36,882 research outputs found

    The Role of Hematology in Diagnosing and Treating Alzheimer's Disease

    Get PDF
    This study focuses on biomarkers and related factors associated directly or indirectly with Alzheimer’s disease. Fluid biomarkers, inflammatory biomarkers and various imaging technologies are considered. Amyloid βeta protein and tau protein are the two major factors linked either causally or diagnostically with Alzheimer’s. Concentrations of these two proteins in blood and cerebrospinal fluid are evaluated for correlations to Alzheimer’s disease onset and progression and are being studied to determine whether they act independently or interact in some manner. Amyloid βeta detected in plasma shows little or no correlation with Alzheimer’s progression, whereas, tau protein detected in cerebrospinal fluid correlates with Alzheimer’s disease. Current literature has been reviewed for the detection, characterization and correlation of various biomarkers with Alzheimer’s disease

    Cerebrospinal fluid phosphorylated tau proteins as predictors of Alzheimer’s disease in subjects with mild cognitive impairment

    Get PDF
    Major efforts are under way to define reliable biomarkers of Alzheimer’s disease. Highly significant increases of hyperphosphorylated tau proteins in cerebrospinal fluid have been recently reported in Alzheimer’s disease patients compared to controls by several independent groups, including ours. These findings support the notion that cerebrospinal fluid phosphorylated tau proteins may be very useful biomarkers in the early identification of Alzheimer’s disease in patients with mild cognitive impairment

    Cerebrospinal Fluid Concentrations of the Synaptic Marker Neurogranin in Neuro-HIV and Other Neurological Disorders.

    Get PDF
    Purpose of reviewThe aim of this study was to examine the synaptic biomarker neurogranin in cerebrospinal fluid (CSF) in different stages of HIV infection and in relation to what is known about CSF neurogranin in other neurodegenerative diseases.Recent findingsCSF concentrations of neurogranin are increased in Alzheimer's disease, but not in other neurodegenerative disorder such as Parkinson's disease, frontotemporal dementia, and Lewy body dementia. Adults with HIV-associated dementia have been found to have decreased levels of neurogranin in the frontal cortex, which at least to some extent, may be mediated by the proinflammatory cytokines IL-1β and IL-8. CSF neurogranin concentrations were in the same range for all groups of HIV-infected individuals and uninfected controls. This either indicates that synaptic injury is not an important part of HIV neuropathogenesis or that CSF neurogranin is not sensitive to the type of synaptic impairment present in HIV-associated neurocognitive disorders

    CSF protein biomarkers predicting longitudinal reduction of CSF β-amyloid42 in cognitively healthy elders.

    Get PDF
    β-amyloid (Aβ) plaque accumulation is a hallmark of Alzheimer's disease (AD). It is believed to start many years prior to symptoms and is reflected by reduced cerebrospinal fluid (CSF) levels of the peptide Aβ1-42 (Aβ42). Here we tested the hypothesis that baseline levels of CSF proteins involved in microglia activity, synaptic function and Aβ metabolism predict the development of Aβ plaques, assessed by longitudinal CSF Aβ42 decrease in cognitively healthy people. Forty-six healthy people with three to four serial CSF samples were included (mean follow-up 3 years, range 2-4 years). There was an overall reduction in Aβ42 from a mean concentration of 211-195 pg ml(-1) after 4 years. Linear mixed-effects models using longitudinal Aβ42 as the response variable, and baseline proteins as explanatory variables (n=69 proteins potentially relevant for Aβ metabolism, microglia or synaptic/neuronal function), identified 10 proteins with significant effects on longitudinal Aβ42. The most significant proteins were angiotensin-converting enzyme (ACE, P=0.009), Chromogranin A (CgA, P=0.009) and Axl receptor tyrosine kinase (AXL, P=0.009). Receiver-operating characteristic analysis identified 11 proteins with significant effects on longitudinal Aβ42 (largely overlapping with the proteins identified by linear mixed-effects models). Several proteins (including ACE, CgA and AXL) were associated with Aβ42 reduction only in subjects with normal baseline Aβ42, and not in subjects with reduced baseline Aβ42. We conclude that baseline CSF proteins related to Aβ metabolism, microglia activity or synapses predict longitudinal Aβ42 reduction in cognitively healthy elders. The finding that some proteins only predict Aβ42 reduction in subjects with normal baseline Aβ42 suggest that they predict future development of the brain Aβ pathology at the earliest stages of AD, prior to widespread development of Aβ plaques

