field of        
  and              

respectively. This resulted in electric force acting on the cations and anions in the electrolyte 

causing them to move towards the electrodes of opposite polarities. To study the subsequent 

relaxation dynamics of the ions in the region between the two electrodes, simulations were 

carried out for various degrees of electric double layer (EDL) overlap (defined by         , 

where    is the Debye length given by equation (91)), solvent viscosity      , electrode 

separations of 50 and 100 nm and cation to anion diffusion coefficient ratios of    and    .  

The anion diffusion coefficient was specified as         
        or       

          depending on the diffusion coefficient ratio while the cation diffusion coefficient 

was fixed at                . Since the electrode spacing for almost all simulations was 

fixed at        , the EDL overlap parameter was varied to                           by 

varying bulk electrolyte concentrations to                                      

respectively. The effect of electrode spacing was studied by changing    to        while 

keeping the electrolyte concentration fixed. The temperature for all simulations was fixed at 

       ; solvent molecular mass       and density       were fixed at            and 

           respectively; molecular masses of hydrated ions were fixed at             

corresponding to five molecular masses of the solvent molecule in the hydration shell and an 

ionic mass of               . Corresponding to these conditions, the ionic diameters for 

the two anion to cation diffusion coefficient ratios of    and     were obtained from the 

Newon-Raphson method based iterative solution of the coupled quadratic equations described 

in section 6.2 as                and                         respectively.  
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6.4.1. Spatially averaged current density Javg 

To understand the global effect of various parameters outlined above on the charge 

relaxation dynamics of the electrolytic nanocapacitor, the variation of spatially averaged total 

current densities as a function of time was first plotted and analyzed. 

6.4.1.1. Effect of overlapping electric double layers and solvent viscosity 

The effect of overlapping electric double layers and solvent viscosity on the spatially 

averaged current density      is depicted in Figure 32 through Figure 34. It can be seen through 

these figures that, as the degree of EDL overlap is reduced from       to        and then 

to      , the behavior of the spatially averaged current density changes gradually from 

oscillatory to monotonic accompanied by a decrease in the maximum amplitude.  

 

Figure 32. Effect of solvent viscosity       on the spatially averaged current density for an electric double layer 
overlap of      . 
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Figure 33. Effect of solvent viscosity       on the spatially averaged current density for an electric double layer 
overlap of       . 

 

Figure 34. Effect of solvent viscosity       on the spatially averaged current density for an electric double layer 
overlap of      . 
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The effect of increase in solvent viscosity       in going from                 to 

                is to dampen the oscillatory behavior for       and        (Figure 32 

and Figure 33) and reduce the amplitude of the oscillations while it increases the relaxation 

time to equilibrium for the spatially averaged current density in the case of       (Figure 34). 

Also, it is observed that the oscillatory behavior in the case of EDL overlap of 1.4 and 0.65 

persists for solvent viscosities of                 and                 much longer than 

what might be expected (Figure 32 and Figure 33). 

6.4.1.2. Effect of ratio of ionic diffusion coefficients 

The effect of ratio of cation to anion diffusion coefficients for a solvent viscosity of  

                on      is shown in Figure 35 and Figure 36.  

 

Figure 35. Effect of cation to anion diffusion coefficient ratio on spatially averaged current density for      .
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Figure 36. Effect of cation to anion diffusion coefficient ratio on spatially averaged current density for       . 

Since the cation diffusion coefficient is fixed at                 for both     and 2   

cases, changing the cation to anion diffusion coefficient ratio from     to 2    has the effect of 

reducing the anion diffusion coefficient by half. For both       and      , this reduces the 

amplitude of      and a slight increase in relaxation time is seen for      . It also introduces 

very small amplitude persistent oscillations, almost imperceptible, in the case of EDL overlap of 

    as      never really goes to zero completely like the curve for the diffusion coefficient ratio 

of    . Thus, it introduces oscillatory behavior in     . 

6.4.1.3. Effect of electrode separation 

The effect of increasing electrode separation from         to          was to 

again decrease the maximum amplitude of      for both bulk ionic concentrations of  

          and            as can be seen in Figure 37 and Figure 38.  
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Figure 37. Effect of electrode separation on the spatially averaged current density for bulk electrolyte 
concentration of        mM. 

