43,111 research outputs found

    Interactive effects of vascular risk burden and advanced age on cerebral blood flow.

    Get PDF
    Vascular risk factors and cerebral blood flow (CBF) reduction have been linked to increased risk of cognitive impairment and Alzheimer's disease (AD); however the possible moderating effects of age and vascular risk burden on CBF in late life remain understudied. We examined the relationships among elevated vascular risk burden, age, CBF, and cognition. Seventy-one non-demented older adults completed an arterial spin labeling MR scan, neuropsychological assessment, and medical history interview. Relationships among vascular risk burden, age, and CBF were examined in a priori regions of interest (ROIs) previously implicated in aging and AD. Interaction effects indicated that, among older adults with elevated vascular risk burden (i.e., multiple vascular risk factors), advancing age was significantly associated with reduced cortical CBF whereas there was no such relationship for those with low vascular risk burden (i.e., no or one vascular risk factor). This pattern was observed in cortical ROIs including medial temporal (hippocampus, parahippocampal gyrus, uncus), inferior parietal (supramarginal gyrus, inferior parietal lobule, angular gyrus), and frontal (anterior cingulate, middle frontal gyrus, medial frontal gyrus) cortices. Furthermore, among those with elevated vascular risk, reduced CBF was associated with poorer cognitive performance. Such findings suggest that older adults with elevated vascular risk burden may be particularly vulnerable to cognitive change as a function of CBF reductions. Findings support the use of CBF as a potential biomarker in preclinical AD and suggest that vascular risk burden and regionally-specific CBF changes may contribute to differential age-related cognitive declines

    Core binding factors are necessary for natural killer cell development, and cooperate with Notch signaling during T cell specification

    Get PDF
    CBF{beta} is the non-DNA binding subunit of the core binding factors (CBFs). Mice with reduced CBF{beta} levels display profound, early defects in T but not B cell development. Here we show that CBF{beta} is also required at very early stages of natural killer (NK) cell development. We also demonstrate that T cell development aborts during specification, as the expression of Gata3 and Tcf7, which encode key regulators of T lineage specification, is substantially reduced, as are functional thymic progenitors. Constitutively active Notch or IL-7 signaling cannot restore T cell expansion or differentiation of CBF{beta} insufficient cells, nor can overexpression of Runx1 or CBF{beta} overcome a lack of Notch signaling. Therefore the ability of the prethymic cell to respond appropriately to Notch is dependent on CBF{beta}, and both signals converge to activate the T cell developmental program

    Dynamic association between perfusion and white matter integrity across time since injury in Veterans with history of TBI.

    Get PDF
    ObjectiveCerebral blood flow (CBF) plays a critical role in the maintenance of neuronal integrity, and CBF alterations have been linked to deleterious white matter changes. Although both CBF and white matter microstructural alterations have been observed within the context of traumatic brain injury (TBI), the degree to which these pathological changes relate to one another and whether this association is altered by time since injury have not been examined. The current study therefore sought to clarify associations between resting CBF and white matter microstructure post-TBI.Methods37 veterans with history of mild or moderate TBI (mmTBI) underwent neuroimaging and completed health and psychiatric symptom questionnaires. Resting CBF was measured with multiphase pseudocontinuous arterial spin labeling (MPPCASL), and white matter microstructural integrity was measured with diffusion tensor imaging (DTI). The cingulate cortex and cingulum bundle were selected as a priori regions of interest for the ASL and DTI data, respectively, given the known vulnerability of these regions to TBI.ResultsRegression analyses controlling for age, sex, and posttraumatic stress disorder (PTSD) symptoms revealed a significant time since injury × resting CBF interaction for the left cingulum (p < 0.005). Decreased CBF was significantly associated with reduced cingulum fractional anisotropy (FA) in the chronic phase; however, no such association was observed for participants with less remote TBI.ConclusionsOur results showed that reduced CBF was associated with poorer white matter integrity in those who were further removed from their brain injury. Findings provide preliminary evidence of a possible dynamic association between CBF and white matter microstructure that warrants additional consideration within the context of the negative long-term clinical outcomes frequently observed in those with history of TBI. Additional cross-disciplinary studies integrating multiple imaging modalities (e.g., DTI, ASL) and refined neuropsychiatric assessment are needed to better understand the nature, temporal course, and dynamic association between brain changes and clinical outcomes post-injury

    Short-range Correlations in a CBF description of closed-shell nuclei

    Get PDF
    The Correlated Basis Function theory (CBF) provides a theoretical framework to treat on the same ground mean-field and short-range correlations. We present, in this report, some recent results obtained using the CBF to describe the ground state properties of finite nuclear systems. Furthermore we show some results for the excited state obtained with a simplified model based on the CBF theory.Comment: 10 latex pages plus 6 uuencoded figure

    Lack of effect of pravastatin on cerebral blood flow or parenchymal volume loss in elderly at risk for vascular disease

    Get PDF
    <p><b>Background and Purpose:</b> Ageing is associated with a decline in cerebral blood flow. Animal studies have shown that cholesterol-lowering therapy with statins might preserve cerebral blood flow (CBF). We examined the effect of 40 mg pravastatin on the decline in CBF and brain volume in a subset of elderly subjects participating in the PROspective Study of Pravastatin in the Elderly at Risk (PROSPER) trial.</p> <p><b>Methods:</b> Randomization was not stratified according to whether or not subjects participated in the MRI substudy. In 391 men (n=226) and women (n=165) aged 70 to 82 years (mean±SD, 75±3.2), we measured total CBF (in mL/min) at baseline and after a mean±SD follow-up of 33±1.4 months with a gradient-echo phase-contrast MRI technique. Total CBF was defined as the summed flows in both internal carotid and vertebral arteries. Parenchymal volume (whole brain) was segmented with the use of in-house–developed semiautomatic software.</p> <p><b>Results:</b> Total CBF significantly declined in the placebo-allocated group, from 521±83 to 504±92 mL/min (P=0.0036) and in the pravastatin-allocated group from 520±94 to 506±92 mL/min (P=0.018). This decline was not significantly different between treatment groups (P=0.56). There was also a significant reduction in brain volume over time (P<0.001), which was not different between the treatment groups (P=0.47). When expressed per unit of parenchymal volume, the decline in CBF over time was no longer statistically significant.</p> <p><b>Conclusions:</b> Elderly people at risk for cerebral vascular disease had a significant decline in CBF with increasing age that was explained by a concomitant reduction in brain volume. Treatment with 40 mg pravastatin daily had no beneficial effect on total CBF.</p&gt
    • …
    corecore