    Neurodegenerative disease biomarkers Aβ1–40, Aβ1–42, tau, and p-tau181 in the vervet monkey cerebrospinal fluid: Relation to normal aging, genetic influences, and cerebral amyloid angiopathy

    Get PDF
    Background:The Caribbean vervet monkey (Chlorocebus aethiops sabaeus) is a potentially valuable animal model of neurodegenerative disease. However, the trajectory of aging in vervets and its relationship to human disease is incompletely understood. Methods:To characterize biomarkers associated with neurodegeneration, we measured cerebrospinal fluid (CSF) concentrations of Aβ1-40, Aβ1-42, total tau, and p-tau181 in 329 members of a multigenerational pedigree. Linkage and genome-wide association were used to elucidate a genetic contribution to these traits. Results:Aβ1-40 concentrations were significantly correlated with age, brain total surface area, and gray matter thickness. Levels of p-tau181 were associated with cerebral volume and brain total surface area. Among the measured analytes, only CSF Aβ1-40 was heritable. No significant linkage (LOD > 3.3) was found, though suggestive linkage was highlighted on chromosomes 4 and 12. Genome-wide association identified a suggestive locus near the chromosome 4 linkage peak. Conclusions:Overall, these results support the vervet as a non-human primate model of amyloid-related neurodegeneration, such as Alzheimer's disease and cerebral amyloid angiopathy, and highlight Aβ1-40 and p-tau181 as potentially valuable biomarkers of these processes

    Fibroblast growth factors 1 and 2 in cerebrospinal fluid are associated with HIV disease, methamphetamine use, and neurocognitive functioning.

    Get PDF
    BackgroundHuman immunodeficiency virus (HIV) and methamphetamine use commonly affect neurocognitive (NC) functioning. We evaluated the relationships between NC functioning and two fibroblast growth factors (FGFs) in volunteers who differed in HIV serostatus and methamphetamine dependence (MAD).MethodsA total of 100 volunteers were categorized into four groups based on HIV serostatus and MAD in the prior year. FGF-1 and FGF-2 were measured in cerebrospinal fluid by enzyme-linked immunosorbent assays along with two reference biomarkers (monocyte chemotactic protein [MCP]-1 and neopterin). Comprehensive NC testing was summarized by global and domain impairment ratings.ResultsSixty-three volunteers were HIV+ and 59 had a history of MAD. FGF-1, FGF-2, and both reference biomarkers differed by HIV and MAD status. For example, FGF-1 levels were lower in subjects who had either HIV or MAD than in HIV- and MAD- controls (P=0.003). Multivariable regression identified that global NC impairment was associated with an interaction between FGF-1 and FGF-2 (model R(2)=0.09, P=0.01): higher FGF-2 levels were only associated with neurocognitive impairment among subjects who had lower FGF-1 levels. Including other covariates in the model (including antidepressant use) strengthened the model (model R(2)=0.18, P=0.004) but did not weaken the association with FGF-1 and FGF-2. Lower FGF-1 levels were associated with impairment in five of seven cognitive domains, more than FGF-2, MCP-1, or neopterin.ConclusionThese findings provide in vivo support that HIV and MAD alter expression of FGFs, which may contribute to the NC abnormalities associated with these conditions. These cross-sectional findings cannot establish causality and the therapeutic benefits of recombinant FGF-1 need to be investigated
    corecore