 

Figure 38. Effect of electrode separation on the spatially averaged current density for bulk electrolyte 
concentration of         mM. 
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The maximum value for      in the case of            and          decreased to about 

half of its value in        . Doubling the electrode separation also increased the period of 

oscillations in      by a factor of ~1.5-2.0 for           and doubled the relaxation time to 

equilibrium for           . 

6.4.1.4. Summary and discussion  

In terms of underlying physics, the decrease in maximum value of      in the cases of 

increasing solvent viscosity       (Figure 32 through Figure 34) and a reduction of the anionic 

diffusion coefficient     by half (Figure 35 and Figure 36) are similar and result from a 

reduction in the mobility of ions as both viscosity and diffusion coefficient are related to each 

other and mobility through the Nernst-Einstein and Stokes-Einstein relations given by 

   
    

   
 

  

         
 (125) 

A decrease in ionic mobility due to increased viscosity or reduced diffusion coefficient, 

therefore, leads to a decreased conductivity of the electrolytic medium between the capacitor 

electrodes resulting in an increase in the potential drop across the electrolyte which is then 

accompanied by a consequent decrease in the maximum value of the spatially averaged current 

density     . This also explains faster relaxation to equilibrium for the monotonic case of 

      (Figure 34) with decreasing viscosity of the solvent as more mobile ions charge up the 

electrodes faster. In case of       and       , a decrease in viscosity and the consequent 

increase in ionic mobility causes the ions to oscillate longer (Figure 32 and Figure 33).  

The origins of a decrease in amplitude of      with an increase in electrode spacing   
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(Figure 37 and Figure 38) and an increase in relaxation time for      (Figure 38) for         

mM are purely geometric and must be explainable as such. Now, for a charging capacitor the 

current density as a function of time can be written as  

     
      (126) 

where               is the characteristic relaxation time for the capacitor, A is the 

effective area of the capacitor electrodes, C is the capacitance and   is the conductivity of the 

dielectric medium between the two electrodes. With this, it is self apparent that a doubling of 

the electrode spacing   must result in a doubling of the characteristic    time    as well. An 

increase in the resistance          also accounts for the decrease in the maximum value for 

     for both ionic concentrations of           and            (Figure 37 and Figure 

38). Similarly, doubling the distance between the capacitor electrodes would presumably 

double the time taken by ions in moving from one electrode to another thereby resulting in a 

near doubling of the period of oscillations observed in the case of           (Figure 37). 

In summary, the results for the space averaged current density presented in this section 

raise more questions than they answer about the charge relaxation dynamics of an electrolytic 

nanocapacitor. The relaxation of      for the case of EDL overlap of 0.1 is easily explained on 

the basis of what is already known but this is to be expected since with a thin EDL it 

approximates more closely the case of macroscopic systems where thin EDLs can be neglected 

and this is what results in an all too familiar behavior. The case of EDL overlap of 1.4 is, 

however, more intriguing because of the oscillatory behavior observed for      in general and 

the presence of apparently persistent oscillations in particular. This oscillatory behavior thus 
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warrants further understanding through a comparative analysis and exploration of other 

accessible simulation variables. 

6.4.2. Oscillations in Javg 

This section compares the time evolution of electric potential and electric field, ionic 

charge densities and cation and anion current densities, for electric double layer overlaps of 

      and      , cation to anion diffusion coefficient of    , an electrode spacing of 

      and a solvent viscosity of                . As expected from the space averaged 

current densities for the two cases, electric potential and field, normalized ionic density 

distributions and anion and cation current density distributions exhibit an oscillatory behavior 

for EDL overlap of       which is evident from the various snapshots in time shown in Figure 

39 to Figure 41 while in the case of EDL overlap of       Figure 42 to Figure 44 show a 

monotonic convergence to equilibrium electrostatic plots for these variables. The force that 

ions experience at any point between the two electrodes of the capacitor is proportional to the 

electric field   seen by the ions at that location. A comparison of the electric field profiles in the 

gap between the capacitor electrodes in Figure 39 and Figure 42 for the two cases of EDL 

overlap shows that both exhibit a trough in the middle. This trough in the case of an EDL 

overlap of       is parabolic in shape while the one for       is flat bottomed. So, in terms 

of an analogy, the oscillatory motion of ions can be likened to the motion of a ball rolled in a 

parabolic trough and a flat bottomed trough with rough surfaces under the influence of gravity 

from the top edges of the troughs respectively. 
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Figure 39. Oscillating electric potential   and y-component of the electric field    for EDL overlap       and 

cation to anion diffusion coefficient ratio of    .  
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Figure 40. Oscillating cation and anion density distributions for EDL overlap       and cation to anion diffusion 
coefficient ratio of    . 
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Figure 41. Oscillating non-dimensional cation and anion current density distributions for EDL overlap       and 
cation to anion diffusion coefficient ratio of    . 
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Figure 42. Monotonic behavior of electric potential   and y-component of the electric field    for EDL overlap 

      and cation to anion diffusion coefficient ratio of    . 
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Figure 43. Monotonic behavior of cation and anion density distributions for EDL overlap       and cation to 
anion diffusion coefficient ratio of    . 
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Figure 44. Monotonic behavior of non-dimensional cation and anion current density distributions for EDL overlap 
      and cation to anion diffusion coefficient ratio of    . 
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In the parabolic case, the ball exhibits a to-and-fro oscillatory motion before coming to rest 

while in the flat-bottomed case it comes to rest more or less monotonically. Thus, this explains 

that the parabolic or near parabolic shape of the electric field profile in the case of overlapping 

electric double layers between the nanocapacitor electrodes is what is responsible for the 

observed oscillatory behavior. More fundamentally, the damped oscillatory behavior of      for 

overlapping EDLs with a high degree of overlap, in response to a step potential applied to the 

capacitor electrodes at    , results from a cyclic conversion of the kinetic energy of the 

moving ions to potential energy and vice versa in the presence of a viscous dissipative force 

exerted by the solvent.  

But this still does not explain the persistence of oscillations observed in some of the 

cases for the space averaged current density     . The next section tries to answer this 

question. 

6.4.3. Persistence of oscillations in Javg: A quest for an answer 

A persistence of oscillations in the space averaged current density     was observed in 

three cases for an EDL overlap of      : (i) For                 
      (Figure 32), (ii) 

                
      (Figure 32), and (iii) For                 

      when an 

asymmetry was introduced by changing the cation to anion diffusion coefficient ratio from     

to     (Figure 35). Since the origin of persistent oscillations is similar for cases (i) and (ii), 

besides case (iii), only the case pertaining to                 
      is analyzed further.   
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Figure 45. Oscillatory behavior of the space averaged total, cation and anion current densities for an EDL overlap of 
      and cation to anion diffusion coefficient ratio of    . 

 

Figure 46. (Zoomed-In) Oscillatory behavior of the space averaged total, cation and anion current densities for an 
EDL overlap of      , cation to anion diffusion coefficient ratio of     and                       . 
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Figure 47. Oscillatory behavior of the space averaged total, cation and anion current densities for an EDL overlap of 
      and cation to anion diffusion coefficient ratio of 2  . 

 

Figure 48. (Zoomed-In) Oscillatory behavior of the space averaged total, cation and anion current densities for an 
EDL overlap of      , cation to anion diffusion coefficient ratio of     and                       . 
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Figure 49. Time evolution of y-component of cation   
   and anion   

   velocities for the times when the space-

averaged cation    
   

and anion    
   

 current densities are in-phase for an EDL overlap of      .  
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Figure 50. Time evolution of cation     and anion     collision frequencies for the times when the space-

averaged cation    
   

 and anion    
   

 current densities are in-phase for an EDL overlap of      . 



135 

 

 

Figure 51. Time evolution of y-component of cation   
   and anion   

   velocities for the times when the space-

averaged cation    
   

 and anion    
   

 current are out-of-phase for an EDL overlap of      .  
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Figure 52. Time evolution of cation     and anion     collision frequencies for the times when the space-

averaged cation    
   

 and anion    
   

 current densities are out-of-phase for an EDL overlap of      . 



137 

 

 

Figure 53. Time evolution of y-component of the electric field    and spatial cross-correlation   
     of ionic flux 

densities    
 

 and    
 

 for the times when the space-averaged cation    
   

 and anion    
   

 current densities are in-

phase for an EDL overlap of      . 



138 

 

 

Figure 54. Time evolution of y-component of the electric field    and spatial cross-correlation   
     of ionic flux 

densities    
 

 and    
 

 for the times when the space-averaged cation    
   

 and anion    
   

 current densities are out-

of-phase for an EDL overlap of      . 
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To understand this phenomena, time and space dependencies of new simulation variables of 

space averaged ionic current densities (   
   
        

   
), y-component of ionic velocities 

(             ), non-dimensional ionic collision frequencies (           ) and spatial cross-

correlation   
    of the y-component of ionic flux densities    

 
    and     

 
  ) are plotted and 

examined. 

Figure 45 and Figure 46 (zoomed in version of Figure 45) show that in the first case for 

                
       initially the space averaged ionic current densities    

   
 and     

   
 

are in-phase with each other but once the pattern of persistent oscillations develops    
   

 and 

    
   

 become out-of-phase. A similar behavior can be seen for case (iii) of 

                
      and cation to anion diffusion coefficient ratio of     in Figure 47 

and Figure 48.  

Considering case (i) first, the ionic velocities plotted in Figure 49 corresponding to the in-

phase period for    
   

 and     
   

 show a general oscillatory behavior reflected in the total 

current density      for a period up to 11 ns. Thereafter, between 11 and 20 ns there develop 

two nodes at roughly 1/3rd of the electrode spacing from either electrode where the ionic 

velocities go to zero and switch signs. The region of these two nodes between the 

nanocapacitor electrodes is marked by intense collisions as evidenced by the presence of two 

sharp peaks at roughly 1/3rd of the separation between the two electrodes from each electrode 

(Figure 50). Once the persistent oscillations are fully developed, in the period between 58 and 

93 ns the ionic velocities exhibit only a single node between the capacitor plates where they 

switch sign at any one given instance of time (Figure 51) and the region of this node in the 
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center of the nanocapacitor is again marked by intense collisions between ions (Figure 52). On 

either side of this region there exist regions where the collision frequencies are much lower and 

the ionic velocities are high. In these regions of low collisions the ionic velocities switch sign at 

different instances of time suggesting an oscillatory behavior in time. Next, upon examination 

of the spatial cross-correlation   
    of the y-component of the ionic flux densities    

 
    and 

   
 
    in the time regime (0-11 ns) when    

   
 and     

   
 are in-phase, one observes that spatial 

cross-correlation   
     stays negative and the electric field amplitude for    exhibits oscillatory 

behavior about the equilibrium electrostatic electric field in the center of the simulation 

domain (Figure 53). The negative values of   
     are consistent with the in-phase behavior of 

   
   

 and     
   

 because for a given electric field at a point oppositely charged ions must move in 

opposite directions and hence the negative correlation in their respective fluxes. Between 11 

and 20 ns, however a positive correlation between the ionic flux densities    
 
    and    

 
    

begins to manifest itself (Figure 53). For the spatial cross-correlation   
    of the y-component 

of the ionic flux densities    
 
    and    

 
   , in the out-of-phase time regime (58-93 ns) for 

   
   

 and     
   

, positive values for   
     are observed with a peak at a spatial lag or separation 

of about 25.3 nm (Figure 54). Also, the electric field    starts to exhibit spatial oscillations in 

this time regime (Figure 54) unlike the case of simple oscillations in amplitude at the center of 

the nanocapacitor in the time regime when    
   
 and     

   
 are in-phase (Figure 53). It is easy to 

see that the minima of these spatial oscillations are again separated roughly by 25.3 nm.  
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Figure 55. Time evolution of y-component of the electric field    and spatial cross-correlation   
     of ionic flux 

densities    
 

 and    
 

 for the times when the space-averaged    
   

and    
   

 are out-of-phase for       and ionic 

diffusion coefficient ratio of    . 



142 

 

  

Figure 56. Time evolution of y-component of the electric field    and spatial cross-correlation   
     of ionic flux 

densities    
 

 and    
 

 for an EDL overlap of       and ionic diffusion coefficient ratio of    . 
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Figure 57. Dielectric slab in a capacitor. 

Now, if Figure 51 is examined again, this time more closely, it can be seen that the ionic 

velocities of oppositely charged ions are positively correlated in the opposite halves of the 

simulation domain and exhibit a sort of standing wave-pattern.  

Similar positive correlation of ionic flux densities, although a lot weaker than in case (i), 

is also observed for case (iii) with an EDL overlap of      , cation to anion diffusion 

coefficient ratio of     and a solvent viscosity of                  
      (Figure 55). Since 

such a behavior is absent in the case of     diffusion coefficient ratio, the effect of introduction 

of an asymmetry in the diffusion coefficients or mobility of the ions is to cause persistent 

oscillations in electric field    and a positive correlation in the ionic flux densities    
 

 and    
 

.  

Compared to the three cases discussed above, an exact contrast is presented in the case of an 

EDL overlap of      , cation to anion diffusion coefficient ratio of 1   and a solvent viscosity 

of                        (Figure 56) where the linear negative spatial cross-correlation 

monotonically goes to zero while the system marches to equilibrium as evidenced in the time 
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evolution of the electric field   .  

6.5. Discussion 

With all the arguments and results presented in the previous section, it becomes 

apparent that in the time regime of out-of-phase space averaged ionic current densities 

   
   

 and     
   

 the oppositely charged ions in the two opposite halves of the simulation domain 

exhibit positively correlated motions implying a collective behavior resulting in plasma like 

oscillations. But then what is the reason behind such a collective behavior?  

The reason becomes clear when one analyzes the behavior of a dielectric slab upon 

insertion into a capacitor (Figure 57). A dielectric slab, when slowly introduced into a capacitor, 

experiences a non-uniform electric field that exerts a force on it given by 

           (127) 

that tends to drive it into a region of higher electric field. Since the field inside a dielectric slab 

points in a direction opposite to that of the electric field between the capacitor plates, the 

insertion of the dielectric slab has the effect of lowering the net electric field in the region 

occupied by it. Now consider the dielectric slab to be made up of oppositely charged ions 

interacting with each other to form temporary dipoles. With this, if the binding energy of the 

dipoles in the dielectric slab were less than the interaction energy of the individual ions 

(forming the dipole) with the external electric field of the capacitor then the dipoles will be 

pulled apart into individual ions and forced to move away (in the same direction) from the 

region of higher electric field as both types of ions are in a position that is far away from the 
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equilibrium for the individual ions. Consider now a set of conditions like a region of lower 

electric field in the center of the capacitor or lower ionic velocities due to a viscous drag force 

acting on the ions that allows them to interact again to form dipoles. Now, if the field between 

the capacitor plates be non-uniform as in the case of the electrolytic nanocapacitor considered 

in this chapter, the dipolar interaction between the ions would again force them to move in to a 

region of higher electric field but this time in the opposite direction because of a residual 

momentum from their previous interaction with a region of high electric field. The net electric 

field in the region occupied by the ions interacting like dipoles would also be lowered until the 

time they again encounter a region of high electric field sufficiently strong to break them apart 

and cause a repeat of the cycle described above. Such a repetitive behavior would thus result in 

an oscillatory behavior of the electric field in space and spatially correlated motion of 

oppositely charged ions the kind of which was observed in the results presented in section 6.4.3 

(Figure 54 and Figure 55).  

Thus, it can be concluded that the persistent spatial oscillations observed in the y-

component of the electric field    and the space averaged current densities    
   

and    
   

 are 

most likely due to a dipolar interaction occurring between the ions that results in a plasma like 

collective behavior of ions which is manifested in the positive peak of the spatial correlation 

  
     for the ionic flux densities    

 
 and    

 
.  

The plasma frequency    for an electrolyte in terms of the Debye length    is given by  
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(128) 

where    is the harmonic mean of the cation and anion masses [98]. An EDL overlap of       

corresponding to an ionic concentration of            gives a plasma frequency of 

            while the collision frequency for the ions in a solvent of density       

           is of the order of         . Since for such an electrolyte the collision frequency 

     , the current density is always in phase with the applied electric field and a plasma 

oscillation cannot be excited [98]. However, even with an oscillation frequency of            

     for the in-phase space averaged ionic current densities    
   

and    
   

 just before the onset 

of the out-of-phase behavior, collective plasma like oscillations are observed (Figure 46). Thus, 

the results pertaining to plasma-like collective oscillatory motion of ions presented here for 

overlapping electric double layers in an electrolytic nanocapacitor (in response to a step voltage 

of        applied at     to the capacitor electrodes) appear to be purely an effect of 

nanoscale confinement. 

Traditionally, the dynamics of a capacitor with blocking electrodes have been studied 

using the Poisson-Nernst-Planck (PNP) system of equations (54) and (55) that assume a 

constant ratio between ionic diffusion coefficient and mobility governed by the Nernst-Einstein 

relation (125). In simulations of the dynamics of most electrochemical systems using the PNP 

system of equations thin electric double layers are assumed which permit the use of the quasi-

equilibrium description of ionic diffusion and mobility through the Nernst-Einstein relation. 

However, as pointed out in the introduction for chapter 5, the use of the PNP system of 
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equations is not appropriate for simulating the dynamics of mesoscale electrochemical systems 

because of an assumption of continuum dynamics [77].  

In LBM based modeling of electrochemical systems and electroosmotic flows 

researchers have either employed assumptions of bulk electroneutrality and thin electric 

double layers or assumed fully developed profiles for overlapping electric double layers [90, 91, 

99]. Such an approach has permitted them the use of single relaxation time based on ionic 

diffusion coefficients in the lattice Boltzmann equation (LBE) for the simulation of ionic 

electrodiffusion. The use of a single relaxation time in the BGK approximation in the LBE 

assumes the validity of the Nernst-Einstein relation between the ionic diffusion coefficients and 

their mobilities. The Nernst-Einstein relation between the mobility and diffusion coefficient for 

transient dynamics of charge transport has been shown to be violated by several researchers, 

both experimentally and theoretically, in a number of diverse systems [100-109]. For the 

simulation of the charge relaxation dynamics of a mesoscale electrode-electrolyte interface 

with overlapping electric double layers such an assumption leads to a physically incorrect 

microscopic description of ionic collisions. Under such an unphysical assumption, regions of 

high ionic velocities and low concentrations relax at the same rate as the regions of low ionic 

velocities and high concentrations thereby leading to numerical instabilities and a failure of the 

multiphysics solver. Simulations of the entrance flow problem carried out in the previous 

chapter using molecular speed dependent relaxation time prove a case in point. Further, a 

quasiequilibrium description of the system dynamics allows one to conveniently ignore the 

effects of the viscous drag force exerted on the ions by the solvent molecules. This works fine 

under assumptions of bulk electroneutrality and thin electric double layers because of the 
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diffusive nature of the ionic transport resulting in small ionic velocities but fails spectacularly 

when simulating conditions of overlapping electric double layers characterized by high electric 

fields and the resultant high ionic velocities. It is in this context that the results presented in this 

chapter for the simulation of charge relaxation dynamics in an electrolytic nanocapacitor using 

molecular speed dependent relaxation time assume significance. 

6.6. Conclusions 

The multiphysics solver developed in the previous chapter together with the molecular 

speed dependent relaxation time model of the lattice Boltzmann equation is successfully 

employed for the simulation of the transient dynamics of a mesoscale electrode-electrolyte 

interface. Simulations for the electrolytic nanocapacitor presented in this chapter show that the 

degree of overlap of electric double layers associated with the capacitor electrodes significantly 

alters and influences the nature of charge relaxation dynamics in response to an applied electric 

field or potential. The results presented in this chapter for the dynamics of overlapping electric 

double layers are of particular import for the simulation of ionic electrodiffusion at the neuron-

microelectrode interface because, though the electric double layers at physiological ionic 

concentrations (120-150 mM) are only 1-2 nm in width, the overlapping electric double layers 

at the interface extend across its entire width (20-110 nm) due to the presence of the porous 

protein-glycocalyx matrix that helps neurons adhere to the microelectrode surface. The role 

that viscous drag forces play in affecting the dynamics of charge relaxation in the mesoscale 

coupling of plane parallel electrodes is also significant from the point of simulating ionic 

electrodiffusion at the neuron-microelectrode interface because the Volterra-Wiener kernels 
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estimated using characterization of the neuron-electrode junction with Gaussian bandlimited 

white noise in chapter 2 (Figure 8 A and B) show overly damped dynamics for the 

neuroelectronic interface. This shows that the interfacial medium that fills the neuron-

microelectrode cleft behaves like a highly viscous fluid. Thus, engineering approaches that lead 

to a reduction in the viscosity of the interfacial medium through surface chemical modification 

of the microelectrodes or a structurally more open less viscous interface like that provided by 

microelectrodes coated with carbon nanotube mats [36, 60, 65] might help improve the 

strength of the extracellular signals recorded at the neuroelectronic interface. 
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CHAPTER-7: CONCLUSIONS AND FUTURE WORK 

7.1. Conclusions 

Results presented in this dissertation focused on advancing an understanding of the 

mechanism of signal transduction at the neuron-microelectrode interface. An understanding of 

the mechanism of signal transduction, it was hoped, would help develop tools and strategies 

for an engineering of the neuroelectronic interface to improve the signal to noise ratio for the 

extracellular signals recorded using microelectrode or field effect transistor arrays. 

With the above mentioned goals in mind, a ‘data-true’ characterization of the neuron-

electrode junction was carried out using nonlinear Volterra-Wiener modeling. The experimental 

nonlinear dynamic characterization of the neuroelectronic interface employed Gaussian 

bandlimited white noise as a specialized stimulus to the neuron-microelectrode junction. Using 

the Lee-Schetzen technique of cross-correlation a nonlinear Volterra-Wiener model was 

estimated using the experimentally obtained stimulus response data. The results from Volterra-

Wiener characterization presented in chapter 2 showed a nonlinear contribution to the 

extracellular signal recorded at the neuron-microelectrode interface. However, there was no 

conclusive evidence to say if the nonlinear contribution to the extracellular signal originated 

from the nonlinear dynamics of the neuron or it had nonlinear contributions from the interface 

as well. 

In chapter 3, results from an optimization based study of equivalent circuit models of 

the neuroelectronic interface to determine their suitability for representing signals recorded at 

the neuron-electrode junction were presented. These results conclusively proved that there 
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were nonlinear contributions from the interfacial medium during the process of signal 

transduction at the neuron-electrode junction that could not be modeled using linear 

equivalent circuit models. 

Chapter 4 of the dissertation presented a theoretical framework for extraction of 

nonlinear material parameters like the dielectric permittivity, conductivity and diffusivity 

tensors employing Volterra-Wiener modeling based nonlinear impedance spectroscopy. It was 

argued that Volterra-Wiener modeling based nonlinear impedance spectroscopy presented a 

distinct advantage over the current method of characterizing nonlinear electrochemical 

systems using nonlinear harmonic analysis of input sinusoidal signals. It is expected that the 

material parameters thus extracted for the nonlinear dynamics of the neuroelectronic interface 

using this theoretical framework can be used in conjunction with a multiphysics model for ionic 

electrodiffusion to facilitate engineering of the neuron-microelectrode interface. 

Chapter 5 presented results from a step-by-step development of a lattice Boltzmann 

method based multiphysics solver suitable for simulation of ionic electrodiffusion at the 

mesoscale neuron-microelectrode interface. Also, a molecular speed dependent relaxation time 

was proposed for use with the lattice Boltzmann equation that helped recover a physically 

correct microscopic description of particle collisions in the entrance flow problem. The use of 

continuously varying molecular speed dependent relaxation time in LBE promises to be 

numerically more stable compared to multiple relaxation time, two relaxation time and 

entropic lattice Boltzmann equation based methods while preserving the simplicity and 

elegance of the LBE based on single relaxation time BGK approximation. 
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Chapter 6 employed the multiphysics solver developed in chapter 5 along with the 

molecular speed dependent relaxation time to simulate the charge relaxation dynamics of a 

mesoscale electrolytic capacitor. Results were presented in this chapter for various degrees of 

electric double layer (EDL) overlap, solvent viscosities, electrode separations and cation to 

anion diffusion coefficient ratios. For an EDL overlap of 1.4, anomalous plasma like collective 

behavior of ions was observed which could be attributed to the occurrence of dipole like 

interaction between oppositely charged oscillating ions. Generally neglected in the Poisson-

Nernst-Planck system of equations based modeling of electrochemical systems, the viscosity of 

the solvent was shown to play an important role in the charge relaxation dynamics of the 

mesoscale electrode-electrolyte interface in response to an applied voltage step across the 

nanocapacitor at t = 0. These results were then discussed in the context of their relevance for 

the mechanism of signal transduction at the neuroelectronic junction. 

Thus, with the tools and strategies developed for and presented in this dissertation a 

synergistic approach to engineering the neuron-microelectrode can now be fruitfully pursued 

(Figure 58). 
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Figure 58. A schematic of the sysnergistic approach advocated in this dissertation for engineering the neuron-microelectrode interface. 
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7.2. Future work 

Future work on modeling, simulation and characterization of the neuroelectronic 

interface with the objective of engineering it to improve fidelity of the extracellular signals 

recorded from microelectrode or field effect transistor arrays would need to proceed as 

described in the following two sections: 

7.2.1. Lattice Boltzmann model of the neuron-electrode interface 

The next step in the development of an LB model of the neuron-microelectrode 

interface would be to couple the dynamics of the Hodgkin-Huxley model of the neuron to the 

mesoscopic LB model of ionic electrodiffusion in the interfacial medium by employing Neumann 

boundary conditions for ionic concentrations at the interface between the neural membrane 

and the LB model. No-diffusive flux boundary conditions could be employed at the boundary of 

the interface with the bulk extracellular medium to simulate the effect of the ground electrode  

and the effect of the bulk extracellular medium that acts as a source or sink depending on ion 

type. Development of such a hybrid model would allow for evaluation and analysis of the effect 

of various zeta-potential boundary conditions on the microelectrode, of variations in the 

conductivity of the interfacial medium etc on the mechanism of signal transduction at the 

neuroelectronic interface.   

7.2.2. Nonlinear impedance spectroscopy based on Volterra-Wiener modeling 

Starting with a very simple test system, the theoretical framework for extraction of 

interface parameters like the nonlinear dielectric permittivity, conductivity and diffusivity 
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tensors would need to be systematically validated using progressively complex systems. The 

instrumentation employed in experiments to record experimental data and for stimulating 

systems with bandlimited Gaussian white noise and their effect on the recorded data would 

need to be carefully evaluated before trying to interpret the experimental stimulus-response 

data thus acquired. Linear impedance spectroscopy making use of equivalent circuit models for 

a description of the electrochemical phenomena and nonlinear harmonic analysis of sinusoidal 

stimuli on system behavior can be employed to good effect for validating the linear and 

nonlinear results obtained from Volterra-Wiener modeling based nonlinear impedance 

spectroscopy. Once a certain level of confidence is acquired working with the technique it can 

then be employed for use in the engineering of the neuron-microelectrode interface in 

conjunction with the multiphysics LB model of the neuroelectronic junction. It would then be 

possible to predict the effect of boundary conditions and material parameters using the LB 

model and verify the predictions using experimental recordings from the neuron-

microelectrode interface. The experimental evaluation of the material parameters used in the 

LB model using nonlinear impedance spectroscopy would provide an appropriate feedback for 

fine tuning their effect on signal transduction using the LB model. 
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